


Digital Signal Processing
Using MATLAB®

A PROBLEM SOLVING COMPANION

Fourth Edition

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Digital Signal Processing
Using MATLAB®

A PROBLEM SOLVING COMPANION

Fourth Edition

Vinay K. Ingle
John G. Proakis
Northeastern University

Australia • Brazil • Mexico • Singapore • United Kingdom • United States

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



       This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed 
content does not materially affect the overall learning experience. The publisher reserves the right 
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate 
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for 
materials in your areas of interest.

       Important Notice: Media content referenced within the product description or the product 
text may not be available in the eBook version.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Digital Signal Processing Using MATLAB®: 
A Problem Solving Companion, Fourth Edition
Vinay K. Ingle and John G. Proakis

Product Director, Global Engineering: 
Timothy L. Anderson

Media Assistant: Ashley Kaupert

Product Assistant: Teresa Versaggi

Marketing Manager: Kristin Stine

Director, Content and Media Production: 
Sharon L. Smith

Senior Content Project Manager: Jennifer Risden

Production Service:  MPS Limited

Copyeditor:  Richard Camp

Proofreader: Jennifer Grubba

Indexer: Larry Sweazy

Compositor: MPS Limited

Senior Art Director: Michelle Kunkler

Internal Designer: Carmela Periera

Cover Designer:  Jennifer Wahi

Cover Image: Zeljko Radojko/Shutterstock.com

Intellectual Property 
Analyst: Christine Myaskovsky
Project Manager: Sarah Shainwald

Text and Image Permissions Researcher: 
Kristiina Paul

Manufacturing Planner: Doug Wilke

© 2017, 2012 Cengage Learning®

ALL RIGHTS RESERVED. No part of this work covered by the copyright 
herein may be reproduced, transmitted, stored, or used in any form or by 
any means graphic, electronic, or mechanical, including but not limited to 
photocopying, recording, scanning, digitizing, taping, Web distribution, 
information networks, or information storage and retrieval systems, 
except as permitted under Section 107 or 108 of the 1976 United States 
Copyright Act, without the prior written permission of the publisher.

Library of Congress Control Number: 2015944167

ISBN: 978-1-305-63512-8

Cengage Learning
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning 
solutions with employees residing in nearly 40 diff erent countries 
and sales in more than 125 countries around the world. Find your local 
representative at www.cengage.com.

Cengage Learning products are represented in Canada by Nelson 
Education Ltd.

To learn more about Cengage Learning Solutions, visit 
www.cengage.com/engineering.

Purchase any of our products at your local college store or at our 
preferred online store www.cengagebrain.com.

MATLAB is a registered trademark of The MathWorks, 
3 Apple Hill Drive, Natick, MA.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706.

For permission to use material from this text or product, 
submit all requests online at www.cengage.com/permissions.

Further permissions questions can be emailed to 
permissionrequest@cengage.com.

Printed in the United States of America

Print Number: 01 Print Year: 2015

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WCN: 02-200-203



v

Contents

PREFACE xi

1 INTRODUCTION 1

1.1 Overview of Digital Signal Processing 2

1.2 A Brief Introduction to MATLAB 5

1.3 Applications of Digital Signal Processing 18

1.4 Brief Overview of the Book 20

2 DISCRETE-TIME SIGNALS AND SYSTEMS 22

2.1 Discrete-Time Signals 22

2.2 Discrete Systems 36

2.3 Convolution 40

2.4 Difference Equations 47

2.5 Problems 53

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



vi CONTENTS

3 THE DISCRETE-TIME FOURIER ANALYSIS 59

3.1 The Discrete-Time Fourier Transform (DTFT) 59

3.2 The Properties of the DTFT 67

3.3 The Frequency Domain Representation
of LTI Systems 74

3.4 Sampling and Reconstruction of Analog Signals 80

3.5 Problems 97

4 THE z-TRANSFORM 103

4.1 The Bilateral z-Transform 103

4.2 Important Properties of the z-Transform 107

4.3 Inversion of the z-Transform 112

4.4 System Representation in the z-Domain 118

4.5 Solutions of the Difference Equations 128

4.6 Problems 134

5 THE DISCRETE FOURIER TRANSFORM 141

5.1 The Discrete Fourier Series 142

5.2 Sampling and Reconstruction in the z-Domain 149

5.3 The Discrete Fourier Transform 154

5.4 Properties of the Discrete Fourier Transform 165

5.5 Linear Convolution Using the DFT 180

5.6 The Fast Fourier Transform 187

5.7 Problems 200

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



CONTENTS vii

6 IMPLEMENTATION OF DISCRETE-TIME
FILTERS 212

6.1 Basic Elements 213

6.2 IIR Filter Structures 214

6.3 FIR Filter Structures 228

6.4 Overview of Finite-Precision Numerical Effects 239

6.5 Representation of Numbers 240

6.6 The Process of Quantization and Error
Characterizations 255

6.7 Quantization of Filter Coefficients 262

6.8 Problems 277

7 FIR FILTER DESIGN 291

7.1 Preliminaries 292

7.2 Properties of Linear-Phase FIR Filters 295

7.3 Window Design Technique 309

7.4 Frequency-Sampling Design Technique 330

7.5 Optimal Equiripple Design Technique 344

7.6 Problems 360

8 IIR FILTER DESIGN 370

8.1 Some Preliminaries 371

8.2 Some Special Filter Types 374

8.3 Characteristics of Prototype Analog Filters 385

8.4 Analog-to-Digital Filter Transformations 407

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



viii CONTENTS

8.5 Lowpass Filter Design Using MATLAB 427

8.6 Frequency-Band Transformations 432

8.7 Problems 445

9 SAMPLING RATE CONVERSION 458

9.1 Introduction 459

9.2 Decimation by a Factor D 461

9.3 Interpolation by a Factor I 470

9.4 Sampling Rate Conversion by a Rational Factor I/D 477

9.5 FIR Filter Designs for Sampling Rate Conversion 482

9.6 FIR Filter Structures for Sampling Rate Conversion 500

9.7 Problems 510

10 ROUND-OFF EFFECTS IN DIGITAL FILTERS 518

10.1 Analysis of A/D Quantization Noise 518

10.2 Round-Off Effects in IIR Digital Filters 530

10.3 Round-Off Effects in FIR Digital Filters 557

10.4 Problems 569

11 APPLICATIONS IN ADAPTIVE FILTERING 573

11.1 LMS Algorithm for Coefficient Adjustment 575

11.2 System Identification or System Modeling 578

11.3 Suppression of Narrowband Interference in
a Wideband Signal 579

11.4 Adaptive Line Enhancement 582

11.5 Adaptive Channel Equalization 582

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



CONTENTS ix

12 APPLICATIONS IN COMMUNICATIONS 586

12.1 Pulse-Code Modulation 586

12.2 Differential PCM (DPCM) 590

12.3 Adaptive PCM and DPCM (ADPCM) 593

12.4 Delta Modulation (DM) 597

12.5 Linear Predictive Coding (LPC) of Speech 601

12.6 Dual-Tone Multifrequency (DTMF) Signals 605

12.7 Binary Digital Communications 609

12.8 Spread-Spectrum Communications 611

13 RANDOM PROCESSES* 614

13.1 Random Variable 615

13.2 A Pair of Random Variables 628

13.3 Random Signals 642

13.4 Power Spectral Density 650

13.5 Stationary Random Processes through LTI
Systems 658

13.6 Useful Random Processes 668

13.7 Summary and References 684

14 LINEAR PREDICTION AND OPTIMUM
LINEAR FILTERS* 686

14.1 Innovations Representation of a Stationary
Random Process 687

*Chapters 13–15 are available for download from the Instructor’s Companion Website
at www.cengage.com/login.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



x CONTENTS

14.2 Forward and Backward Linear Prediction 701

14.3 Solution of the Normal Equations 717

14.4 Properties of the Linear Prediction-Error Filters 730

14.5 AR Lattice and ARMA Lattice-Ladder Filters 734

14.6 Wiener Filters for Filtering and Prediction 743

14.7 Summary and References 766

15 ADAPTIVE FILTERS* 769

15.1 Applications of Adaptive Filters 769

15.2 Adaptive Direct-Form FIR Filters 815

15.3 Summary and References 849

BIBLIOGRAPHY B-1

INDEX I-1

*Chapters 13–15 are available for download from the Instructor’s Companion Website
at www.cengage.com/login.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



xi

Preface

Since the beginning of the 1980s, we have witnessed a revolution in
computer technology and an explosion in user-friendly applications. This
revolution is still continuing today, with low-cost laptop systems that rival
the performance of expensive workstations. This technological prowess
should be brought to bear on the educational process and, in particular,
on effective teaching that can result in enhanced learning. This problem-
solving companion book on digital signal processing (DSP) makes a con-
tribution toward reaching that goal. The fourth edition continues our in-
novative approach of blending MATLAB®-based learning with traditional
teaching to advanced DSP topics such as optimal and adaptive filters.

The teaching methods in signal processing have changed over the
years from the simple “lecture-only” format to a more integrated “lecture-
laboratory” environment in which practical hands-on issues are taught
using DSP hardware. However, for effective teaching of DSP, the lecture
component must also make extensive use of computer-based explanations,
examples, and exercises. For the past three decades, the MATLAB soft-
ware developed by The MathWorks, Inc. has established itself as the de
facto standard for numerical computation in the signal-processing com-
munity and as a platform of choice for algorithm development. There are
several reasons for this development, but the most important reason is
that MATLAB is available on practically all computing platforms. In this
book, we have made an attempt at integrating MATLAB with traditional
topics in DSP so that it can be used to explore difficult topics and solve
problems to gain insight. Many problems or design algorithms in DSP re-
quire considerable amount of computation. It is for these that MATLAB
provides a convenient tool so that multiple scenarios can be tried with
ease. Such an approach can enhance the learning process.
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xii PREFACE

SCOPE OF THE BOOK

This book is primarily intended for use as a problem-solving companion
book in senior-level undergraduate or first-year graduate courses on DSP.
Although we assume that the student (or user) is familiar with the funda-
mentals of MATLAB, we have provided a brief introduction to MATLAB
in Chapter 1. This book is not written as a textbook in DSP, because
of the ready availability of excellent textbooks. What we have tried to
do is to provide enough depth to the material augmented by MATLAB
functions and examples so that the presentation is consistent, logical, and
enjoyable. Therefore, this book can also be used as a self-study guide by
anyone interested in DSP.

WHAT IS NEW IN THE FOURTH EDITION

• A new Chapter 13 provides a review on random variables and random
processes, including bandpass processes. Extensive use of MATLAB
examples makes these topics easier to understand.

• A new Chapter 14 discusses linear prediction and optimal (or Wiener)
filters, preparing students for graduate studies.

• A new Chapter 15 deals with theory and applications of adaptive fil-
ters. This chapter contains easy-to-understand LMS and RLS algo-
rithms with an extensive set of practical applications, including system
identification, echo and noise cancellation, and adaptive arrays. All al-
gorithms and applications are explained and analyzed using MATLAB.

• The coverage of lattice/ladder filters has moved from Chapter 6 to
Chapter 14 for a more logical presentation of information.

• All MATLAB functions and scripts have been tested and updated so
that they can execute on MATLAB-2014b version and later. Similarly,
all MATLAB plots have been recreated with superior graphic elements.

• We have trimmed many included MATLAB scripts from their plotting
commands to streamline their appearance and to reduce unnecessary
printing. However, all scripts and functions will be made available in
their entirety on the book website.

ORGANIZATION OF THE BOOK

The first ten chapters of this book discuss traditional material typically
covered in an introductory course on DSP. The next two chapters are
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PREFACE xiii

presented as applications in DSP, with emphasis on MATLAB-based
projects. The last three chapters deal with advanced material in DSP and
are intended for graduate studies. In order to keep the size and the cost
of the book down, we have provided these last three chapters through our
book’s instructor website. Information on how to obtain these chapters
is provided in the next section. The following is a list of chapters and a
brief description of their contents.

Chapter 1, Introduction: This chapter introduces readers to the discipline
of signal processing and presents several applications of digital signal
processing, including musical sound processing, echo generation, echo
removal, and digital reverberation. A brief introduction to MATLAB
is also provided.

Chapter 2, Discrete-Time Signals and Systems: This chapter provides a
brief review of discrete-time signals and systems in the time domain.
Appropriate use of MATLAB functions is demonstrated.

Chapter 3, The Discrete-Time Fourier Analysis: This chapter discusses
discrete-time signal and system representation in the frequency domain.
Sampling and reconstruction of analog signals are also presented.

Chapter 4, The z-Transform: This chapter provides signal and sys-
tem description in the complex frequency domain. MATLAB tech-
niques are introduced to analyze z-transforms and to compute inverse
z-transforms. Solutions of difference equations using the z-transform
and MATLAB are provided.

Chapter 5, The Discrete Fourier Transform: This chapter is devoted to the
computation of the Fourier transform and its efficient implementation.
The discrete Fourier series is used to introduce the discrete Fourier
transform, and several of its properties are demonstrated using
MATLAB. Topics such as fast convolution and fast Fourier transform
are thoroughly discussed.

Chapter 6, Implementation of Discrete-Time Filters: This chapter dis-
cusses several structures for the implementation of digital filters.
Several useful MATLAB functions are developed for the determination
and implementation of these structures. In addition to considering
various filter structures, we also treat quantization effects when finite-
precision arithmetic is used in the implementation of IIR and FIR
filters.

Chapter 7, FIR Filter Design: This chapter and the next introduce the im-
portant topic of digital filter design. Three important design techniques
for FIR filters—namely, window design, frequency sampling design, and
the equiripple filter design—are discussed. Several design examples are
provided using MATLAB.

Chapter 8, IIR Filter Design: Included in this chapter are techniques used
in IIR filter design. The chapter begins with the treatment of some
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xiv PREFACE

basic filter types—namely, digital resonators, notch filters, comb fil-
ters, allpass filters, and digital sinusoidal oscillators. This is followed
by a brief description of the characteristics of three widely used analog
filters. Transformations are described for converting these prototype
analog filters into different frequency-selective digital filters. The chap-
ter concludes with several IIR filter designs using MATLAB.

Chapter 9, Sampling Rate Conversion: This chapter treats the important
problem of sampling rate conversion in digital signal processing. Topics
treated include decimation and interpolation by integer factors, sam-
pling rate conversion by a rational factor, and polyphase filter struc-
tures for sampling rate conversion.

Chapter 10, Round-Off Effects in Digital Filters: The focus of this chap-
ter is on the effects of finite-precision arithmetic to the filtering aspects
in signal processing. Quantization noise introduced in analog-to-digital
conversion is characterized statistically, and the quantization effects in
finite-precision multiplication and additions are also modeled statisti-
cally. The effects of these errors in the filter output are characterized as
correlated errors, called limit cycles, and as uncorrelated errors, called
round-off noise.

Chapter 11, Applications in Adaptive Filtering: This chapter is the first
of two chapters on projects using MATLAB. Included is an introduc-
tion to the theory and implementation of adaptive FIR filters with
projects in system identification, interference suppression, narrowband
frequency enhancement, and adaptive equalization.

Chapter 12, Applications in Communications: This chapter focuses on
several projects dealing with waveform representation and coding
and with digital communications. Included is a description of pulse-
code modulation (PCM), differential PCM (DPCM) and adaptive
DPCM (ADPCM), delta modulation (DM) and adaptive DM (ADM),
linear predictive coding (LPC), generation and detection of dual-
tone multifrequency (DTMF) signals, and a description of signal de-
tection applications in binary communications and spread-spectrum
communications.

Chapter 13, Random Processes: This is the first of the last three chap-
ters that are available online through the website for the book. In this
chapter, we provide a brief review of analytical concepts in random
signals that model waveform variations and provide sound techniques
to calculate the response of linear filters to random signals. We begin
by defining probability functions and statistical averages, and continue
with pairs of random variables. These concepts are extended to random
signals, in terms of second-order statistics, and then delve into station-
ary and ergodic processes, correlation functions, and power spectra. We
apply this theory to processing of random signals through LTI systems
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PREFACE xv

using both the time and frequency domains. Finally, we discuss a few
representative random processes, including Gaussian, Markov, white
noise, and filtered noise processes.

Chapter 14, Linear Prediction and Optimum Linear Filters: In this chap-
ter, we treat the problem of optimum filter design from a statistical
viewpoint. The filters are constrained to be linear, and the optimiza-
tion criterion is based on the minimization of the mean square error. We
discuss the design of optimum filters for linear prediction, which has
applications in speech signal processing, image processing, and noise
suppression in communication systems. This design technique requires
the solution of a set of linear equations with special symmetry. We de-
scribe two algorithms, Levinson–Durbin and Schur, which provide the
solution to the equations through computationally efficient procedures
that exploit the symmetry properties. The last section of this chapter
treats an important class of optimum filters called Wiener filters, which
are widely used in many applications involving the estimation of signals
corrupted with additive noise.

Chapter 15, Adaptive Filters: The focus of this chapter is on adaptive fil-
ters, which have adjustable coefficients for use in applications in which
the filter coefficients cannot be designed a priori due to unknown or
changing statistics. We begin with several practical applications in
which adaptive filters have been successfully used in the estimation of
signals corrupted by noise and other interference. Adaptive filters incor-
porate algorithms that allow the filter coefficients to adapt to changes
in the signal statistics. We describe two basic algorithms: the least-
mean-square (LMS) algorithm, which is based on gradient optimization
for determining the coefficients, and the class of recursive least-squares
(RLS) algorithms.

ABOUT THE ONLINE RESOURCES

This book is an outgrowth of our teaching of a MATLAB-based under-
graduate DSP course over several years. Most of the MATLAB functions
discussed in this book were developed for this course. These functions
are collected in the book toolbox called DSPUM v4 and are available
online on the book’s companion website. Many examples in the book con-
tain MATLAB scripts. Similarly, many figure plots were created using
MATLAB scripts. All these scripts are made available at the companion
website for the benefit of students and instructors. Students should study
these scripts to gain insight into MATLAB procedures. We will appre-
ciate any comments, corrections, or compact coding of these functions
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xvi PREFACE

and scripts. Solutions to problems and the associated script files will be
made available to instructors adopting the book through the companion
website.

To access the book’s companion website and all additional course
materials, please visit www.cengage.com/login. After signing in, search
for the ISBN of your title (from the back cover of your book) using the
search box at the top of the page. This will take you to the companion
site where these resources can be found.

Further information about MATLAB and related publications may
be obtained from:

The MathWorks, Inc.
Natick, MA 01760
Phone: (508) 647-7000 Fax: (508) 647-7001
E-mail: info@mathworks.com
WWW: http://www.mathworks.com
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1

C H A P T E R 1
Introduction

During the past several decades, the field of digital signal processing
(DSP) has grown to be important, both theoretically and technologically.
A major reason for its success in industry is the development and use
of low-cost software and hardware. New technologies and applications in
various fields are now taking advantage of DSP algorithms. This will lead
to a greater demand for electrical and computer engineers with a back-
ground in DSP. Therefore, it is necessary to make DSP an integral part
of any electrical engineering curriculum.

Three decades ago an introductory course on DSP was given mainly
at the graduate level. It was supplemented by computer exercises on filter
design, spectrum estimation, and related topics using mainframe (or mini)
computers. However, considerable advances in personal computers and
software during the past three decades have made it necessary to introduce
a DSP course to undergraduates. Since DSP applications are primarily
algorithms that are implemented either on a DSP processor [36] or in
software, a fair amount of programming is required. Using interactive
software, such as MATLAB, it is now possible to place more emphasis
on learning new and difficult concepts than on programming algorithms.
Interesting practical examples can be discussed, and useful problems can
be explored.

With this philosophy in mind, we have developed this book as a com-
panion book (to traditional textbooks like [71, 79]) in which MATLAB is
an integral part in the discussion of topics and concepts. We have chosen
MATLAB as the programming tool primarily because of its wide avail-
ability on computing platforms in many universities across the world.
Furthermore, a low-cost student version of MATLAB has been available
for several years, placing it among the least expensive software products
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2 Chapter 1 INTRODUCTION

for educational purposes. We have treated MATLAB as a computational
and programming toolbox containing several tools (sort of a super calcu-
lator with several keys) that can be used to explore and solve problems
and, thereby, enhance the learning process.

This book is written at an introductory level in order to introduce
undergraduate students to the exciting and practical field of DSP. We
emphasize that this is not a textbook in the traditional sense but a com-
panion book in which more attention is given to problem solving and
hands-on experience with MATLAB. Similarly, it is not a tutorial book in
MATLAB. We assume that the student is familiar with MATLAB and is
currently taking a course in DSP. The book provides basic analytical tools
needed to process real-world signals (a.k.a. analog signals) using digital
techniques. We deal mostly with discrete-time signals and systems, which
are analyzed in both the time and the frequency domains. The analysis
and design of processing structures called filters and spectrum analyzers
are among some of the most important aspects of DSP and are treated in
great detail in this book. Similarly, the topics of finite word-length effects
on filter performance as well as on filter output and the sampling-rate
conversion between two DSP systems are of practical significance. These
are also treated extensively in this book. To further our philosophy of
MATLAB-based learning to advanced topics taught in graduate courses,
we have also included some material from statistical and adaptive signal
processing areas such as random signals, linear prediction, optimal filters,
and adaptive filters.

In this chapter, we provide a brief overview of DSP and an introduc-
tion to MATLAB.

1.1 OVERVIEW OF DIGITAL SIGNAL PROCESSING

In this modern world, we are surrounded by all kinds of signals in
various forms. Some of the signals are natural, but most of the signals
are man-made. Some signals are necessary (speech), some are pleasant
(music), while many are unwanted or unnecessary in a given situation.
In an engineering context, signals are carriers of information, both useful
and unwanted. Therefore, extracting or enhancing the useful informa-
tion from a mix of conflicting information is the simplest form of signal
processing. More generally, signal processing is an operation designed for
extracting, enhancing, storing, and transmitting useful information. The
distinction between useful and unwanted information is often subjective
as well as objective. Hence signal processing tends to be application
dependent.
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1.1.1 HOW ARE SIGNALS PROCESSED?
The signals that we encounter in practice are mostly analog signals. These
signals, which vary continuously in time and amplitude, are processed
using electrical networks containing active and passive circuit elements.
This approach is known as analog signal processing (ASP)—for example,
radio and television receivers.

Analog signal: xa(t) −→ Analog signal processor −→ ya(t) :Analog signal

They can also be processed using digital hardware containing adders,
multipliers, and logic elements or using special-purpose microprocessors.
However, one needs to convert analog signals into a form suitable for
digital hardware. This form of the signal is called a digital signal. It takes
one of the finite number of values at specific instances in time, and hence
it can be represented by binary numbers, or bits. The processing of digital
signals is called DSP; in block diagram form it is represented by

Analog

Equivalent Analog Signal Processor

PrF ADC
Digital

DSP
Digital

Discrete System

DAC PoF Analog

The various block elements are discussed as follows.

PrF: This is a prefilter or an antialiasing filter, which conditions the analog
signal to prevent aliasing.

ADC: This is an analog-to-digital converter, which produces a stream of
binary numbers from analog signals.

Digital Signal Processor: This is the heart of DSP and can represent a general-
purpose computer or a special-purpose processor, or digital hardware,
and so on.

DAC: This is the inverse operation to the ADC, called a digital-to-analog
converter, which produces a staircase waveform from a sequence of
binary numbers, a first step toward producing an analog signal.

PoF: This is a postfilter to smooth out staircase waveform into the desired
analog signal.

It appears from the above two approaches to signal processing, analog
and digital, that the DSP approach is the more complicated, containing
more components than the “simpler looking” ASP. Therefore, one might
ask, Why process signals digitally? The answer lies in the many advan-
tages offered by DSP.
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4 Chapter 1 INTRODUCTION

1.1.2 ADVANTAGES OF DSP OVER ASP
A major drawback of ASP is its limited scope for performing complicated
signal-processing applications. This translates into nonflexibility in pro-
cessing and complexity in system designs. All of these generally lead to
expensive products. On the other hand, using a DSP approach, it is pos-
sible to convert an inexpensive personal computer into a powerful signal
processor. Some important advantages of DSP are these:

1. Systems using the DSP approach can be developed using software run-
ning on a general-purpose computer. Therefore, DSP is relatively con-
venient to develop and test, and the software is portable.

2. DSP operations are based solely on additions and multiplications, lead-
ing to extremely stable processing capability—for example, stability
independent of temperature.

3. DSP operations can easily be modified in real time, often by simple
programming changes or by reloading of registers.

4. DSP has lower cost due to VLSI technology, which reduces costs of
memories, gates, microprocessors, and so forth.

The principal disadvantage of DSP is the limited speed of operations
due to the DSP hardware, especially at very high frequencies. Primarily
because of its advantages, DSP is now becoming a first choice in many
technologies and applications, such as consumer electronics, communica-
tions, wireless telephones, and medical imaging.

1.1.3 TWO IMPORTANT CATEGORIES OF DSP
Most DSP operations can be categorized as being either signal analysis
tasks or signal filtering tasks:

Digital Signal

Analysis Digital Filter

Measurements Digital Signal

Signal analysis This task deals with the measurement of signal prop-
erties. It is generally a frequency-domain operation. Some of its applica-
tions are

• spectrum (frequency and/or phase) analysis,
• speech recognition,
• speaker verification, and
• target detection.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A Brief Introduction to MATLAB 5

Signal filtering This task is characterized by the signal-in signal-out
situation. The systems that perform this task are generally called filters.
It is usually (but not always) a time-domain operation. Some of the ap-
plications are

• removal of unwanted background noise,
• removal of interference,
• separation of frequency bands, and
• shaping of the signal spectrum.

In some applications, such as voice synthesis, a signal is first analyzed
to study its characteristics, which are then used in digital filtering to
generate a synthetic voice.

1.2 A BRIEF INTRODUCTION TO MATLAB

MATLAB is an interactive, matrix-based system for scientific and engi-
neering numeric computation and visualization. Its strength lies in the fact
that complex numerical problems can be solved easily and in a fraction
of the time required by a programming language such as Fortran or C. It
is also powerful in the sense that, with its relatively simple programming
capability, MATLAB can be easily extended to create new commands and
functions.

MATLAB is available in a number of computing environments: PCs
running all flavors of Windows, Apple Macs running OS-X, UNIX/Linux
workstations, and parallel computers. The basic MATLAB program is
further enhanced by the availability of numerous toolboxes (collections of
specialized functions in specific topics) over the years. The information in
this book generally applies to all these environments. In addition to the
basic MATLAB product, the Signal Processing toolbox (SP toolbox) is
required for this book. The original development of the book was done us-
ing the professional version 3.5 running under DOS. The MATLAB scripts
and functions described in the book were later extended and made com-
patible with the present version of MATLAB. Furthermore, through the
services of www.cengagebrain.com, every effort will be made to preserve
this compatibility under future versions of MATLAB.

In this section, we will undertake a brief review of MATLAB. The
scope and power of MATLAB go far beyond the few topics discussed in
this section. For more detailed tutorial-based discussion, students and
readers new to MATLAB should also consult several excellent reference
books available in the literature, including [29], [35], and [76]. The infor-
mation given in all these references, along with the online MATLAB’s
help facility, usually is sufficient to enable readers to use this book.
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6 Chapter 1 INTRODUCTION

The best approach to become familiar with MATLAB is to open a
MATLAB session and experiment with various operators, functions, and
commands until their use and capabilities are understood. Then one can
progress to writing simple MATLAB scripts and functions to execute a
sequence of instructions to accomplish an analytical goal.

1.2.1 GETTING STARTED
The interaction with MATLAB is through the command window of its
graphical user interface (GUI). In the command window, the user types
MATLAB instructions, which are executed instantaneously, and the re-
sults are displayed in the window. In the MATLAB command window,
the characters “>>” indicate the prompt that is waiting for the user to
type a command to be executed. For example,

>> command;

means an instruction command has been issued at the MATLAB prompt.
If a semicolon (;) is placed at the end of a command, then all output from
that command is suppressed. Multiple commands can be placed on the
same line, separated by semicolons. Comments are marked by the percent
sign (%), in which case MATLAB ignores anything to the right of the sign.
The comments allow the reader to follow code more easily. The integrated
help manual provides help for every command through the fragment

>> help command;

which will provide information on the inputs, outputs, usage, and func-
tionality of the command. A complete listing of commands sorted by
functionality can be obtained by typing help at the prompt.

There are three basic elements in MATLAB: numbers, variables, and
operators. In addition, punctuation marks (,, ;, :, etc.) have special
meanings.

Numbers MATLAB is a high-precision numerical engine and can han-
dle all types of numbers—that is, integers, real numbers, complex num-
bers, among others—with relative ease. For example, the real number 1.23
is represented as simply 1.23, while the real number 4.56 × 107 can be
written as 4.56e7. The imaginary number

√
−1 is denoted either by 1i or

1j, although in this book we will use the symbol 1j. Hence the complex
number whose real part is 5 and whose imaginary part is 3 will be written
as 5+1j*3. Other constants preassigned by MATLAB are pi for π, inf
for ∞, and NaN for not a number (e.g., 0/0). These preassigned constants
are very important and, to avoid confusion, should not be redefined by
users.
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Variables In MATLAB, which stands for MATrix LABoratory, the ba-
sic variable is a matrix, or an array. Hence, when MATLAB operates on
this variable, it operates on all its elements. This is what makes it a pow-
erful and an efficient engine. MATLAB now supports multidimensional
arrays; we will discuss only up to two-dimensional arrays of numbers.

1. Matrix: A matrix is a two-dimensional set of numbers arranged in
rows and columns. Numbers can be real- or complex-valued.

2. Array: This is another name for matrix. However, operations on arrays
are treated differently from those on matrices. This difference is very
important in implementation.

The following are four types of matrices (or arrays).

• Scalar: This is a 1 × 1 matrix or a single number that is denoted by
the variable symbol, that is, lowercase italic typeface like

a = a11

• Column vector: This is an (N × 1) matrix or a vertical arrangement
of numbers. It is denoted by the vector symbol, that is, lowercase bold
typeface like

x = [xi1]i:1,...,N =

⎡
⎢⎢⎢⎣

x11
x21
...

xN1

⎤
⎥⎥⎥⎦

A typical vector in linear algebra is denoted by the column vector.
• Row vector: This is a (1 × M) matrix or a horizontal arrangement of

numbers. It is also denoted by the vector symbol, that is,

y = [y1j ]j=1,...,M =
[
y11 y12 · · · y1M

]

A one-dimensional discrete-time signal is typically represented by an
array as a row vector.

• General matrix: This is the most general case of an (N × M) matrix
and is denoted by the matrix symbol, that is, uppercase bold typeface
like

A = [aij ]i=1,...,N ;j=1,...,m =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1M

a21 a22 · · · a2M

...
...

. . .
...

aN1 aN2 · · · aNM

⎤
⎥⎥⎥⎦

This arrangement is typically used for two-dimensional discrete-time
signals or images.
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8 Chapter 1 INTRODUCTION

MATLAB does not distinguish between an array and a matrix except for
operations. The following assignments denote indicated matrix types in
MATLAB:

a = [3] is a scalar,
x = [1,2,3] is a row vector,
y = [1;2;3] is a column vector, and
A = [1,2,3;4,5,6] is a matrix.

MATLAB provides many useful functions to create special matrices.
These include zeros(M,N) for creating a matrix of all zeros, ones(M,N)
for creating matrix of all ones, eye(N) for creating an N × N identity
matrix, and so on. Consult MATLAB’s help manual for a complete list.

Operators MATLAB provides several arithmetic and logical operators,
some of which follow. For a complete list, MATLAB’s help manual should
be consulted.

= assignment == equality
+ addition - subtraction or minus
* multiplication .* array multiplication
ˆ power .ˆ array power
/ division ./ array division
<> relational operators & logical AND
| logical OR ˜ logical NOT
’ transpose .’ array transpose

We now provide a more detailed explanation on some of these operators.

1.2.2 MATRIX OPERATIONS
Following are the most useful and important operations on matrices.

• Matrix addition and subtraction: These are straightforward oper-
ations that are also used for array addition and subtraction. Care must
be taken that the two matrix operands be exactly the same size.

• Matrix conjugation: This operation is meaningful only for complex-
valued matrices. It produces a matrix in which all imaginary parts are
negated. It is denoted by A∗ in analysis and by conj(A) in MATLAB.

• Matrix transposition: This is an operation in which every row (col-
umn) is turned into column (row). Let X be an (N × M) matrix. Then

X
′
= [xji] ; j = 1, . . . , M, i = 1, . . . , N

is an (M × N) matrix. In MATLAB, this operation has one additional
feature. If the matrix is real-valued, then the operation produces the
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usual transposition. However, if the matrix is complex-valued, then the
operation produces a complex-conjugate transposition. To obtain just
the transposition, we use the array operation of conjugation, that is,
A.′ will do just the transposition.

• Multiplication by a scalar: This is a simple straightforward
operation in which each element of a matrix is scaled by a constant,
that is,

ab ⇒ a*b (scalar)

ax ⇒ a*x (vector or array)

aX ⇒ a*X (matrix)

This operation is also valid for an array scaling by a constant.
• Vector-vector multiplication: In this operation, one has to be care-

ful about matrix dimensions to avoid invalid results. The operation
produces either a scalar or a matrix. Let x be an (N × 1) vector and
y be a (1 × M) vector. Then

x ∗ y ⇒ xy =

⎡
⎢⎣

x1
...

xN

⎤
⎥⎦
[
y1 · · · yM

]
=

⎡
⎢⎣

x1y1 · · · x1yM

...
. . .

...
xNy1 · · · xNyM

⎤
⎥⎦

produces a matrix. If M = N , then

y ∗ x ⇒ yx =
[
y1 · · · yM

]
⎡
⎢⎣

x1
...

xM

⎤
⎥⎦ = x1y1 + · · · + xMyM

• Matrix-vector multiplication: If the matrix and the vector are com-
patible (i.e., the number of matrix-columns is equal to the vector-rows),
then this operation produces a column vector:

y = A*x ⇒ y = Ax =

⎡
⎢⎣

a11 · · · a1M

...
. . .

...
aN1 · · · aNM

⎤
⎥⎦

⎡
⎢⎣

x1
...

xM

⎤
⎥⎦ =

⎡
⎢⎣

y1
...

yN

⎤
⎥⎦

• Matrix-matrix multiplication: Finally, if two matrices are compat-
ible, then their product is well defined. The result is also a matrix with
the number of rows equal to that of the first matrix and the number
of columns equal to that of the second matrix. Note that the order in
matrix multiplication is very important.
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10 Chapter 1 INTRODUCTION

Array Operations These operations treat matrices as arrays. They are
also known as dot operations because the arithmetic operators are prefixed
by a dot (.), that is, .*, ./, or .ˆ.

• Array multiplication: This is an element by element multiplication
operation. For it to be a valid operation, both arrays must be the same
size. Thus we have

x.*y → 1D array

X.*Y → 2D array

• Array exponentiation: In this operation, a scalar (real- or complex-
valued) is raised to the power equal to every element in an array, that is,

a.ˆx ≡

⎡
⎢⎢⎢⎢⎣

ax1

ax2

...

axN

⎤
⎥⎥⎥⎥⎦

is an (N × 1) array, whereas

a.ˆX ≡

⎡
⎢⎢⎢⎢⎣

ax11 ax12 · · · ax1M

ax21 ax22 · · · ax2M

...
...

. . .
...

axN1 axN2 · · · axNM

⎤
⎥⎥⎥⎥⎦

is an (N × M) array.
• Array transposition: As explained, the operation A.′ produces trans-

position of real- or complex-valued array A.

Indexing Operations MATLAB provides very useful and powerful
array-indexing operations using operator :. It can be used to generate
sequences of numbers as well as to access certain row/column elements
of a matrix. Using the fragment x = [a:b:c], we can generate numbers
from a to c in b increments. If b is positive (negative), then we get
increasing (decreasing) values in the sequence x.

The fragment x(a:b:c) accesses elements of x beginning with index
a in steps of b and ending at c. Care must be taken to use integer values
for indexing elements. Similarly, the : operator can be used to extract a
submatrix from a matrix. For example, B = A(2:4,3:6) extracts a 3 × 4
submatrix starting at row 2 and column 3.

Another use of the : operator is in forming column vectors from row
vectors or matrices. When used on the right-hand side of the equality (=)
operator, the fragment x=A(:) forms a long column vector x of elements
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of A by concatenating its columns. Similarly, x=A(:,3) forms a vector x
from the third column of A. However, when used on the right-hand side
of the = operator, the fragment A(:)=x reformats elements in x into a
predefined size of A.

Control-Flow MATLAB provides a variety of commands that allow
us to control the flow of commands in a program. The most common
construct is the if-elseif-else structure. With these commands, we can
allow different blocks of code to be executed depending on some condition.
The format of this construct is

if condition1
command1

elseif condition2
command2

else
command3

end

which executes statements in command1 if condition-1 is satisfied;
otherwise, it executes statements in command2 if condition-2 is satis-
fied, or, finally, statements in command3.

Another common control flow construct is the for..end loop. It is
simply an iteration loop that tells the computer to repeat some task a
given number of times. The format of a for..end loop is

for index = values
program statements

:
end

Although for..end loops are useful for processing data inside of arrays by
using the iteration variable as an index into the array, whenever possible
the user should try to use MATLAB’s whole array mathematics. This will
result in shorter programs and more efficient code. In some situations, the
use of the for..end loop is unavoidable. The following example illustrates
these concepts.

� EXAMPLE 1.1 Consider the following sum of sinusoidal functions:

x(t) = sin(2πt) + 1
3 sin(6πt) + 1

5 sin(10πt) =
∑

k=1,3,5

1
k

sin(2πkt), 0 ≤ t ≤ 1

Using MATLAB, we want to generate samples of x(t) at time instances
0:0.01:1. We will discuss three approaches.
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Approach 1 Here we will consider a typical C or Fortran approach, that is, we will use two
for..end loops, one each on t and k. This is the most inefficient approach in
MATLAB, but possible.

>> t = 0:0.01:1; N = length(t); xt = zeros(1,N);
>> for n = 1:N
>> temp = 0;
>> for k = 1:2:5
>> temp = temp + (1/k)*sin(2*pi*k*t(n));
>> end
>> xt(n) = temp;
>> end

Approach 2 In this approach, we will compute each sinusoidal component in one step as a
vector, using the time vector t = 0:0.01:1, and then add all components using
one for..end loop.

>> t = 0:0.01:1; xt = zeros(1,length(t));
>> for k = 1:2:5
>> xt = xt + (1/k)*sin(2*pi*k*t);
>> end

Clearly, this is a better approach with fewer lines of code than the first one.

Approach 3 In this approach, we will use matrix-vector multiplication, in which MATLAB
is very efficient. For the purpose of demonstration, consider only four values for
t = [t1, t2, t3, t4]. Then

x(t1) = sin(2πt1) + 1
3 sin(2π3t1) + 1

5 sin(2π5t1)

x(t2) = sin(2πt2) + 1
3 sin(2π3t2) + 1

5 sin(2π5t2)

x(t3) = sin(2πt3) + 1
3 sin(2π3t3) + 1

5 sin(2π5t3)

x(t4) = sin(2πt4) + 1
3 sin(2π3t4) + 1

5 sin(2π5t4)

which can be written in matrix form as
⎡

⎢⎢⎢⎣

x(t1)

x(t2)

x(t3)

x(t4)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎣

sin(2πt1) sin(2π3t1) sin(2π5t1)

sin(2πt2) sin(2π3t2) sin(2π5t2)

sin(2πt3) sin(2π3t3) sin(2π5t3)

sin(2πt4) sin(2π3t4) sin(2π5t4)

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎣
1
1
3
1
5

⎤

⎥⎦

= sin

⎛

⎜⎜⎜⎝2π

⎡

⎢⎢⎢⎣

t1

t2

t3

t4

⎤

⎥⎥⎥⎦
[
1 3 5

]

⎞

⎟⎟⎟⎠

⎡

⎢⎣
1
1
3
1
5

⎤

⎥⎦
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or, after taking transposition,

[
x(t1) x(t2) x(t3) x(t4)

]
=

[
1 1

3
1
5

]
sin

⎛

⎜⎝2π

⎡

⎢⎣
1

3

5

⎤

⎥⎦
[
t1 t2 t3 t4

]
⎞

⎟⎠

Thus the MATLAB code is

>> t = 0:0.01:1; k = 1:2:5;
>> xt = (1./k)*sin(2*pi*k’*t);

Note the use of the array division (1./k) to generate a row vector and ma-
trix multiplications to implement all other operations. This is the most compact
code and the most efficient execution in MATLAB, especially when the number
of sinusoidal terms is very large.

1.2.3 SCRIPTS AND FUNCTIONS
MATLAB is convenient in the interactive command mode if we want to
execute few lines of code. But it is not efficient if we want to write code of
several lines that we want to run repeatedly or if we want to use the code
in several programs with different variable values. MATLAB provides two
constructs for this purpose.

Scripts The first construct can be accomplished by using the so-called
block mode of operation. In MATLAB, this mode is implemented using
a script file called an m-file (with an extension .m), which is only a text
file that contains each line of the file as though you typed them at the
command prompt. These scripts are created using MATLAB’s built-in
editor, which also provides for context-sensitive colors and indents for
making fewer mistakes and for easy reading. The script is executed by
typing the name of the script at the command prompt. The script file must
be in the current directory or in the directory of the path environment.
As an example, consider the sinusoidal function in Example 1.1. A general
form of this function is

x(t) =
K∑

k=1

ck sin(2πkt) (1.1)

If we want to experiment with different values of the coefficients ck and/or
the number of terms K, then we should create a script file. To implement
the third approach in Example 1.1, we can write a script file

% Script file to implement (1.1)
t = 0:0.01:1; k = 1:2:5; ck = 1./k;
xt = ck * sin(2*pi*k’*t);

Now we can experiment with different values.
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14 Chapter 1 INTRODUCTION

Functions The second construct of creating a block of code is through
subroutines. These are called functions, which also allow us to extend the
capabilities of MATLAB. In fact, a major portion of MATLAB is assem-
bled using function files in several categories and using special collections
called toolboxes. Functions are also m-files (with extension .m). A major
difference between script and function files is that the first executable
line in a function file begins with the keyword function followed by an
output-input variable declaration. As an example, consider the compu-
tation of the x(t) function in Example 1.1 with an arbitrary number of
sinusoidal terms, which we will implement as a function stored as m-file
sinsum.m.

function xt = sinsum(t,ck)
% Computes sum of sinusoidal terms of the form in (1.1)
% x = sinsum(t,ck)
%
K = length(ck); k = 1:K;
ck = ck(:)’; t = t(:)’;
xt = ck * sin(2*pi*k’*t);

The vectors t and ck should be assigned prior to using the sinsum
function. Note that ck(:)’ and t(:)’ use indexing and transposition
operations to force them to be row vectors. Also note the comments im-
mediately following the function declaration, which are used by the help
sinsum command. Sufficient information should be given there for the user
to understand what the function is supposed to do.

1.2.4 PLOTTING
One of the most powerful features of MATLAB for signal and data anal-
ysis is its graphical data plotting. MATLAB provides several types of
plots, starting with simple two-dimensional (2D) graphs and progressing
to complex, higher-dimensional full-color plots. We will examine only the
2D plotting, which is the plotting of one array versus another in a 2D coor-
dinate system. The basic plotting command is the plot(t,x) command,
which generates a plot of x values versus t values in a separate figure
window. The arrays t and x should be the same length and orientation.
Optionally, some additional formatting keywords can also be provided in
the plot function. The commands xlabel and ylabel are used to add
text to the axes, and the command title is used to provide a title on
the top of the graph. When plotting data, one should get into the habit
of always labeling the axes and providing a title. Almost all aspects of
a plot (style, size, color, etc.) can be changed by appropriate commands
embedded in the program or directly through the GUI.
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The following set of commands creates a list of sample points, eval-
uates the sine function at those points, and then generates a plot of a
simple sinusoidal wave, putting axis labels and title on the plot.

>> t = 0:0.01:2; % sample points from 0 to 2 in steps of 0.01
>> xt = sin(2*pi*t); % Evaluate sin(2 pi t)
>> plot(t,xt,’b’); % Create plot with blue line
>> xlabel(’t in sec’); ylabel(’x(t)’); % Label axis
>> title(’Plot of sin(2\pi t)’); % Title plot

The resulting plot is shown in Figure 1.1.
For plotting a set of discrete numbers (or discrete-time signals), we

will use the stem command, which displays data values as a stem, that
is, a small circle at the end of a line connecting it to the horizontal axis.
The circle can be open (default) or filled (using the option ’filled’).
Using Handle Graphics (MATLAB’s extensive manipulation of graphics
primitives), we can resize circle markers. The following set of commands
displays a discrete-time sine function using these constructs.

>> n = 0:1:40; % sample index from 0 to 40
>> xn = sin(0.1*pi*n); % Evaluate sin(0.1 pi n)
>> stem(n,xn,’b’,’filled’,’marker size’,4); % Stem-plot
>> xlabel(’n’); ylabel(’x(n)’); % Label axis
>> title(’Stem Plot of sin(0.1\pi n)’); % Title plot

The resulting plot is shown in Figure 1.2.
MATLAB provides an ability to display more than one graph in the

same figure window. By means of the hold on command, several graphs

0 0.5 1 1.5 2
–1

–0.5

0

0.5

1

t in sec

x(
t)

Plot of sin(2p t)

FIGURE 1.1 Plot of the sin(2πt) function
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FIGURE 1.2 Plot of the sin(0.1πn) sequence

can be plotted on the same set of axes. The hold off command stops
the simultaneous plotting. The following MATLAB fragment (Figure 1.3)
displays graphs in Figures 1.1 and 1.2 as one plot, depicting a “sampling”
operation that we will study later.

>> plot(t,xt,’b’); hold on; % Create plot with blue line
>> Hs = stem(n*0.05,xn,’b’,’filled’); % Stem-plot with handle Hs
>> set(Hs,’markersize’,4); hold off; % Change circle size

Another approach is to use the subplot command, which displays
several graphs in each individual set of axes arranged in a grid, using the
parameters in the subplot command. The following fragment (Figure 1.4)
displays graphs in Figure 1.1 and 1.2 as two separate plots in two rows.
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Plot of sin(2p t) and its samples

t in Sec
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t)
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(n
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–0.5

0
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FIGURE 1.3 Simultaneous plots of x(t) and x(n)
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FIGURE 1.4 Plots of x(t) and x(n) in two rows

. . .
>> subplot(2,1,1); % Two rows, one column, first plot
>> plot(t,xt,’b’); % Create plot with blue line
. . .
>> subplot(2,1,2); % Two rows, one column, second plot
>> Hs = stem(n,xn,’b’,’filled’,’marker size’,4); % Stem-plot
. . .

The plotting environment provided by MATLAB is very rich in
its complexity and usefulness. It is made even richer using the Handle
Graphics constructs. Therefore, readers are strongly recommended to
consult MATLAB’s manuals on plotting. Many of these constructs will
be used throughout this book.

In this brief review, we have barely made a dent in the enormous
capabilities and functionalities in MATLAB. Using its basic integrated
help system, detailed help browser, and tutorials, it is possible to acquire
sufficient skills in MATLAB in a reasonable amount of time.
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18 Chapter 1 INTRODUCTION

1.3 APPLICATIONS OF DIGITAL SIGNAL PROCESSING

The field of DSP has matured considerably over the last several decades
and now is at the core of many diverse applications and products. These
include

• speech/audio (speech recognition/synthesis, digital audio, equalization,
etc.),

• image/video (enhancement, coding for storage and transmission,
robotic vision, animation, etc.),

• military/space (radar processing, secure communication, missile guid-
ance, sonar processing, etc.),

• biomedical/health care (scanners, ECG analysis, X-ray analysis, EEG
brain mappers, etc.), and

• consumer electronics (cellular/mobile phones, digital television, digital
camera, Internet voice/music/video, interactive entertainment systems,
etc.).

These applications and products require many interconnected com-
plex steps, such as collection, processing, transmission, analysis, audio/
display of real-world information in near real time. DSP technology has
made it possible to incorporate these steps into devices that are inno-
vative, affordable, and of high quality (e.g., the iPhone from Apple).
A typical application to music is now considered as a motivation for the
study of DSP.

Musical sound processing In the music industry, almost all musical
products (songs, albums, etc.) are produced in basically two stages. First,
the sound from an individual instrument or performer is recorded in an
acoustically inert studio on a single track of a multitrack recording device.
Then, stored signals from each track are digitally processed by the sound
engineer by adding special effects and combined into a stereo recording,
which is then made available either on a CD or as an audio file.

The audio effects are artificially generated using various signal-
processing techniques. These effects include echo generation, reverbera-
tion (concert hall effect), flanging (in which audio playback is slowed down
by placing the DJ’s thumb on the flange of the feed reel), chorus effect
(when several musicians play the same instrument with small changes in
amplitudes and delays), and phasing (a.k.a. phase shifting, in which an
audio effect takes advantage of how sound waves interact with each other
when they are out of phase). We now discuss a few of these sound effects
in some detail.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Applications of Digital Signal Processing 19

Echo Generation The most basic of all audio effects is that of time
delay, or echoes. It is used as the building block of more complicated effects
such as reverb or flanging. In a listening space such as a room, sound
waves arriving at our ears consist of direct sound from the source as well
as reflected off the walls, arriving with different amounts of attenuation
and delays.

Echoes are delayed signals, and as such they are generated using delay
units. For example, the combination of the direct sound represented by
discrete signal y[n] and a single echo appearing D samples later (which
is related to delay in seconds) can be generated by an equation (called a
difference equation) of the form

x[n] = y[n] + αy[n − D], |α| < 1 (1.2)

where x[n] is the resulting signal and α models attenuation of the di-
rect sound. Difference equations are implemented in MATLAB using the
filter function. Available in MATLAB is a short snippet of Handel’s
“Hallelujah Chorus,” which is a digital sound about 9 seconds long, sam-
pled at 8192 sam/sec. To experience the sound with echo in (1.2), execute
the following fragment at the command window. The echo is delayed by
D = 4196 samples, which amount to 0.5 sec of delay.

load handel; % The signal is in y and sampling freq in Fs
sound(y,Fs); pause(10); % Play the original sound
alpha = 0.9; D = 4196; % Echo parameters
b = [1,zeros(1,D),alpha]; % Filter parameters
x = filter(b,1,y); % Generate sound plus its echo
sound(x,Fs); % Play sound with echo

You should be able to hear the distinct echo of the chorus in about a
half second.

Echo Removal After executing this simulation, you may experience
that the echo is an objectionable interference while listening. Again DSP
can be used effectively to reduce (almost eliminate) echoes. Such an echo-
removal system is given by the difference equation

w[n] + αw[n − D] = x[n] (1.3)

where x[n] is the echo-corrupted sound signal and w[n] is the output
sound signal, which has the echo (hopefully) removed. Note again that
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this system is very simple to implement in software or hardware. Now try
the following MATLAB script on the signal x[n].

w = filter(1,b,x);
sound(w,Fs)

The echo should no longer be audible.

Digital Reverberation Multiple close-spaced echoes eventually lead
to reverberation, which can be created digitally using a somewhat more
involved difference equation

x[n] =
N−1∑
k=0

αky[n − kD] (1.4)

which generates multiple echoes spaced D samples apart with exponen-
tially decaying amplitudes. Another natural-sounding reverberation is
given by

x[n] = αy[n] + y[n − D] + αx[n − D], |α| < 1 (1.5)

which simulates a higher echo density.
These simple applications are examples of DSP. Using techniques,

concepts, and MATLAB functions learned in this book, you should be
able to simulate these and other interesting sound effects.

1.4 BRIEF OVERVIEW OF THE BOOK

The book is organized roughly in four parts. The first three parts are
included in the printed copy, as was done in the previous editions of the
book, while the last part on advanced topics is available only through the
book’s website (see the Preface for instructions on accessing the book’s
website).

The first part of this book, which comprises Chapters 2 through 5,
deals with the signal-analysis aspect of DSP. Chapter 2 begins with basic
descriptions of discrete-time signals and systems. These signals and sys-
tems are analyzed in the frequency domain in Chapter 3. A generalization
of the frequency-domain description, called the z-transform, is introduced
in Chapter 4. The practical algorithms for computing the Fourier trans-
form are discussed in Chapter 5 in the form of the discrete Fourier trans-
form and the fast Fourier transform.

Chapters 6 through 8 constitute the second part of this book, which is
devoted to the signal-filtering aspect of DSP. Chapter 6 describes various
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implementations and structures of digital filters. It also introduces finite-
precision number representation and filter coefficient quantization and
their effect on filter performance. Chapter 7 introduces design techniques
and algorithms for designing one type of digital filter called finite-duration
impulse response (FIR) filters, and Chapter 8 provides a similar treatment
for another type of filter called infinite-duration impulse response (IIR)
filters. In both chapters, only the simpler but practically useful techniques
of filter design are discussed. More advanced techniques are not covered.

The third part, which consists of Chapters 9 through 12, provides
important topics and applications in DSP. Chapter 9 deals with the use-
ful topic of sampling-rate conversion and applies FIR filter designs from
Chapter 7 to implement practical sample-rate converters. Chapter 10 ex-
tends the treatment of finite-precision numerical representation to signal
quantization and the effect of finite-precision arithmetic on filter perfor-
mance. The last two chapters provide some practical applications in the
form of projects that can be done using material presented in the first 10
chapters. In Chapter 11, concepts in adaptive filtering are introduced, and
simple projects in system identification, interference suppression, adaptive
line enhancement, and so forth, are discussed. In Chapter 12, a brief in-
troduction to digital communications is presented, with projects involving
such topics as PCM, DPCM, and LPC being outlined.

Finally, Chapters 13 through 15 round out the last part of the book
and it is intended as topics in advanced undergraduate or graduate
courses. In Chapter 13, we treat signals as stochastic entities, called
random processes (or signals), and provide their probabilistic as well
as statistical descriptions through the concept of random variables. We
also discuss a few representative random processes. In Chapter 14, we
develop theory for optimum filters for processing random signals. For this
treatment, we consider filters for linear prediction and Wiener filters for
estimating signals corrupted by additive noise. In Chapter 15, we present
adaptive filters, which are stochastic systems for applications in which
statistics is not known a priori. We provide descriptions of LMS and RLS,
two basic yet important adaptive algorithms.

In all these chapters, the central theme is the generous use and ad-
equate demonstration of MATLAB, which can be used as an effective
teaching as well as learning tool. Most of the existing MATLAB functions
for DSP are described in detail, and their correct use is demonstrated in
many examples. Furthermore, many new MATLAB functions are devel-
oped to provide insights into the working of many algorithms. The authors
believe that this hand-holding approach enables students to dispel fears
about DSP and provides an enriching learning experience.
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C H A P T E R 2
Discrete-Time
Signals and
Systems

We begin with the concepts of signals and systems in discrete time. A
number of important types of signals and their operations are introduced.
Linear and shift-invariant systems are discussed mostly because they are
easier to analyze and implement. The convolution and the difference equa-
tion representations are given special attention because of their impor-
tance in digital signal processing and in MATLAB. The emphasis in this
chapter is on the representations and implementation of signals and sys-
tems using MATLAB.

2.1 DISCRETE-TIME SIGNALS

Signals are broadly classified into analog and discrete signals. An analog
signal will be denoted by xa(t), in which the variable t can represent any
physical quantity but we will assume that it represents time in seconds. A
discrete signal will be denoted by x(n), in which the variable n is integer-
valued and represents discrete instances in time. Therefore, it is also called
a discrete-time signal, which is a number sequence and will be denoted by
one of the following notations:

x(n) = {x(n)} = {. . . , x(−1), x(0)
↑

, x(1), . . .}

where the up-arrow indicates the sample at n = 0.
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In MATLAB, we can represent a finite-duration sequence by a row
vector of appropriate values. However, such a vector does not have any
information about sample position n. Therefore, a correct representation
of x(n) would require two vectors, one each for x and n. For example, a
sequence x(n) = {2, 1,−1, 0

↑
, 1, 4, 3, 7} can be represented in MATLAB by

>> n=[-3,-2,-1,0,1,2,3,4]; x=[2,1,-1,0,1,4,3,7];

Generally, we will use the x-vector representation alone when the sample
position information is not required or when such information is trivial
(e.g., when the sequence begins at n = 0). An arbitrary infinite-duration
sequence cannot be represented in MATLAB, due to the finite memory
limitations.

2.1.1 TYPES OF SEQUENCES
We use several elementary sequences in digital signal processing for anal-
ysis purposes. Their definitions and MATLAB representations follow.

1. Unit sample sequence:

δ(n) =
{

1, n = 0
0, n �= 0 =

{
. . . , 0, 0, 1

↑
, 0, 0, . . .

}

In MATLAB, the function zeros(1,N) generates a row vector of N
zeros, which can be used to implement δ(n) over a finite interval. How-
ever, the logical relation n==0 is an elegant way of implementing δ(n).
For example, to implement

δ(n − n0) =
{

1, n = n0
0, n �= n0

over the n1 ≤n0 ≤n2 interval, we will use the following MATLAB
function.

function [x,n] = impseq(n0,n1,n2)
% Generates x(n) = delta(n-n0); n1 <= n <= n2
% ----------------------------------------------
% [x,n] = impseq(n0,n1,n2)
%
n = [n1:n2]; x = [(n-n0) == 0];

2. Unit step sequence:

u(n) =
{

1, n ≥ 0
0, n < 0 = {. . . , 0, 0, 1

↑
, 1, 1, . . .}
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24 Chapter 2 DISCRETE-TIME SIGNALS AND SYSTEMS

In MATLAB, the function ones(1,N) generates a row vector of N ones.
It can be used to generate u(n) over a finite interval. Once again, an
elegant approach is to use the logical relation n>=0. To implement

u(n − n0) =
{

1, n ≥ n0
0, n < n0

over the n1 ≤n0 ≤n2 interval, we will use the following MATLAB
function.

function [x,n] = stepseq(n0,n1,n2)
% Generates x(n) = u(n-n0); n1 <= n <= n2
% ------------------------------------------
% [x,n] = stepseq(n0,n1,n2)
%
n = [n1:n2]; x = [(n-n0) >= 0];

3. Real-valued exponential sequence:

x(n) = an,∀n; a ∈ R

In MATLAB, an array operator “.ˆ” is required to implement a real
exponential sequence. For example, to generate x(n) = (0.9)n, 0 ≤
n ≤ 10, we will need the following MATLAB script.

>> n = [0:10]; x = (0.9).ˆn;

4. Complex-valued exponential sequence:

x(n) = e(σ+jω0)n,∀n

where σ produces an attenuation (if <0) or amplification (if >0)
and ω0 is the frequency in radians. A MATLAB function exp is
used to generate exponential sequences. For example, to generate
x(n) = exp[(2 + j3)n], 0 ≤n ≤ 10, we will need the following MATLAB
script.

>> n = [0:10]; x = exp((2+3j)*n);

5. Sinusoidal sequence:

x(n) = A cos(ω0n + θ0),∀n

where A is an amplitude and θ0 is the phase in radians. A MAT-
LAB function cos (or sin) is used to generate sinusoidal sequences.
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For example, to generate x(n) = 3 cos(0.1πn + π/3) + 2 sin(0.5πn),
0 ≤ n ≤ 10, we will need the following MATLAB script.

>> n = [0:10]; x = 3*cos(0.1*pi*n+pi/3) + 2*sin(0.5*pi*n);

6. Random sequences: Many practical sequences cannot be described
by mathematical expressions like those above. These sequences are
called random (or stochastic) sequences and are characterized by pa-
rameters of the associated probability density functions. In MATLAB,
two types of (pseudo-) random sequences are available. The rand(1,N)
generates a length N random sequence whose elements are uniformly
distributed between [0, 1]. The randn(1,N) generates a length N Gaus-
sian random sequence with mean 0 and variance 1. Other random se-
quences can be generated using transformations of the above functions.

7. Periodic sequence: A sequence x(n) is periodic if x(n) = x(n + N),
∀n. The smallest integer N that satisfies this relation is called the
fundamental period. We will use x̃(n) to denote a periodic sequence.
To generate P periods of x̃(n) from one period {x(n), 0 ≤ n ≤ N−1},
we can copy x(n) P times:

>> xtilde = [x,x,...,x];

But an elegant approach is to use MATLAB’s powerful indexing capa-
bilities. First we generate a matrix containing P rows of x(n) values.
Then we can concatenate P rows into a long row vector using the
construct (:). However, this construct works only on columns. Hence
we will have to use the matrix transposition operator ’ to provide the
same effect on rows.

>> xtilde = x’ * ones(1,P); % P columns of x; x is a row vector
>> xtilde = xtilde(:); % Long column vector
>> xtilde = xtilde’; % Long row vector

Note that the last two lines can be combined into one for compact
coding. This is shown in Example 2.1.

2.1.2 OPERATIONS ON SEQUENCES
Here we briefly describe basic sequence operations and their MATLAB
equivalents.

1. Signal addition: This is a sample-by-sample addition given by

{x1(n)} + {x2(n)} = {x1(n) + x2(n)}
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It is implemented in MATLAB by the arithmetic operator “+”. How-
ever, the lengths of x1(n) and x2(n) must be the same. If sequences are
of unequal lengths, or if the sample positions are different for equal-
length sequences, then we cannot directly use the operator +. We have
to first augment x1(n) and x2(n) so that they have the same position
vector n (and hence the same length). This requires careful attention
to MATLAB’s indexing operations. In particular, logical operation of
intersection “&”, relational operations like “<=” and “==”, and the
find function are required to make x1(n) and x2(n) of equal length.
The following function, called the sigadd function, demonstrates these
operations.

function [y,n] = sigadd(x1,n1,x2,n2)
% Implements y(n) = x1(n)+x2(n)
% -----------------------------
% [y,n] = sigadd(x1,n1,x2,n2)
% y = sum sequence over n, which includes n1 and n2
% x1 = first sequence over n1
% x2 = second sequence over n2 (n2 can be different from n1)
%
n = min(min(n1),min(n2)):max(max(n1),max(n2)); % Duration of y(n)
y1 = zeros(1,length(n)); y2 = y1; % Initialization
y1(find((n>=min(n1))&(n<=max(n1))==1))=x1; % x1 with duration of y
y2(find((n>=min(n2))&(n<=max(n2))==1))=x2; % x2 with duration of y
y = y1+y2; % Sequence addition

Its use is illustrated in Example 2.2.
2. Signal multiplication: This is a sample-by-sample (or “dot”) multi-

plication given by

{x1(n)} · {x2(n)} = {x1(n)x2(n)}

It is implemented in MATLAB by the array operator .*. Once again,
the similar restrictions apply for the .* operator as for the + operator.
Therefore, we have developed the sigmult function, which is similar
to the sigadd function.

function [y,n] = sigmult(x1,n1,x2,n2)
% Implements y(n) = x1(n)*x2(n)
% -----------------------------
% [y,n] = sigmult(x1,n1,x2,n2)
% y = product sequence over n, which includes n1 and n2
% x1 = first sequence over n1
% x2 = second sequence over n2 (n2 can be different from n1)
%
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n = min(min(n1),min(n2)):max(max(n1),max(n2)); % Duration of y(n)
y1 = zeros(1,length(n)); y2 = y1; %
y1(find((n>=min(n1))&(n<=max(n1))==1))=x1; % x1 with duration of y
y2(find((n>=min(n2))&(n<=max(n2))==1))=x2; % x2 with duration of y
y = y1 .* y2; % Sequence multiplication

Its use is also given in Example 2.2.
3. Scaling: In this operation, each sample is multiplied by a scalar α.

α {x(n)} = {αx(n)}
An arithmetic operator (*) is used to implement the scaling operation
in MATLAB.

4. Shifting: In this operation, each sample of x(n) is shifted by an
amount k to obtain a shifted sequence y(n).

y(n) = {x(n − k)}
If we let m = n−k, then n = m+k and the above operation is given by

y(m + k) = {x (m)}
Hence this operation has no effect on the vector x, but the vector n is
changed by adding k to each element. This is shown in the function
sigshift.

function [y,n] = sigshift(x,m,k)
% Implements y(n) = x(n-k)
% -------------------------
% [y,n] = sigshift(x,m,k)
%
n = m+k; y = x;

Its use is given in Example 2.2.
5. Folding: In this operation, each sample of x(n) is flipped around

n = 0 to obtain a folded sequence y(n).

y(n) = {x(−n)}
In MATLAB, this operation is implemented by fliplr(x)function for
sample values and by -fliplr(n) function for sample positions, as
shown in the sigfold function.

function [y,n] = sigfold(x,n)
% Implements y(n) = x(-n)
% -----------------------
% [y,n] = sigfold(x,n)
%
y = fliplr(x); n = -fliplr(n);

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



28 Chapter 2 DISCRETE-TIME SIGNALS AND SYSTEMS

6. Sample summation: This operation differs from the signal addition
operation. It adds all sample values of x(n) between n1 and n2.

n2∑
n=n1

x(n) = x(n1) + · · · + x(n2)

It is implemented by the sum(x(n1:n2)) function.
7. Sample products: This operation also differs from the signal mul-

tiplication operation. It multiplies all sample values of x(n) between
n1 and n2.

n2∏
n1

x(n) = x(n1) × · · · × x(n2)

It is implemented by the prod(x(n1:n2)) function.
8. Signal energy: The energy of a sequence x(n) is given by

Ex =
∞∑

−∞
x(n)x∗(n) =

∞∑
−∞

|x(n)|2

where superscript ∗ denotes the operation of complex conjugation.1

The energy of a finite-duration sequence x(n) can be computed in
MATLAB using

>> Ex = sum(x .* conj(x)); % One approach
>> Ex = sum(abs(x) .ˆ 2); % Another approach

9. Signal power: The average power of a periodic sequence x̃(n) with
fundamental period N is given by

Px =
1
N

N−1∑
0

|x̃(n)|2

� EXAMPLE 2.1 Generate and plot each of the following sequences over the indicated interval.

a. x(n) = 2δ(n + 2) − δ(n − 4), −5 ≤ n ≤ 5.
b. x(n) = n[u(n)−u(n−10)]+10e−0.3(n−10)[u(n−10)−u(n−20)], 0 ≤ n ≤ 20.
c. x(n) = cos(0.04πn) + 0.2w(n), 0 ≤ n ≤ 50, where w(n) is a Gaussian

random sequence with zero mean and unit variance.
d. x̃(n) = {..., 5, 4, 3, 2, 1, 5

↑
, 4, 3, 2, 1, 5, 4, 3, 2, 1, ...}; −10 ≤ n ≤ 9.

1The symbol * denotes many operations in digital signal processing. Its font (roman
or computer) and its position (normal or superscript) will distinguish each operation.
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Solution a. x(n) = 2δ(n + 2) − δ(n − 4), −5 ≤ n ≤ 5.

>> n = [-5:5];
>> x = 2*impseq(-2,-5,5) - impseq(4,-5,5);
>> stem(n,x); title(’Sequence in Problem 2.1a’)
>> xlabel(’n’); ylabel(’x(n)’);

The plot of the sequence is shown in Figure 2.1.
b. x(n) = n [u(n) − u(n − 10)]+10e−0.3(n−10) [u(n − 10) − u(n − 20)], 0 ≤ n ≤

20.

>> n = [0:20]; x1 = n.*(stepseq(0,0,20)-stepseq(10,0,20));
>> x2 = 10*exp(-0.3*(n-10)).*(stepseq(10,0,20)-stepseq(20,0,20));
>> x = x1+x2;
>> subplot(2,2,3); stem(n,x); title(’Sequence in Problem 2.1b’)
>> xlabel(’n’); ylabel(’x(n)’);

The plot of the sequence is shown in Figure 2.1.
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30 Chapter 2 DISCRETE-TIME SIGNALS AND SYSTEMS

c. x(n) = cos(0.04πn) + 0.2w(n), 0 ≤ n ≤ 50.

>> n = [0:50]; x = cos(0.04*pi*n)+0.2*randn(size(n));
>> subplot(2,2,2); stem(n,x); title(’Sequence in Problem 2.1c’)
>> xlabel(’n’); ylabel(’x(n)’);

The plot of the sequence is shown in Figure 2.1.
d. x̃(n) = {..., 5, 4, 3, 2, 1, 5

↑
, 4, 3, 2, 1, 5, 4, 3, 2, 1, ...}; −10 ≤ n ≤ 9.

Note that over the given interval, the sequence x̃ (n) has four periods.

>> n = [-10:9]; x = [5,4,3,2,1];
>> xtilde = x’ * ones(1,4); xtilde = (xtilde(:))’;
>> subplot(2,2,4); stem(n,xtilde); title(’Sequence in Problem 2.1d’)
>> xlabel(’n’); ylabel(’xtilde(n)’);

The plot of the sequence is shown in Figure 2.1. �

� EXAMPLE 2.2 Let x(n) = {1, 2, 3
↑
, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1}. Determine and plot the following

sequences.

a. x1(n) = 2x(n − 5) − 3x(n + 4)
b. x2(n) = x(3 − n) + x(n) x(n − 2)

Solution The sequence x(n) is nonzero over −2 ≤ n ≤ 10. Hence

>> n = -2:10; x = [1:7,6:-1:1];

will generate x(n).

a. x1(n) = 2x(n − 5) − 3x(n + 4).
The first part is obtained by shifting x(n) by 5, and the second part by
shifting x(n) by −4. This shifting and the addition can be easily done using
the sigshift and the sigadd functions.

>> [x11,n11] = sigshift(x,n,5); [x12,n12] = sigshift(x,n,-4);
>> [x1,n1] = sigadd(2*x11,n11,-3*x12,n12);
>> subplot(2,1,1); stem(n1,x1); title(’Sequence in Example 2.2a’)
>> xlabel(’n’); ylabel(’x1(n)’);

The plot of x1(n) is shown in Figure 2.2.
b. x2(n) = x(3 − n) + x(n) x(n − 2).

The first term can be written as x(−(n − 3)). Hence it is obtained by first
folding x(n) and then shifting the result by 3. The second part is a multipli-
cation of x(n) and x(n−2), both of which have the same length but different

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Discrete-Time Signals 31

−6 0 15
−20

−10

0

10

Sequence in Example 2.2a

n

−7 0 12
0

10

20

30

40
Sequence in Example 2.2b

n

x 1
(n

)
x 2

(n
)

FIGURE 2.2 Sequences in Example 2.2

support (or sample positions). These operations can be easily done using the
sigfold and the sigmult functions.

>> [x21,n21] = sigfold(x,n); [x21,n21] = sigshift(x21,n21,3);
>> [x22,n22] = sigshift(x,n,2); [x22,n22] = sigmult(x,n,x22,n22);
>> [x2,n2] = sigadd(x21,n21,x22,n22);
>> subplot(2,1,2); stem(n2,x2); title(’Sequence in Example 2.2b’)
>> xlabel(’n’); ylabel(’x2(n)’);

The plot of x2(n) is shown in Figure 2.2. �

Example 2.2 shows that the four sig* functions developed in this
section provide a convenient approach for sequence manipulations.

� EXAMPLE 2.3 Generate the complex-valued signal

x(n) = e(−0.1+j0.3)n, −10 ≤ n ≤ 10

and plot its magnitude, its phase, its real part, and its imaginary part in four
separate subplots.
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FIGURE 2.3 Complex-valued sequence plots in Example 2.3

Solution MATLAB script:

>> n = [-10:1:10]; alpha = -0.1+0.3j;
>> x = exp(alpha*n);
>> subplot(2,2,1); stem(n,real(x));title(’Real Part’);xlabel(’n’)
>> subplot(2,2,2); stem(n,imag(x));title(’Imaginary Part’);xlabel(’n’)
>> subplot(2,2,3); stem(n,abs(x));title(’Magnitude Part’);xlabel(’n’)
>> subplot(2,2,4); stem(n,(180/pi)*angle(x));title(’Phase Part’);xlabel(’n’)

The plot of the sequence is shown in Figure 2.3. �

2.1.3 DISCRETE-TIME SINUSOIDS
In the last section, we introduced the discrete-time sinusoidal sequence
x(n) = A cos(ω0n + θ0), for all n, as one of the basic signals. This signal
is very important in signal theory as a basis for Fourier transform and
in system theory as a basis for steady-state analysis. It can be conve-
niently related to the continuous-time sinusoid xa(t) = A cos(Ω0t + θ0)
using an operation called sampling (Chapter 3), in which continuous-time
sinusoidal values at equally spaced points t = nTs are assigned to x(n).
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The quantity Ts is called the sampling interval, and Ω0 = ω0/Ts is called
the analog frequency, measured in radians per second.

The fact that n is a discrete variable, whereas t is a continuous
variable, leads to some important differences between discrete-time and
continuous-time sinusoidal signals.

Periodicity in time From our definition of periodicity, the sinusoidal
sequence is periodic if

x[n + N ] = A cos(ω0n + ω0N + θ) = A cos(ω0n + θ0) = x[n] (2.1)

This is possible if and only if ω0N = 2πk, where k is an integer. This
leads to the following important result (see Problem P2.5):

The sequence x(n) = A cos(ω0n + θ0) is periodic if and only if f0
�
=

ω0/2π = k/N , that is, f0 is a rational number. If k and N are a
pair of prime numbers, then N is the fundamental period of x(n) and
k represents an integer number of periods kTs of the corresponding
continuous-time sinusoid.

Periodicity in frequency From the definition of the discrete-time si-
nusoid, we can easily see that

A cos[(ω0 + k2π)n + θ0] = A cos(ω0n + kn2π + θ0)
= A cos(ω0n + θ0)

since (kn)2π is always an integer multiple of 2π. Therefore, we have the
following property:

The sequence x(n) = A cos(ω0n+θ) is periodic in ω0 with fundamen-
tal period 2π and periodic in f0 with fundamental period 1.

This property has a number of very important implications:

1. Sinusoidal sequences with radian frequencies separated by integer mul-
tiples of 2π are identical.

2. All distinct sinusoidal sequences have frequencies within an interval of
2π radians. We shall use the so-called fundamental frequency ranges

−π < ω ≤ π or 0 ≤ ω < 2π (2.2)

Therefore, if 0 ≤ ω0 < 2π, the frequencies ω0 and ω0 + m2π are
indistinguishable from the observation of the corresponding sequences.

3. Since A cos[ω0(n + n0) + θ] = A cos[ω0n + (ω0n0 + θ)], a time shift is
equivalent to a phase change.

4. The rate of oscillation of a discrete-time sinusoid increases as ω0 in-
creases from ω0 = 0 to ω0 = π. However, as ω0 increases from ω0 = π
to ω0 = 2π, the oscillations become slower. Therefore, low frequencies
(slow oscillations) are at the vicinity of ω0 = k2π, and high frequencies
(rapid oscillations) are at the vicinity of ω0 = π + k2π.
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2.1.4 SOME USEFUL RESULTS
There are several important results in discrete-time signal theory. We will
discuss some that are useful in digital signal processing.

Unit sample synthesis Any arbitrary sequence x(n) can be synthe-
sized as a weighted sum of delayed and scaled unit sample sequences, such
as

x(n) =
∞∑

k=−∞
x(k)δ(n − k) (2.3)

We will use this result in the next section.

Even and odd synthesis A real-valued sequence xe(n) is called even
(symmetric) if

xe(−n) = xe(n)

Similarly, a real-valued sequence xo(n) is called odd (antisymmetric) if

xo(−n) = −xo(n)

Then any arbitrary real-valued sequence x(n) can be decomposed into its
even and odd components

x(n) = xe(n) + xo(n) (2.4)

where the even and odd parts are given by

xe(n) =
1
2

[x(n) + x(−n)] and xo(n) =
1
2

[x(n) − x(−n)] (2.5)

respectively. We will use this decomposition in studying properties of the
Fourier transform. Therefore, it is a good exercise to develop a simple
MATLAB function to decompose a given sequence into its even and odd
components. Using MATLAB operations discussed so far, we can obtain
the following evenodd function.

function [xe, xo, m] = evenodd(x,n)
% Real signal decomposition into even and odd parts
% -------------------------------------------------
% [xe, xo, m] = evenodd(x,n)
%
if any(imag(x) ˜= 0)

error(’x is not a real sequence’)
end
m = -fliplr(n);
m1 = min([m,n]); m2 = max([m,n]); m = m1:m2;
nm = n(1)-m(1); n1 = 1:length(n);
x1 = zeros(1,length(m)); x1(n1+nm) = x; x = x1;
xe = 0.5*(x + fliplr(x)); xo = 0.5*(x - fliplr(x));
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FIGURE 2.4 Even-odd decomposition in Example 2.4

The sequence and its support are supplied in x and n arrays, respectively.
It first checks if the given sequence is real and determines the support
of the even and odd components in m array. It then implements (2.5)
with special attention to the MATLAB indexing operation. The resulting
components are stored in xe and xo arrays.

� EXAMPLE 2.4 Let x(n) = u(n) − u(n − 10). Decompose x(n) into even and odd components.

Solution The sequence x(n), which is nonzero over 0 ≤ n ≤ 9, is called a rectangular
pulse. We will use MATLAB to determine and plot its even and odd parts.

>> n = [0:10]; x = stepseq(0,0,10)-stepseq(10,0,10);
>> [xe,xo,m] = evenodd(x,n);
>> subplot(2,2,1); stem(n,x); title(’Rectangular Pulse’)
>> xlabel(’n’); ylabel(’x(n)’); axis([-10,10,0,1.2])
>> subplot(2,2,2); stem(m,xe); title(’Even Part’)
>> xlabel(’n’); ylabel(’xe(n)’); axis([-10,10,0,1.2])
>> subplot(2,2,4); stem(m,xo); title(’Odd Part’)
>> xlabel(’n’); ylabel(’xo(n)’); axis([-10,10,-0.6,0.6])

The plots shown in Figure 2.4 clearly demonstrate the decomposition. �

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



36 Chapter 2 DISCRETE-TIME SIGNALS AND SYSTEMS

A similar decomposition for complex-valued sequences is explored in
Problem P2.5.

The geometric series A one-sided exponential sequence of the form
{αn, n ≥ 0}, where α is an arbitrary constant, is called a geometric
series. In digital signal processing, the convergence and expression for the
sum of this series are used in many applications. The series converges for
|α| < 1, while the sum of its components converges to

∞∑
n=0

αn −→ 1
1 − α

, for |α| < 1 (2.6)

We will also need an expression for the sum of any finite number of terms
of the series given by

N−1∑
n=0

αn =
1 − αN

1 − α
,∀α (2.7)

These two results will be used throughout this book.

Correlations of sequences Correlation is an operation used in many
applications in digital signal processing. It is a measure of the degree to
which two sequences are similar. Given two real-valued sequences x(n) and
y(n) of finite energy, the cross-correlation of x(n) and y(n) is a sequence
rxy(�) defined as

rxy(�) =
∞∑

n=−∞
x(n)y(n − �) (2.8)

The index � is called the shift or lag parameter. The special case of (2.8)
when y(n) = x(n) is called autocorrelation and is defined by

rxx(�) =
∞∑

n=−∞
x(n)x(n − �) (2.9)

It provides a measure of self-similarity between different alignments of the
sequence. MATLAB functions to compute auto- and cross-correlations are
discussed later in the chapter.

2.2 DISCRETE SYSTEMS

Mathematically, a discrete-time system (or discrete system for short) is
described as an operator T [·] that takes a sequence x(n) (called excitation)
and transforms it into another sequence y(n) (called response). That is,

y(n) = T [x(n)]
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In DSP, we will say that the system processes an input signal into an out-
put signal. Discrete systems are broadly classified into linear and nonlinear
systems. We will deal mostly with linear systems.

2.2.1 LINEAR SYSTEMS
A discrete system T [·] is a linear operator L[·] if and only if L[·] satisfies
the principle of superposition, namely,

L[a1x1(n) + a2x2(n)] = a1L[x1(n)] + a2L[x2(n)],∀a1, a2, x1(n), x2(n)
(2.10)

Using (2.3) and (2.10), the output y(n) of a linear system to an arbitrary
input x(n) is given by

y(n) = L[x(n)] = L

[ ∞∑
n=−∞

x(k) δ(n − k)

]
=

∞∑
n=−∞

x(k)L[δ(n − k)]

The response L[δ(n − k)] can be interpreted as the response of a linear
system at time n due to a unit sample (a well-known sequence) at time k.
It is called an impulse response and is denoted by h(n, k). The output
then is given by the superposition summation

y(n) =
∞∑

n=−∞
x(k)h(n, k) (2.11)

The computation of (2.11) requires the time-varying impulse response
h(n, k), which in practice is not very convenient. Therefore, time-invariant
systems are widely used in DSP.

� EXAMPLE 2.5 Determine whether the following systems are linear.

1. y(n) = T [x(n)] = 3x2(n)
2. y(n) = 2x(n − 2) + 5
3. y(n) = x(n + 1) − x(n − 1)

Solution Let y1(n) = T
[
x1(n)

]
and y2(n) = T

[
x2(n)

]
. We will determine the

response of each system to the linear combination a1x1(n) + a2x2(n) and
check whether it is equal to the linear combination a1x1(n) + a2x2(n)
where a1 and a2 are arbitrary constants.

1. y(n) = T [x(n)] = 3x2(n): Consider

T
[
a1x1(n) + a2x2(n)

]
= 3 [a1x1(n) + a2x2(n)]2

= 3a2
1x

2
1(n) + 3a2

2x
2
2(n) + 6a1a2x1(n)x2(n)
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which is not equal to

a1y1(n) + a2y2(n) = 3a2
1x

2
1(n) + 3a2

2x
2
2(n)

Hence the given system is nonlinear.
2. y(n) = 2x(n − 2) + 5: Consider

T
[
a1x1(n) + a2x2(n)

]
= 2 [a1x1(n − 2) + a2x2(n − 2)] + 5

= a1y1(n) + a2y2(n) − 5

Clearly, the given system is nonlinear even though the input-output
relation is a straight-line function.

3. y(n) = x(n + 1) − x(1 − n): Consider

T [a1x1(n) + a2x2(n)] = a1x1(n + 1) + a2x2(n + 1) + a1x1(1 − n)
+ a2x2(1 − n)

= a1[x1(n + 1) − x1(1 − n)]
+ a2[x2(n + 1) − x2(1 − n)]

= a1y1(n) + a2y2(n)

Hence the given system is linear. �

Linear time-invariant (LTI) system A linear system in which an
input-output pair, x(n) and y(n), is invariant to a shift k in time is called
a linear time-invariant system, that is,

y(n) = L[x(n)] ⇒ L[x(n − k)] = y(n − k) (2.12)

For an LTI system, the L[·] and the shifting operators are reversible as
shown here.

x(n) −→ L [·] −→ y(n) −→ Shift by k −→ y(n − k)

x(n) −→ Shift by k −→ x(n − k) −→ L [·] −→ y(n − k)

� EXAMPLE 2.6 Determine whether the following linear systems are time-invariant.

1. y(n) = L[x(n)] = 10 sin(0.1πn)x(n)
2. y(n) = L[x(n)] = x(n + 1) − x(1 − n)
3. y(n) = L[x(n)] = 1

4x(n) + 1
2x(n − 1) + 1

4x(n − 2)

Solution First we will compute the response yk(n)
�
= L[x(n − k)] to the shifted

input sequence. This is obtained by subtracting k from the arguments of
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every input sequence term on the right-hand side of the linear transforma-
tion. To determine time-invariance, we will then compare it to the shifted
output sequence y(n − k), obtained after replacing every n by (n − k) on
the right-hand side of the linear transformation.

1. y(n) = L[x(n)] = 10 sin(0.1πn)x(n): The response due to shifted
input is

yk(n) = L[x(n − k)] = 10 sin(0.1πn)x(n − k)

while the shifted output is

y(n − k) = 10 sin[0.1π(n − k)]x(n − k) �= yk(n)

Hence the given system is not time-invariant.
2. y(n) = L[x(n)] = x(n + 1) − x(1 − n): The response due to shifted

input is

yk(n) = L[x(n − k)] = x(n − k + 1) − x(1 − n − k)

while the shifted output is

y(n−k) = x(n−k)−x(1−[n−k]) = x(n−k+1)−x(1−n+k) �= yk(n).

Hence the given system is not time-invariant.
3. y(n) = L[x(n)] = 1

4x(n) + 1
2x(n − 1) + 1

4x(n − 2): The response due
to shifted input is

yk(n) = L[x(n − k)] = 1
4x(n − k) + 1

2x(n − 1 − k) + 1
4x(n − 2 − k)

while the shifted output is

y(n − k) = 1
4x(n − k) + 1

2x(n − k − 1) + 1
4x(n − k − 2) = yk(n)

Hence the given system is time-invariant. �

We will denote an LTI system by the operator LTI [·]. Let x(n) and
y(n) be the input-output pair of an LTI system. Then the time-varying
function h(n, k) becomes a time-invariant function h(n− k), and the out-
put from (2.11) is given by

y(n) = LTI [x(n)] =
∞∑

k=−∞
x(k)h(n − k) (2.13)

The impulse response of an LTI system is given by h(n). The mathemati-
cal operation in (2.13) is called a linear convolution sum and is denoted by

y(n)
�
= x(n) ∗ h(n) (2.14)
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40 Chapter 2 DISCRETE-TIME SIGNALS AND SYSTEMS

Hence an LTI system is completely characterized in the time domain by
the impulse response h(n).

x(n) −→ h(n) −→ y(n) = x(n) ∗ h(n)

We will explore several properties of the convolution in Problem P2.14.

Stability This is a very important concept in linear system theory. The
primary reason for considering stability is to avoid building harmful sys-
tems or to avoid burnout or saturation in the system operation. A system
is said to be bounded-input bounded-output (BIBO) stable if every bounded
input produces a bounded output.

|x(n)| < ∞ ⇒ |y(n)| < ∞,∀x, y

An LTI system is BIBO stable if and only if its impulse response is abso-
lutely summable.

BIBO Stability ⇐⇒
∞∑

−∞
|h(n)| < ∞ (2.15)

Causality This important concept is necessary to make sure that sys-
tems can be built. A system is said to be causal if the output at index n0
depends only on the input up to and including the index n0; that is, the
output does not depend on the future values of the input. An LTI system
is causal if and only if the impulse response

h(n) = 0, n < 0 (2.16)

Such a sequence is termed a causal sequence. In signal processing, unless
otherwise stated, we will always assume that the system is causal.

2.3 CONVOLUTION

We introduced the convolution operation (2.14) to describe the response
of an LTI system. In DSP, it is an important operation and has many other
uses that we will see throughout this book. Convolution can be evaluated
in many different ways. If the sequences are mathematical functions (of
finite or infinite duration), then we can analytically evaluate (2.14) for all
n to obtain a functional form of y(n).

� EXAMPLE 2.7 Let the rectangular pulse x(n) = u(n) − u(n − 10) of Example 2.4 be an input
to an LTI system with impulse response

h(n) = (0.9)n u(n)

Determine the output y(n).
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FIGURE 2.5 The input sequence and the impulse response in Example 2.7

Solution The input x(n) and the impulse response h(n) are shown in Figure 2.5. From
(2.14),

y(n) =
9∑

k=0

(1) (0.9)(n−k) u(n − k) = (0.9)n

9∑
k=0

(0.9)−k u(n − k) (2.17)

The sum in (2.17) is almost a geometric series sum except that the term u(n−k)
takes different values depending on n and k. There are three possible conditions
under which u(n − k) can be evaluated.

CASE i n < 0: Then u(n − k) = 0, 0 ≤ k ≤ 9. Hence, from (2.17),

y(n) = 0 (2.18)

In this case, the nonzero values of x(n) and h(n) do not overlap.
CASE ii 0 ≤ n < 9: Then u(n − k) = 1, 0 ≤ k ≤ n. Hence, from (2.17),

y(n) = (0.9)n

n∑
k=0

(0.9)−k = (0.9)n

n∑
k=0

[(0.9)−1]k

= (0.9)n 1 − (0.9)−(n+1)

1 − (0.9)−1 = 10[1 − (0.9)n+1], 0 ≤ n < 9 (2.19)

In this case, the impulse response h(n) partially overlaps the input x(n).
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FIGURE 2.6 The output sequence in Example 2.7

CASE iii n ≥ 9: Then u(n − k) = 1, 0 ≤ k ≤ 9, and from (2.17),

y(n) = (0.9)n

9∑
k=0

(0.9)−k

= (0.9)n 1 − (0.9)−10

1 − (0.9)−1 = 10(0.9)n−9[1 − (0.9)10], n ≥ 9 (2.20)

In this last case, h(n) completely overlaps x(n).

The complete response is given by (2.18), (2.19), and (2.20). It is shown in
Figure 2.6, which depicts the distortion of the input pulse. �

This example can also be done using a method called graphical convo-
lution, in which (2.14) is given a graphical interpretation. In this method,
h(n− k) is interpreted as a folded-and-shifted version of h(k). The output
y(n) is obtained as a sample sum under the overlap of x(k) and h(n − k).
We use an example to illustrate this.

� EXAMPLE 2.8 Given the two sequences

x(n) = [3, 11, 7, 0
↑
, −1, 4, 2], −3 ≤ n ≤ 3; h(n) = [2, 3

↑
, 0, −5, 2, 1], −1 ≤ n ≤ 4

determine the convolution y(n) = x(n) ∗ h(n).

Solution In Figure 2.7, we show four plots. The top-left plot shows x(k) and h(k), the
original sequences. The top-right plot shows x(k) and h(−k), the folded version
of h(k). The bottom-left plot shows x(k) and h(−1−k), the “folded and shifted
by −1” version of h(k). Then

∑
k

x(k)h(−1 − k) = 3 × (−5) + 11 × 0 + 7 × 3 + 0 × 2 = 6 = y(−1)

The bottom-right plot shows x(k) and h(2 − k), the “folded and shifted by 2”
version of h(k), which gives
∑

k

x(k)h(2−k) = 11×1+7×2+0×(−5)+(−1)×0+4×3+2×2 = 41 = y(2)
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FIGURE 2.7 Graphical convolution in Example 2.8

Thus we have obtained two values of y(n). Similar graphical calculations can
be done for other remaining values of y(n). Note that the beginning point (first
nonzero sample) of y(n) is given by n = −3 + (−1) = −4, while the end point
(the last nonzero sample) is given by n = 3 + 4 = 7. The complete output is
given by

y(n) = {6, 31, 47, 6, −51
↑

, −5, 41, 18, −22, −3, 8, 2}

Students are strongly encouraged to verify the above result. Note that the re-
sulting sequence y(n) has a longer length than both the x(n) and h(n) sequences.

�

2.3.1 MATLAB IMPLEMENTATION
If arbitrary sequences are of infinite duration, then MATLAB cannot
be used directly to compute the convolution. MATLAB does provide a
built-in function called conv that computes the convolution between two
finite-duration sequences. The conv function assumes that the two se-
quences begin at n = 0 and is invoked by

>> y = conv(x,h);
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For example, to do the convolution in Example 2.7, we could use

>> x = [3, 11, 7, 0, -1, 4, 2]; h = [2, 3, 0, -5, 2, 1];
>> y = conv(x, h)
y =
6 31 47 6 -51 -5 41 18 -22 -3 8 2

to obtain the correct y(n) values. However, the conv function neither
provides nor accepts any timing information if the sequences have arbi-
trary support. What is needed is a beginning point and an end point of
y(n). Given finite duration x(n) and h(n), it is easy to determine these
points. Let

{x(n); nxb ≤ n ≤ nxe} and {h(n); nhb ≤ n ≤ nhe}
be two finite-duration sequences. Then referring to Example 2.8, we
observe that the beginning and end points of y(n) are

nyb = nxb + nhb and nye = nxe + nhe

respectively. A simple modification of the conv function, called conv m,
which performs the convolution of arbitrary support sequences, can now
be designed.

function [y,ny] = conv_m(x,nx,h,nh)
% Modified convolution routine for signal processing
% --------------------------------------------------
% [y,ny] = conv_m(x,nx,h,nh)
% [y,ny] = convolution result
% [x,nx] = first signal
% [h,nh] = second signal
%
nyb = nx(1)+nh(1); nye = nx(length(x)) + nh(length(h));
ny = [nyb:nye]; y = conv(x,h);

� EXAMPLE 2.9 Perform the convolution in Example 2.8 using the conv m function.

Solution MATLAB script:

>> x = [3, 11, 7, 0, -1, 4, 2]; nx = [-3:3];
>> h = [2, 3, 0, -5, 2, 1]; nh = [-1:4];

>> [y,ny] = conv_m(x,nx,h,nh)
y =
6 31 47 6 -51 -5 41 18 -22 -3 8 2

ny =
-4 -3 -2 -1 0 1 2 3 4 5 6 7
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Hence

y(n) = {6, 31, 47, 6, −51
↑

, −5, 41, 18, −22, −3, 8, 2}

as in Example 2.8. �

An alternate method in MATLAB can be used to perform the convo-
lution. This method uses a matrix-vector multiplication approach, which
we will explore in Problem P2.17.

2.3.2 SEQUENCE CORRELATIONS REVISITED
If we compare the convolution operation (2.14) with that of the cross-
correlation of two sequences defined in (2.8), we observe a close resem-
blance. The cross-correlation ryx(�) can be put in the form

ryx(�) = y(�) ∗ x(−�)

with the autocorrelation rxx(�) in the form

rxx(�) = x(�) ∗ x(−�)

Therefore, these correlations can be computed using the conv m function
if sequences are of finite duration.

� EXAMPLE 2.10 In this example, we will demonstrate one application of the cross-correlation
sequence. Let

x(n) = [3, 11, 7, 0
↑
, −1, 4, 2]

be a prototype sequence, and let y(n) be its noise-corrupted-and-shifted version

y(n) = x(n − 2) + w(n)

where w(n) is a Gaussian sequence with mean 0 and variance 1. Compute the
cross-correlation between y(n) and x(n).

Solution From the construction of y(n), it follows that y(n) is “similar” to x(n − 2) and
hence their cross-correlation would show the strongest similarity at � = 2. To
test this out using MATLAB, let us compute the cross-correlation using two
different noise sequences.

% Noise sequence 1
>> x = [3, 11, 7, 0, -1, 4, 2]; nx=[-3:3]; % Given signal x(n)
>> [y,ny] = sigshift(x,nx,2); % Obtain x(n-2)
>> w = randn(1,length(y)); nw = ny; % Generate w(n)
>> [y,ny] = sigadd(y,ny,w,nw); % Obtain y(n) = x(n-2) + w(n)
>> [x,nx] = sigfold(x,nx); % Obtain x(-n)
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FIGURE 2.8 Cross-correlation sequence with two different noise realizations

>> [rxy,nrxy] = conv_m(y,ny,x,nx); % Cross-correlation
>> subplot(1,1,1), subplot(2,1,1);stem(nrxy,rxy)
>> axis([-5,10,-50,250]);xlabel(’Lag Variable l’)
>> ylabel(’rxy’);title(’Cross-correlation: Noise Sequence 1’)
%
% Noise sequence 2
>> x = [3, 11, 7, 0, -1, 4, 2]; nx=[-3:3]; % Given signal x(n)
>> [y,ny] = sigshift(x,nx,2); % Obtain x(n-2)
>> w = randn(1,length(y)); nw = ny; % Generate w(n)
>> [y,ny] = sigadd(y,ny,w,nw); % Obtain y(n) = x(n-2) + w(n)
>> [x,nx] = sigfold(x,nx); % Obtain x(-n)
>> [rxy,nrxy] = conv_m(y,ny,x,nx); % Cross-correlation
>> subplot(2,1,2);stem(nrxy,rxy)
>> axis([-5,10,-50,250]);xlabel(’Lag Variable l’)
>> ylabel(’rxy’);title(’Cross-correlation: Noise sequence 2’)

From Figure 2.8, we observe that the cross-correlation indeed peaks at � = 2,
which implies that y(n) is similar to x(n) shifted by 2. This approach can be
used in applications like radar signal processing in identifying and localizing
targets. �
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Note that the signal-processing toolbox in MATLAB also provides a
function called xcorr for sequence correlation computations. In its sim-
plest form,

>> xcorr(x,y)

computes the cross-correlation between vectors x and y, while

>> xcorr(x)

computes the autocorrelation of vector x. It generates results that are
identical to the one obtained from the proper use of the conv m function.
However, the xcorr function cannot provide the timing (or lag) informa-
tion (as done by the conv m function), which then must be obtained by
some other means.

2.4 DIFFERENCE EQUATIONS

An LTI discrete system can also be described by a linear constant coeffi-
cient difference equation of the form

N∑
k=0

aky(n − k) =
M∑

m=0

bmx(n − m), ∀n (2.21)

If aN �= 0, then the difference equation is of order N . This equation de-
scribes a recursive approach for computing the current output, given the
input values and previously computed output values. In practice, this
equation is computed forward in time, from n = −∞ to n = ∞. There-
fore, another form of this equation is

y(n) =
M∑

m=0

bmx(n − m) −
N∑

k=1

aky(n − k) (2.22)

A solution to this equation can be obtained in the form

y(n) = yH(n) + yP(n)

The homogeneous part of the solution, yH(n), is given by

yH(n) =
N∑

k=1

ckzn
k
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where zk, k = 1, . . . , N are N roots (also called natural frequencies) of the
characteristic equation

N∑
0

akzN−k = 0

This characteristic equation is important in determining the stability of
systems. If the roots zk satisfy the condition

|zk| < 1, k = 1, . . . , N (2.23)

then a causal system described by (2.22) is stable. The particular part of
the solution, yP(n), is determined from the right-hand side of (2.21). In
Chapter 4, we will discuss the analytical approach of solving difference
equations using the z-transform.

2.4.1 MATLAB IMPLEMENTATION
A function called filter is available to solve difference equations nu-
merically, given the input and the difference equation coefficients. In its
simplest form, this function is invoked by

y = filter(b,a,x)

where

b = [b0, b1, ..., bM]; a = [a0, a1, ..., aN];

are the coefficient arrays from the equation given in (2.21) and x is the
input sequence array. The output y has the same length as input x. One
must ensure that the coefficient a0 not be zero.

To compute and plot impulse response, MATLAB provides the func-
tion impz. When invoked by

h = impz(b,a,n);

it computes samples of the impulse response of the filter at the sample
indices given in n with numerator coefficients in b and denominator co-
efficients in a. When no output arguments are given, the impz function
plots the response in the current figure window using the stem function.
We will illustrate the use of these functions in the following example.

� EXAMPLE 2.11 Consider the following difference equation:

y(n) − y(n − 1) + 0.9y(n − 2) = x(n); ∀n

a. Calculate and plot the impulse response h(n) at n = −20, . . . , 100.
b. Calculate and plot the unit step response s(n) at n = −20, . . . , 100.
c. Is the system specified by h(n) stable?
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Solution From the given difference equation, the coefficient arrays are

b = [1]; a=[1, -1, 0.9];

a. MATLAB script:

>> b = [1]; a = [1, -1, 0.9]; n = [-20:120];
>> h = impz(b,a,n);
>> subplot(2,1,1); stem(n,h);
>> title(’Impulse Response’); xlabel(’n’); ylabel(’h(n)’)

The plot of the impulse response is shown in Figure 2.9.
b. MATLAB script:

>> x = stepseq(0,-20,120); s = filter(b,a,x);
>> subplot(2,1,2); stem(n,s)
>> title(’Step Response’); xlabel(’n’); ylabel(’s(n)’)

The plot of the unit step response is shown in Figure 2.9.
c. To determine the stability of the system, we have to determine h(n) for all n.

Although we have not described a method to solve the difference equation,
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FIGURE 2.9 Impulse response and step response plots in Example 2.11
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we can use the plot of the impulse response to observe that h(n) is practically
zero for n > 120. Hence the sum

∑
|h(n)| can be determined from MATLAB

using

>> sum(abs(h))
ans = 14.8785

which implies that the system is stable. An alternate approach is to use the
stability condition (2.23) using MATLAB’s roots function.

>>z = roots(a); magz = abs(z)
magz = 0.9487

0.9487

Since the magnitudes of both roots are less than 1, the system is stable.

�

In the previous section, we noted that if one or both sequences in
the convolution are of infinite length, then the conv function cannot be
used. If one of the sequences is of infinite length, then it is possible to use
MATLAB for numerical evaluation of the convolution. This is done using
the filter function, as we will see in the following example.

� EXAMPLE 2.12 Let us consider the convolution given in Example 2.7. The input sequence is of
finite duration

x(n) = u(n) − u(n − 10)

while the impulse response is of infinite duration

h(n) = (0.9)n u(n)

Determine y(n) = x(n) ∗ h(n).

Solution If the LTI system, given by the impulse response h(n), can be described by a
difference equation, then y(n) can be obtained from the filter function. From
the h(n) expression,

(0.9) h(n − 1) = (0.9) (0.9)n−1 u(n − 1) = (0.9)n u(n − 1)

or

h(n) − (0.9) h(n − 1) = (0.9)n u(n) − (0.9)n u(n − 1)

= (0.9)n [u(n) − u(n − 1)] = (0.9)n δ(n)

= δ(n)

The last step follows from the fact that δ(n) is nonzero only at n = 0. By
definition, h(n) is the output of an LTI system when the input is δ(n). Hence
substituting x(n) for δ(n) and y(n) for h(n), the difference equation is

y(n) − 0.9y(n − 1) = x(n)
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FIGURE 2.10 Output sequence in Example 2.12

Now MATLAB’s filter function can be used to compute the convolution in-
directly.

>> b = [1]; a = [1,-0.9];
>> n = -5:50; x = stepseq(0,-5,50) - stepseq(10,-5,50);
>> y = filter(b,a,x);
>> subplot(2,1,2); stem(n,y); title(’Output Sequence’)
>> xlabel(’n’); ylabel(’y(n)’); axis([-5,50,-0.5,8])

The plot of the output is shown in Figure 2.10, which is exactly the same as
that in Figure 2.6. �

In Example 2.12, the impulse response was a one-sided exponential se-
quence for which we could determine a difference equation representation.
This means that not all infinite-length impulse responses can be converted
into difference equations. The above analysis, however, can be extended to
a linear combination of one-sided exponential sequences, which results in
higher-order difference equations. We will discuss this topic of conversion
from one representation to another one in Chapter 4.

2.4.2 ZERO-INPUT AND ZERO-STATE RESPONSES
In DSP, the difference equation is generally solved forward in time from
n = 0. Therefore, initial conditions on x(n) and y(n) are necessary to
determine the output for n ≥ 0. The difference equation is then given by

y(n) =
M∑

m=0

bmx(n − m) −
N∑

k=1

aky(n − k); n ≥ 0 (2.24)
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subject to the initial conditions

{y(n); −N ≤ n ≤ −1} and {x(n); −M ≤ n ≤ −1}

A solution to (2.24) can be obtained in the form

y(n) = yZI(n) + yZS(n)

where yZI(n) is called the zero-input solution, which is a solution due
to the initial conditions alone (assuming they exist), while the zero-state
solution, yZS(n), is a solution due to input x(n) alone (or assuming that
the initial conditions are zero). In MATLAB, another form of the function
filter can be used to solve for the difference equation, given its initial
conditions. We will illustrate the use of this form in Chapter 4.

2.4.3 DIGITAL FILTERS
Filter is a generic name that means a linear time-invariant system designed
for a specific job of frequency selection or frequency discrimination. Hence
discrete-time LTI systems are also called digital filters. There are two
types of digital filters.

FIR filter If the unit impulse response of an LTI system is of finite
duration, then the system is called a finite-duration impulse response (or
FIR) filter. Hence, for an FIR filter, h(n) = 0 for n < n1 and for n > n2.
The following part of the difference equation (2.21) describes a causal FIR
filter:

y(n) =
M∑

m=0

bmx(n − m) (2.25)

Furthermore, h(0) = b0, h(1) = b1, . . . , h(M) = bM , while all other h(n)’s
are 0. FIR filters are also called nonrecursive or moving average (MA)
filters. In MATLAB, FIR filters are represented either as impulse response
values {h(n)} or as difference equation coefficients {bm} and {a0 = 1}.
Therefore, to implement FIR filters, we can use either the conv(x,h)
function (and its modification that we discussed) or the filter(b,1,x)
function. There is a difference in the outputs of these two implementations
that should be noted. The output sequence from the conv(x,h) function
has a longer length than both the x(n) and h(n) sequences. On the other
hand, the output sequence from the filter(b,1,x) function has exactly
the same length as the input x(n) sequence. In practice (and especially
for processing signals), the use of the filter function is encouraged.
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IIR filter If the impulse response of an LTI system is of infinite dura-
tion, then the system is called an infinite-duration impulse response (or
IIR) filter. The part of difference equation (2.21)

N∑
k=0

aky(n − k) = x(n) (2.26)

describes a recursive filter in which the output y(n) is recursively com-
puted from its previously computed values and is called an autoregressive
(AR) filter. The impulse response of such a filter is of infinite duration,
and hence it represents an IIR filter. The general equation (2.21) also de-
scribes an IIR filter. It has two parts: an AR part and an MA part. Such
an IIR filter is called an autoregressive moving average, or an ARMA,
filter. In MATLAB, IIR filters are described by the difference equation
coefficients {bm} and {ak} and are implemented by the filter(b,a,x)
function.

2.5 PROBLEMS

P2.1 Generate the following sequences using the basic MATLAB signal functions and the basic
MATLAB signal operations discussed in this chapter. Plot signal samples using the stem
function.

1. x1(n) = 3δ(n + 2) + 2δ(n) − δ(n − 3) + 5δ(n − 7), −5 ≤ n ≤ 15.

2. x2(n) =
∑5

k=−5 e−|k|δ(n − 2k), −10 ≤ n ≤ 10.

3. x3(n) = 10u(n) − 5u(n − 5) − 10u(n − 10) + 5u(n − 15).
4. x4(n) = e0.1n[u(n + 20) − u(n − 10)].
5. x5(n) = 5[cos(0.49πn) + cos(0.51πn)], −200 ≤ n ≤ 200. Comment on the waveform

shape.
6. x6(n) = 2 sin(0.01πn) cos(0.5πn), −200 ≤ n ≤ 200. Comment on the waveform shape.
7. x7(n) = e−0.05n sin(0.1πn + π/3), 0 ≤ n ≤ 100. Comment on the waveform shape.
8. x8(n) = e0.01n sin(0.1πn), 0 ≤ n ≤ 100. Comment on the waveform shape.

P2.2 Generate the following random sequences and obtain their histogram using the hist
function with 100 bins. Use the bar function to plot each histogram.

1. x1(n) is a random sequence whose samples are independent and uniformly distributed
over [0, 2] interval. Generate 100,000 samples.

2. x2(n) is a Gaussian random sequence whose samples are independent with mean 10 and
variance 10. Generate 10,000 samples.

3. x3(n) = x1(n) + x1(n − 1) where x1(n) is the random sequence given in part 1 above.
Comment on the shape of this histogram and explain the shape.

4. x4(n) =
∑4

k=1 yk(n) where each random sequence yk(n) is independent of others with
samples uniformly distributed over [−0.5, 0.5]. Comment on the shape of this histogram.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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P2.3 Generate the following periodic sequences and plot their samples (using the stem function)
over the indicated number of periods.

1. x̃1(n) = {. . . , −2, −1, 0
↑
, 1, 2, . . .}periodic. Plot five periods.

2. x̃2(n) = e0.1n[u(n) − u(n − 20)]periodic. Plot three periods.
3. x̃3(n) = sin(0.1πn)[u(n) − u(n − 10)]. Plot four periods.
4. x̃4(n) = {. . . , 1

↑
, 2, 3, . . .}periodic + {. . . , 1

↑
, 2, 3, 4, . . .}periodic, 0 ≤ n ≤ 24. What is the

period of x̃4(n)?

P2.4 Let x(n) = {2, 4, −3, 1
↑
, −5, 4, 7}. Generate and plot the samples (use the stem function) of

the following sequences.

1. x1(n) = 2x(n − 3) + 3x(n + 4) − x(n)
2. x2(n) = 4x(4 + n) + 5x(n + 5) + 2x(n)
3. x3(n) = x(n + 3)x(n − 2) + x(1 − n)x(n + 1)
4. x4(n) = 2e0.5nx(n) + cos (0.1πn) x (n + 2) , −10 ≤ n ≤ 10

P2.5 The complex exponential sequence ejω0n or the sinusoidal sequence cos (ω0n) are periodic if

the normalized frequency f0
�
=

ω0

2π
is a rational number; that is, f0 =

K

N
, where K and N

are integers.

1. Prove the above result.
2. Generate exp(j0.1πn), −100 ≤ n ≤ 100. Plot its real and imaginary parts using the stem

function. Is this sequence periodic? If it is, what is its fundamental period? From the
examination of the plot, what interpretation can you give to the integers K and N
above?

3. Generate and plot cos(0.1n), −20 ≤ n ≤ 20. Is this sequence periodic? What do you
conclude from the plot? If necessary, examine the values of the sequence in MATLAB to
arrive at your answer.

P2.6 Using the evenodd function, decompose the following sequences into their even and odd
components. Plot these components using the stem function.

1. x1(n) = {0
↑
, 1, 2, 3, 4, 5, 6, 7, 8, 9}

2. x2(n) = e0.1n[u(n + 5) − u(n − 10)]
3. x3(n) = cos(0.2πn + π/4), −20 ≤ n ≤ 20
4. x4(n) = e−0.05n sin(0.1πn + π/3), 0 ≤ n ≤ 100

P2.7 A complex-valued sequence xe(n) is called conjugate-symmetric if xe(n) = x∗
e(−n), and a

complex-valued sequence xo(n) is called conjugate-antisymmetric if xo(n) = −x∗
o(−n). Then

any arbitrary complex-valued sequence x(n) can be decomposed into x(n) = xe(n) + xo(n),
where xe(n) and xo(n) are given by

xe(n) =
1
2

[x(n) + x∗(−n)] and xo(n) =
1
2

[x(n) − x∗(−n)] (2.27)

respectively.
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1. Modify the evenodd function discussed in the text so that it accepts an arbitrary
sequence and decomposes it into its conjugate-symmetric and conjugate-antisymmetric
components by implementing (2.27).

2. Decompose the sequence

x(n) = 10 exp([−0.1 + j0.2π]n), 0 ≤ n ≤ 10

into its conjugate-symmetric and conjugate-antisymmetric components. Plot their real
and imaginary parts to verify the decomposition. (Use the subplot function.)

P2.8 The operation of signal dilation (or decimation or down-sampling) is defined by

y(n) = x(nM)

in which the sequence x(n) is down-sampled by an integer factor M . For example, if

x(n) = {. . . , −2, 4, 3
↑
, −6, 5, −1, 8, . . .}

then the down-sampled sequences by a factor 2 are given by

y(n) = {. . . , −2, 3
↑
, 5, 8, . . .}

1. Develop a MATLAB function dnsample that has the form

function [y,m] = dnsample(x,n,M)
% Downsample sequence x(n) by a factor M to obtain y(m)

to implement the above operation. Use the indexing mechanism of MATLAB with
careful attention to the origin of the time axis n = 0.

2. Generate x(n) = sin(0.125πn), − 50 ≤ n ≤ 50. Decimate x(n) by a factor of 4 to generate
y(n). Plot both x(n) and y(n) using subplot, and comment on the results.

3. Repeat the above using x(n) = sin(0.5πn), − 50 ≤ n ≤ 50. Qualitatively discuss the effect
of down-sampling on signals.

P2.9 Using the conv_m function, determine the autocorrelation sequence rxx(�) and the cross-
correlation sequence rxy(�) for the following sequences:

x(n) = (0.9)n , 0 ≤ n ≤ 20; y(n) = (0.8)−n, − 20 ≤ n ≤ 0

Describe your observations of these results.

P2.10 In a certain concert hall, echoes of the original audio signal x(n) are generated due to the
reflections at the walls and ceiling. The audio signal experienced by the listener y(n) is a
combination of x(n) and its echoes. Let

y(n) = x(n) + αx(n − k)

where k is the amount of delay in samples and α is its relative strength. We want to
estimate the delay using the correlation analysis.
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1. Determine analytically the cross-correlation ryx(�) in terms of the autocorrelation rxx(�).
2. Let x(n) = cos(0.2πn) + 0.5 cos(0.6πn), α = 0.1, and k = 50. Generate 200 samples of

y(n) and determine its cross-correlation. Can you obtain α and k by observing ryx(�)?

P2.11 Consider the following discrete-time systems:

T1[x(n)]= x(n)u(n) T2[x(n)]= x(n) + n x(n + 1)

T3[x(n)]= x(n) +
1
2
x(n − 2) − 1

3
x(n − 3)x(2n) T4[x(n)]=

∑n+5
k=−∞ 2x(k)

T5[x(n)]= x(2n) T6[x(n)]= round[x(n)]

where round[·] denotes rounding to the nearest integer.

1. Use (2.10) to determine analytically whether these systems are linear.
2. Let x1(n) be a uniformly distributed random sequence between [0, 1] over 0 ≤ n ≤ 100,

and let x2(n) be a Gaussian random sequence with mean 0 and variance 10 over
0 ≤ n ≤ 100. Using these sequences, verify the linearity of these systems. Choose any
values for constants a1 and a2 in (2.10). You should use several realizations of the above
sequences to arrive at your answers.

P2.12 Consider the discrete-time systems given in Problem P2.11.

1. Use (2.12) to determine analytically whether these systems are time-invariant.
2. Let x(n) be a Gaussian random sequence with mean 0 and variance 10 over 0 ≤ n ≤ 100.

Using this sequence, verify the time invariance of the above systems. Choose any values
for sample shift k in (2.12). You should use several realizations of the above sequence to
arrive at your answers.

P2.13 For the systems given in Problem P2.11, determine analytically their stability and causality.

P2.14 The linear convolution defined in (2.14) has several properties:

x1(n) ∗ x2(n) = x1(n) ∗ x2(n) : Commutation

[x1(n) ∗ x2(n)] ∗ x3(n) = x1(n) ∗ [x2(n) ∗ x3(n)] : Association

x1(n) ∗ [x2(n) + x3(n)] = x1(n) ∗ x2(n) + x1(n) ∗ x3(n) : Distribution

x(n) ∗ δ(n − n0) = x(n − n0) : Identity

(2.28)

1. Analytically prove these properties.
2. Using the following three sequences, verify the above properties:

x1(n)= cos(πn/4)[u(n + 5) − u(n − 25)]
x2(n) = (0.9)−n[u(n) − u(n − 20)]
x3(n)= round[5w(n)], −10 ≤ n ≤ 10, where w(n) is uniform over [−1, 1]

Use the conv m function.

P2.15 Determine analytically the convolution y(n) = x(n) ∗ h(n) of the following sequences, and
verify your answers using the conv_m function.

1. x(n) = {2, −4, 5, 3
↑
, −1, −2, 6}, h(n) = {1, −1

↑
, 1, −1, 1}
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2. x(n) = {1, 1, 0
↑
, 1, 1}, h(n) = {1, −2, −3, 4

↑
}

3. x(n) = (1/4)−n[u(n + 1) − u(n − 4)], h(n) = u(n) − u(n − 5)
4. x(n) = n/4[u(n) − u(n − 6)], h(n) = 2[u(n + 2) − u(n − 3)]

P2.16 Let x(n) = (0.8)nu(n), h(n) = (−0.9)nu(n), and y(n) = h(n) ∗ x(n). Use three columns and
one row of subplots for the following parts.

1. Determine y(n) analytically. Plot first 51 samples of y(n) using the stem function.
2. Truncate x(n) and h(n) to 26 samples. Use conv function to compute y(n). Plot y(n)

using the stem function. Compare your results with those of part 1.
3. Using the filter function, determine the first 51 samples of x(n) ∗ h(n). Plot y(n) using

the stem function. Compare your results with those of parts 1 and 2.

P2.17 When the sequences x(n) and h(n) are of finite duration Nx and Nh, respectively, then
their linear convolution (2.13) can also be implemented using matrix-vector multiplication.
If elements of y(n) and x(n) are arranged in column vectors x and y, respectively, then
from (2.13) we obtain

y = Hx

where linear shifts in h(n − k) for n = 0, . . . , Nh − 1 are arranged as rows in the matrix H.
This matrix has an interesting structure and is called a Toeplitz matrix. To investigate this
matrix, consider the sequences

x(n) = {1
↑
, 2, 3, 4, 5} and h(n) = {6

↑
, 7, 8, 9}

1. Determine the linear convolution y(n) = h(n) ∗ x(n).
2. Express x(n) as a 5 × 1 column vector x and y(n) as a 8 × 1 column vector y. Now

determine the 8 × 5 matrix H so that y = Hx.
3. Characterize the matrix H. From this characterization, can you give a definition of a

Toeplitz matrix? How does this definition compare with that of time invariance?
4. What can you say about the first column and the first row of H?

P2.18 MATLAB provides a function called toeplitz to generate a Toeplitz matrix, given the first
row and the first column.

1. Using this function and your answer to Problem P2.17, part 4, develop another MATLAB
function to implement linear convolution. The format of the function should be

function [y,H]=conv_tp(h,x)
% Linear Convolution using Toeplitz Matrix
% ----------------------------------------
% [y,H] = conv_tp(h,x)
% y = output sequence in column vector form
% H = Toeplitz matrix corresponding to sequence h so that y = Hx
% h = Impulse response sequence in column vector form
% x = input sequence in column vector form

2. Verify your function on the sequences given in Problem P2.17.
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P2.19 A linear and time-invariant system is described by the difference equation

y(n) − 0.5y(n − 1) + 0.25y(n − 2) = x(n) + 2x(n − 1) + x(n − 3)

1. Using the filter function, compute and plot the impulse response of the system over
0 ≤ n ≤ 100.

2. Determine the stability of the system from this impulse response.
3. If the input to this system is x(n) = [5 + 3 cos(0.2πn) + 4 sin(0.6πn)] u(n), determine the

response y(n) over 0 ≤ n ≤ 200 using the filter function.

P2.20 A “simple” digital differentiator is given by

y(n) = x(n) − x(n − 1)

which computes a backward first-order difference of the input sequence. Implement this
differentiator on the following sequences, and plot the results. Comment on the
appropriateness of this simple differentiator.

1. x(n) = 5 [u(n) − u(n − 20)]: a rectangular pulse
2. x(n) = n [u(n) − u(n − 10)] + (20 − n) [u(n − 10) − u(n − 20)]: a triangular pulse

3. x(n) = sin
(

πn

25

)
[u(n) − u(n − 100)]: a sinusoidal pulse
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C H A P T E R 3
The Discrete-Time
Fourier Analysis

We have seen how a linear and time-invariant system can be represented
using its response to the unit sample sequence. This response, called the
unit impulse response h(n), allows us to compute the system response to
any arbitrary input x(n) using the linear convolution

x(n) −→ h(n) −→ y(n) = h(n) ∗ x(n)

This convolution representation is based on the fact that any signal
can be represented by a linear combination of scaled and delayed unit
samples. Similarly, we can also represent any arbitrary discrete signal
as a linear combination of basis signals introduced in Chapter 2. Each
basis signal set provides a new signal representation. Each representation
has some advantages and some disadvantages depending upon the type
of system under consideration. However, when the system is linear and
time-invariant, only one representation stands out as the most useful. It
is based on the complex exponential signal set {ejωn} and is called the
discrete-time Fourier transform.

3.1 THE DISCRETE-TIME FOURIER TRANSFORM (DTFT)

If x(n) is absolutely summable, that is,
∑∞

−∞ |x(n)|<∞, then its discrete-
time Fourier transform is given by

X(ejω)
�
= F [x(n)] =

∞∑
n=−∞

x(n)e−jωn (3.1)
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The inverse discrete-time Fourier transform (IDTFT) of X(ejω) is given
by

x(n)
�
= F−1[X(ejω)] =

1
2π

π∫

−π

X(ejω)ejωndω (3.2)

The operator F [·] transforms a discrete signal x(n) into a complex-valued
continuous function X(ejω) of real variable ω, called a digital frequency,
which is measured in radians/sample.

� EXAMPLE 3.1 Determine the discrete-time Fourier transform of x(n) = (0.5)n u(n).

Solution The sequence x(n) is absolutely summable; therefore, its discrete-time Fourier
transform exists.

X(ejω) =
∞∑

−∞

x(n)e−jωn =
∞∑
0

(0.5)n e−jωn

=
∞∑
0

(0.5e−jω)n =
1

1 − 0.5e−jω
=

ejω

ejω − 0.5
�

� EXAMPLE 3.2 Determine the discrete-time Fourier transform of the following finite-duration
sequence:

x(n) = {1, 2
↑
, 3, 4, 5}

Solution Using definition (3.1),

X(ejω) =
∞∑

−∞

x(n)e−jωn = ejω + 2 + 3e−jω + 4e−j2ω + 5e−j3ω

�

Since X(ejω) is a complex-valued function, we will have to plot its
magnitude and its angle (or the real part and the imaginary part) with
respect to ω separately to visually describe X(ejω). Now ω is a real vari-
able between −∞ and ∞, which would mean that we can plot only a
part of the X(ejω) function using MATLAB. Using two important prop-
erties of the discrete-time Fourier transform, we can reduce this domain
to the [0, π] interval for real-valued sequences. We will discuss other useful
properties of X(ejω) in the next section.

3.1.1 TWO IMPORTANT PROPERTIES
We will state the following two properties without proof.
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1. Periodicity: The discrete-time Fourier transform X(ejω) is periodic
in ω with period 2π.

X(ejω) = X(ej[ω+2π])
Implication: We need only one period of X(ejω) (i.e., ω ∈[0, 2π], or
[−π, π], etc.) for analysis and not the whole domain −∞ < ω < ∞.

2. Symmetry: For real-valued x(n), X(ejω) is conjugate symmetric.

X(e−jω) = X∗(ejω)

or

Re[X(e−jω)] = Re[X(ejω)] (even symmetry)

Im[X(e−jω)] = − Im[X(ejω)] (odd symmetry)

|X(e−jω)| = |X(ejω)| (even symmetry)

� X(e−jω) = −� X(ejω) (odd symmetry)

Implication: To plot X(ejω), we now need to consider only a half-
period of X(ejω). Generally, in practice this period is chosen to be
ω ∈ [0, π].

3.1.2 MATLAB IMPLEMENTATION
If x(n) is of infinite duration, then MATLAB cannot be used directly
to compute X(ejω) from x(n). However, we can use it to evaluate the
expression X(ejω) over [0, π] frequencies and then plot its magnitude and
angle (or real and imaginary parts).

� EXAMPLE 3.3 Evaluate X(ejω) in Example 3.1 at 501 equispaced points between [0, π] and
plot its magnitude, angle, real part, and imaginary part.

Solution MATLAB script:

>> w = [0:1:500]*pi/500; % [0, pi] axis divided into 501 points.
>> X = exp(j*w) ./ (exp(j*w) - 0.5*ones(1,501));
>> magX = abs(X); angX = angle(X); realX = real(X); imagX = imag(X);
>> subplot(2,2,1); plot(w/pi,magX); grid
>> title(’Magnitude Part’); ylabel(’Magnitude’)
>> subplot(2,2,3); plot(w/pi,angX); grid
>> xlabel(’frequency in pi units’); title(’Angle Part’); ylabel(’Radians’)
>> subplot(2,2,2); plot(w/pi,realX); grid
>> title(’Real Part’); ylabel(’Real’)
>> subplot(2,2,4); plot(w/pi,imagX); grid
>> xlabel(’frequency in pi units’); title(’Imaginary Part’); ylabel(’Imaginary’)
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FIGURE 3.1 Plots in Example 3.3

The resulting plots are shown in Figure 3.1. Note that we divided the w array by
pi before plotting so that the frequency axes are in the units of π and therefore
easier to read. This practice is strongly recommended. �

If x(n) is of finite duration, then MATLAB can be used to compute
X(ejω) numerically at any frequency ω. The approach is to implement
(3.1) directly. If, in addition, we evaluate X(ejω) at equispaced frequen-
cies between [0, π], then (3.1) can be implemented as a matrix-vector mul-
tiplication operation. To understand this, let us assume that the sequence
x(n) has N samples between n1 ≤ n ≤ nN (i.e., not necessarily between
[0, N − 1]) and that we want to evaluate X(ejω) at

ωk
�
=

π

M
k, k = 0, 1, . . . , M

which are (M + 1) equispaced frequencies between [0, π]. Then (3.1) can
be written as

X(ejωk) =
N∑

�=1

e−j(π/M)kn�x(n�), k = 0, 1, . . . , M
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When {x (n�)} and {X(ejωk)} are arranged as column vectors x and X,
respectively, we have

X = Wx (3.3)
where W is an (M + 1) × N matrix given by

W
�
=
{

e−j(π/M)kn� ; n1 ≤ n ≤ nN , k = 0, 1, . . . , M
}

In addition, if we arrange {k} and {n�} as row vectors k and n, respec-
tively, then

W =
[
exp
(
−j

π

M
kT n

)]

In MATLAB, we represent sequences and indices as row vectors; therefore,
taking the transpose of (3.3), we obtain

XT = xT
[
exp
(
−j

π

M
nT k

)]
(3.4)

Note that nT k is an N × (M + 1) matrix. Now (3.4) can be implemented
in MATLAB as follows.

>> k = [0:M]; n = [n1:n2];
>> X = x * (exp(-j*pi/M)) .ˆ (n’*k);

� EXAMPLE 3.4 Numerically compute the discrete-time Fourier transform of the sequence x(n)
given in Example 3.2 at 501 equispaced frequencies between [0, π].

Solution MATLAB script:

>> n = -1:3; x = 1:5; k = 0:500; w = (pi/500)*k;
>> X = x * (exp(-j*pi/500)) .ˆ (n’*k);
>> magX = abs(X); angX = angle(X);
>> realX = real(X); imagX = imag(X);
>> subplot(2,2,1); plot(k/500,magX);grid
>> title(’Magnitude Part’)
>> subplot(2,2,3); plot(k/500,angX/pi);grid
>> xlabel(’Frequency in \pi Units’); title(’Angle Part’)
>> subplot(2,2,2); plot(k/500,realX);grid
>> title(’Real Part’)
>> subplot(2,2,4); plot(k/500,imagX);grid
>> xlabel(’Frequency in \pi Units’); title(’Imaginary Part’)

The frequency-domain plots are shown in Figure 3.2. Note that the angle plot
is depicted as a discontinuous function between −π and π. This is because the
angle function in MATLAB computes the principal angle. �
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FIGURE 3.2 Plots in Example 3.4

The procedure of Example 3.4 can be compiled into a MATLAB
function—say, a dtft function—for ease of implementation. This is ex-
plored in Problem P3.1. This numerical computation is based on definition
(3.1). It is not the most elegant way of numerically computing the discrete-
time Fourier transform of a finite-duration sequence. In Chapter 5, we will
discuss in detail the topic of a computable transform called the discrete
Fourier transform (DFT) and its efficient computation, called the fast
Fourier transform (FFT). Also, there is an alternate approach based on
the z-transform using the MATLAB function freqz, which we will dis-
cuss in Chapter 4. In this chapter, we will continue to use the approaches
discussed so far for calculation as well as for investigation purposes.

In the next two examples, we investigate the periodicity and symme-
try properties using complex-valued and real-valued sequences.

� EXAMPLE 3.5 Let x(n) = (0.9 exp (jπ/3))n , 0 ≤ n ≤ 10. Determine X(ejω) and investigate
its periodicity.

Solution Since x(n) is complex-valued, X(ejω) satisfies only the periodicity property.
Therefore, it is uniquely defined over one period of 2π. However, we will evaluate
and plot it at 401 frequencies over two periods between [−2π, 2π] to observe its
periodicity.
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FIGURE 3.3 Plots in Example 3.5

MATLAB script:

>> n = 0:10; x = (0.9*exp(j*pi/3)).ˆn;
>> k = -200:200; w = (pi/100)*k;
>> X = x * (exp(-j*pi/100)) .ˆ (n’*k);
>> magX = abs(X); angX =angle(X);
>> subplot(2,1,1); plot(w/pi,magX);grid
>> ylabel(’|X|’)
>> title(’Magnitude Part’)
>> subplot(2,1,2); plot(w/pi,angX/pi);grid
>> xlabel(’Frequency in \pi Units’); ylabel(’Radians/\pi’)
>> title(’Angle Part’)

From the plots in Figure 3.3, we observe that X(ejω) is periodic in ω but is not
conjugate-symmetric. �

� EXAMPLE 3.6 Let x(n) = (−0.9)n, −5 ≤ n ≤ 5. Investigate the conjugate-symmetry property
of its discrete-time Fourier transform.
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FIGURE 3.4 Plots in Example 3.6

Solution Once again, we will compute and plot X(ejω) over two periods to study its
symmetry property.

MATLAB script:

>> n = -5:5; x = (-0.9).ˆn;
>> k = -200:200; w = (pi/100)*k; X = x * (exp(-j*pi/100)) .ˆ (n’*k);
>> magX = abs(X); angX =angle(X);
>> subplot(2,1,1); plot(w/pi,magX);grid; axis([-2,2,0,15])
>> ylabel(’|X|’)
>> title(’Magnitude Part’)
>> subplot(2,1,2); plot(w/pi,angX/pi);grid; axis([-2,2,-1,1])
>> xlabel(’Frequency in \pi Units’); ylabel(’Radians/\pi’)
>> title(’Angle Part’)

From the plots in Figure 3.4, we observe that X(ejω) is not only periodic in ω
but is also conjugate-symmetric. Therefore, for real sequences we will plot their
Fourier transform magnitude and angle graphs from 0 to π. �

3.1.3 SOME COMMON DTFT PAIRS
The discrete-time Fourier transforms of the basic sequences discussed in
Chapter 2 are very useful. The discrete-time Fourier transforms of some
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TABLE 3.1 Some common DTFT pairs

Signal Type Sequence x(n) DTFT X
(
ejω
)
, −π ≤ ω ≤ π

Unit impulse δ(n) 1

Constant 1 2πδ(ω)

Unit step u(n)
1

1 − e−jω
+ πδ(ω)

Causal exponential αnu(n)
1

1 − αe−jω

Complex exponential ejω0n 2πδ(ω − ω0)

Cosine cos(ω0n) π[δ(ω − ω0) + δ(ω + ω0)]

Sine sin(ω0n) jπ[δ(ω + ω0) − δ(ω − ω0)]

Double exponential α|n| 1 − α2

1 − 2α cos(ω) + α2

Note: Since X
(
ejω
)

is periodic with period 2π, expressions over only
the primary period of −π ≤ ω ≤ π are given.

of these sequences can be easily obtained using the basic definitions (3.1)
and (3.2). These transform pairs and those of few other pairs are given
in Table 3.1. Note that, even if sequences like unit step u(n) are not
absolutely summable, their discrete-time Fourier transforms exist in the
limiting sense if we allow impulses in the Fourier transform. Such se-
quences are said to have finite power, that is,

∑
n |x(n)|2 < ∞. Using

this table and the properties of the Fourier transform (discussed in Sec-
tion 3.2), it is possible to obtain discrete-time Fourier transform of many
more sequences.

3.2 THE PROPERTIES OF THE DTFT

In the previous section, we discussed two important properties that
we needed for plotting purposes. We now discuss the remaining useful
properties, which are given below without proof. Let X(ejω) be the
discrete-time Fourier transform of x(n).

1. Linearity: The discrete-time Fourier transform is a linear transforma-
tion; that is,

F [αx1(n) + βx2(n)] = αF [x1(n)] + βF [x2(n)] (3.5)

for every α, β, x1(n), and x2(n).
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2. Time shifting: A shift in the time domain corresponds to the phase
shifting.

F [x(n − k)] = X(ejω)e−jωk (3.6)

3. Frequency shifting: Multiplication by a complex exponential corre-
sponds to a shift in the frequency domain.

F
[
x(n)ejω0n

]
= X(ej(ω−ω0)) (3.7)

4. Conjugation: Conjugation in the time domain corresponds to the
folding and conjugation in the frequency domain.

F [x∗(n)] = X∗(e−jω) (3.8)

5. Folding: Folding in the time domain corresponds to the folding in the
frequency domain.

F [x(−n)] = X(e−jω) (3.9)

6. Symmetries in real sequences: We have already studied the conju-
gate symmetry of real sequences. These real sequences can be decom-
posed into their even and odd parts, as discussed in Chapter 2.

x(n) = xe(n) + xo(n)

Then

F [xe(n)] = Re
[
X(ejω)

]

F [xo(n)] = j Im
[
X(ejω)

] (3.10)

Implication: If the sequence x(n) is real and even, then X(ejω) is
also real and even. Hence only one plot over [0, π] is necessary for its
complete representation.

A similar property for complex-valued sequences is explored in
Problem P3.7.

7. Convolution: This is one of the most useful properties that makes
system analysis convenient in the frequency domain.

F [x1(n) ∗ x2(n)] = F [x1(n)]F [x2(n)] = X1(ejω)X2(ejω) (3.11)
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8. Multiplication: This is a dual of the convolution property.

F [x1(n)·x2(n)] = F [x1(n)] ∗© F [x2(n)]
�
=

1
2π

π∫

−π

X1(ejθ)X2(ej(ω−θ))dθ

(3.12)

This convolution-like operation is called a periodic convolution and
hence denoted by ∗©. It is discussed (in its discrete form) in
Chapter 5.

9. Energy: The energy of the sequence x(n) can be written as

Ex =
∞∑

−∞
|x(n)|2 =

1
2π

π∫

−π

|X(ejω)|2dω (3.13)

=

π∫

0

|X(ejω)|2
π

dω (for real sequences using even symmetry)

This is also known as Parseval’s theorem. From (3.13), the energy den-
sity spectrum of x(n) is defined as

Φx(ω)
�
=

|X(ejω)|2
π

(3.14)

Then the energy of x(n) in the [ω1, ω2] band is given by
ω2∫

ω1

Φx(ω)dω, 0 ≤ ω1 < ω2 ≤ π

In the next several examples, we will verify some of these properties
using finite-duration sequences. We will follow our numerical procedure
to compute discrete-time Fourier transforms in each case. Although this
does not analytically prove the validity of each property, it provides us
with an experimental tool in practice.

� EXAMPLE 3.7 In this example, we will verify the linearity property (3.5) using real-valued
finite-duration sequences. Let x1(n) and x2(n) be two random sequences uni-
formly distributed between [0, 1] over 0 ≤ n ≤ 10. Then we can use our numer-
ical discrete-time Fourier transform procedure as follows.

MATLAB script:

>> x1 = rand(1,11); x2 = rand(1,11); n = 0:10;
>> alpha = 2; beta = 3; k = 0:500; w = (pi/500)*k;
>> X1 = x1 * (exp(-j*pi/500)).ˆ(n’*k); % DTFT of x1
>> X2 = x2 * (exp(-j*pi/500)).ˆ(n’*k); % DTFT of x2
>> x = alpha*x1 + beta*x2; % Linear combination of x1 & x2
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>> X = x * (exp(-j*pi/500)).ˆ(n’*k); % DTFT of x
>> % Verification
>> X_check = alpha*X1 + beta*X2; % Linear combination of X1 & X2
>> error = max(abs(X-X_check)) % Difference
error =
7.1054e-015

Since the maximum absolute error between the two Fourier transform arrays
is less than 10−14, the two arrays are identical within the limited numerical
precision of MATLAB. �

� EXAMPLE 3.8 Let x(n) be a random sequence uniformly distributed between [0, 1] over 0 ≤
n ≤ 10, and let y(n) = x(n − 2). Then we can verify the sample shift property
(3.6) as follows.

>> x = rand(1,11); n = 0:10;
>> k = 0:500; w = (pi/500)*k;
>> X = x * (exp(-j*pi/500)).ˆ(n’*k); % DTFT of x
>> % Signal shifted by two samples
>> y = x; m = n+2;
>> Y = y * (exp(-j*pi/500)).ˆ(m’*k); % DTFT of y
>> % verification
>> Y_check = (exp(-j*2).ˆw).*X; % Multiplication by exp(-j2w)
>> error = max(angle(Y-Y_check)) % Difference
error =
1.2204e-015 �

� EXAMPLE 3.9 To verify the frequency shift property (3.7), we will use the graphical approach.
Let

x(n) = cos(πn/2), 0 ≤ n ≤ 100 and y(n) = ejπn/4x(n)

Then using MATLAB,

>> n = 0:100; x = cos(pi*n/2);
>> k = -100:100; w = (pi/100)*k; % Frequency between -pi and +pi
>> X = x * (exp(-j*pi/100)).ˆ(n’*k); % DTFT of x
>> y = exp(j*pi*n/4).*x; % Signal multiplied by exp(j*pi*n/4)
>> Y = y * (exp(-j*pi/100)).ˆ(n’*k); % DTFT of y
% Graphical verification
>> subplot(2,2,1); plot(w/pi,abs(X)); grid; axis([-1,1,0,60])
>> title(’Magnitude of X’); ylabel(’|X|’)
>> subplot(2,2,2); plot(w/pi,angle(X)/pi); grid; axis([-1,1,-1,1])
>> title(’Angle of X’); ylabel(’radians/\pi’)
>> subplot(2,2,3); plot(w/pi,abs(Y)); grid; axis([-1,1,0,60])
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FIGURE 3.5 Plots in Example 3.9

>> xlabel(’Frequency in \pi Units’); ylabel(’|Y|’)
>> title(’Magnitude of Y’)
>> subplot(2,2,4); plot(w/pi,angle(Y)/pi); grid; axis([-1,1,-1,1])
>> xlabel(’Frequency in \pi Units’); ylabel(’radians/\pi’)
>> title(’Angle of Y’)

From the plots in Figure 3.5, we observe that X(ejω) is indeed shifted by π/4
in both magnitude and angle. �

� EXAMPLE 3.10 To verify the conjugation property (3.8), let x(n) be a complex-valued random
sequence over −5 ≤ n ≤ 10 with real and imaginary parts uniformly distributed
between [0, 1]. The MATLAB verification is as follows.

>> n = -5:10; x = rand(1,length(n)) + j*rand(1,length(n));
>> k = -100:100; w = (pi/100)*k; % Frequency between -pi and +pi
>> X = x * (exp(-j*pi/100)).ˆ(n’*k); % DTFT of x
% Conjugation property
>> y = conj(x); % Signal conjugation
>> Y = y * (exp(-j*pi/100)).ˆ(n’*k); % DTFT of y
% Verification
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>> Y_check = conj(fliplr(X)); % conj(X(-w))
>> error = max(abs(Y-Y_check)) % Difference
error =

0

�

� EXAMPLE 3.11 To verify the folding property (3.9), let x(n) be a random sequence over −5 ≤
n ≤ 10 uniformly distributed between [0, 1]. The MATLAB verification is as
follows.

>> n = -5:10; x = rand(1,length(n));
>> k = -100:100; w = (pi/100)*k; % Frequency between -pi and +pi
>> X = x * (exp(-j*pi/100)).ˆ(n’*k); % DTFT of x
% Folding property
>> y = fliplr(x); m = -fliplr(n); % Signal folding
>> Y = y * (exp(-j*pi/100)).ˆ(m’*k); % DTFT of y
% Verification
>> Y_check = fliplr(X); % X(-w)
>> error = max(abs(Y-Y_check)) % Difference
error =

0 �

� EXAMPLE 3.12 In this problem, we verify the symmetry property (3.10) of real signals. Let

x(n) = sin(πn/2), −5 ≤ n ≤ 10

Then, using the evenodd function developed in Chapter 2, we can compute
the even and odd parts of x(n) and then evaluate their discrete-time Fourier
transforms. We will provide the numerical as well as graphical verification.

MATLAB script:

>> n = -5:10; x = sin(pi*n/2);
>> k = -100:100; w = (pi/100)*k; % Frequency between -pi and +pi
>> X = x * (exp(-j*pi/100)).ˆ(n’*k); % DTFT of x
% Signal decomposition
>> [xe,xo,m] = evenodd(x,n); % Even and odd parts
>> XE = xe * (exp(-j*pi/100)).ˆ(m’*k); % DTFT of xe
>> XO = xo * (exp(-j*pi/100)).ˆ(m’*k); % DTFT of xo
% Verification
>> XR = real(X); % Real part of X
>> error1 = max(abs(XE-XR)) % Difference
error1 =
1.8974e-019

>> XI = imag(X); % Imag part of X
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FIGURE 3.6 Plots in Example 3.12

>> error2 = max(abs(XO-j*XI)) % Difference
error2 =
1.8033e-019

% Graphical verification
>> subplot(2,2,1); plot(w/pi,XR); grid; axis([-1,1,-2,2])
>> title(’Real Part of X’); ylabel(’Re(X)’);
>> subplot(2,2,2); plot(w/pi,XI); grid; axis([-1,1,-10,10])
>> title(’Imaginary Part of X’); ylabel(’Im(X)’);
>> subplot(2,2,3); plot(w/pi,real(XE)); grid; axis([-1,1,-2,2])
>> xlabel(’Frequency in \pi Units’); ylabel(’XE’);
>> title(’Transform of Even Part’)
>> subplot(2,2,4); plot(w/pi,imag(XO)); grid; axis([-1,1,-10,10])
>> xlabel(’Frequency in \pi Units’); ylabel(’XO’);
>> title(’Transform of Odd Part’)

From the plots in Figure 3.6, we observe that the real part of X(ejω) [or the
imaginary part of X(ejω)] is equal to the discrete-time Fourier transform of
xe(n) [or xo(n)]. �
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3.3 THE FREQUENCY DOMAIN REPRESENTATION
OF LTI SYSTEMS

We earlier stated that the Fourier transform representation is the most
useful signal representation for LTI systems. This is due to the following
result.

3.3.1 RESPONSE TO A COMPLEX EXPONENTIAL e jω0n

Let x(n) = ejω0n be the input to an LTI system represented by the impulse
response h(n).

ejω0n −→ h(n) −→ h(n) ∗ ejω0n

Then

y(n) = h(n) ∗ ejω0n =
∞∑

−∞
h(k)ejω0(n−k)

=

[ ∞∑
−∞

h(k)e−jω0k

]
ejω0n (3.15)

= [F [h(n)]|ω=ω0 ] ejω0n

DEFINITION 1 Frequency Response
The discrete-time Fourier transform of an impulse response is called
the frequency response (or transfer function) of an LTI system and
is denoted by

H(ejω)
�
=

∞∑
n=−∞

h(n)e−jωn (3.16)

Then from (3.15) we can represent the system by

x(n) = ejω0n −→ H(ejω) −→ y(n) = H(ejω0) × ejω0n (3.17)

Hence the output sequence is the input exponential sequence modified by
the response of the system at frequency ω0. This justifies the definition
of H(ejω) as a frequency response because it is what the complex expo-
nential is multiplied by to obtain the output y(n). This powerful result
can be extended to a linear combination of complex exponentials using
the linearity of LTI systems:

∑
k

Akejωkn −→ h(n) −→
∑

k

AkH(ejωk) ejωkn
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In general, the frequency response H(ejω) is a complex function of
ω. The magnitude |H(ejω)| of H(ejω) is called the magnitude (or gain)
response function, and the angle � H(ejω) is called the phase response
function, as we shall see below.

3.3.2 RESPONSE TO SINUSOIDAL SEQUENCES
Let x(n) = A cos(ω0n + θ0) be an input to an LTI system h(n). Then
from (3.17) we can show that the response y(n) is another sinusoid of the
same frequency ω0, with amplitude gained by |H(ejω0)| and phase shifted
by � H(ejω0), that is,

y(n) = A|H(ejω0)| cos(ω0n + θ0 + � H(ejω0)) (3.18)

This response is called the steady-state response, denoted by yss(n). It can
be extended to a linear combination of sinusoidal sequences.
∑

k

Ak cos(ωkn + θk) −→ H(ejω) −→
∑

k

Ak|H(ejωk )| cos(ωkn + θk + � H(ejωk ))

3.3.3 RESPONSE TO ARBITRARY SEQUENCES
Finally, (3.17) can be generalized to arbitrary absolutely summable se-
quences. Let X(ejω) = F [x(n)], and let Y (ejω) = F [y(n)]; then, using
the convolution property (3.11), we have

Y (ejω) = H(ejω) X(ejω) (3.19)

Therefore, an LTI system can be represented in the frequency domain by

X(ejω) −→ H(ejω) −→ Y (ejω) = H(ejω) X(ejω)

The output y(n) is then computed from Y (ejω) using the inverse
discrete-time Fourier transform (3.2). This requires an integral operation,
which is not a convenient operation in MATLAB. As we shall see in
Chapter 4, there is an alternate approach to the computation of output to
arbitrary inputs using the z-transform and partial fraction expansion. In
this chapter, we will concentrate on computing the steady-state response.

� EXAMPLE 3.13 Determine the frequency response H(ejω) of a system characterized by h(n) =
(0.9)nu(n). Plot the magnitude and the phase responses.

Solution Using (3.16),

H(ejω) =
∞∑

−∞

h(n)e−jωn =
∞∑
0

(0.9)ne−jωn

=
∞∑
0

(0.9e−jω)n =
1

1 − 0.9e−jω
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Hence

|H(ejω)| =

√
1

(1 − 0.9 cos ω)2 + (0.9 sin ω)2
=

1√
1.81 − 1.8 cos ω

and

� H(ejω) = − arctan
[ 0.9 sin ω

1 − 0.9 cos ω

]

To plot these responses, we can either implement the |H(ejω)| and � H(ejω)
functions or the frequency response H(ejω) and then compute its magnitude
and phase. The latter approach is more useful from a practical viewpoint
[as shown in (3.18)].

>> w = [0:1:500]*pi/500; % [0, pi] axis divided into 501 points.
>> H = exp(j*w) ./ (exp(j*w) - 0.9*ones(1,501));
>> magH = abs(H); angH = angle(H);
>> subplot(2,1,1); plot(w/pi,magH); grid;
>> title(’Magnitude Response’); ylabel(’|H|’);
>> subplot(2,1,2); plot(w/pi,angH/pi); grid
>> xlabel(’Frequency in \pi Units’); ylabel(’Phase in \pi Radians’);
>> title(’Phase Response’);

The plots are shown in Figure 3.7. �

� EXAMPLE 3.14 Let an input to the system in Example 3.13 be 0.1u(n). Determine the steady-
state response yss(n).

Solution Since the input is not absolutely summable, the discrete-time Fourier transform
is not particularly useful in computing the complete response. However, it can
be used to compute the steady-state response. In the steady state (i.e., n → ∞),
the input is a constant sequence (or a sinusoid with ω0 = θ0 = 0). Then the
output is

yss(n) = 0.1 × H(ej0) = 0.1 × 10 = 1

where the gain of the system at ω = 0 (also called the DC gain) is H(ej0) = 10,
which is obtained from Figure 3.7. �

3.3.4 FREQUENCY RESPONSE FUNCTION FROM DIFFERENCE
EQUATIONS

When an LTI system is represented by the difference equation

y(n) +
N∑

�=1

a�y(n − �) =
M∑

m=0

bmx(n − m) (3.20)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Frequency Domain Representation of LTI Systems 77

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10
Magnitude Response

|H
|

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency in π Units

−0.4

−0.3

−0.2

−0.1

0

P
ha

se
 in

 π
 R

ad
ia

ns

Phase Response

FIGURE 3.7 Frequency response plots in Example 3.13

then to evaluate its frequency response from (3.16), we would need the im-
pulse response h(n). However, using (3.17), we can easily obtain H(ejω).
We know that when x(n) = ejωn, then y(n) must be H(ejω)ejωn. Substi-
tuting in (3.20), we have

H(ejω)ejωn +
N∑

�=1

a�H(ejω)ejω(n−�) =
M∑

m=0

bm ejω(n−m)

or

H(ejω) =
∑M

m=0 bm e−jωm

1 +
∑N

�=1 a� e−jω�
(3.21)

after canceling the common factor ejωn term and rearranging. This equa-
tion can easily be implemented in MATLAB, given the difference equation
parameters.

� EXAMPLE 3.15 An LTI system is specified by the difference equation

y(n) = 0.8y(n − 1) + x(n)

a. Determine H(ejω).
b. Calculate and plot the steady-state response yss(n) to

x(n) = cos(0.05πn)u(n)
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Solution Rewrite the difference equation as y(n) − 0.8y(n − 1) = x(n).

a. Using (3.21), we obtain

H(ejω) =
1

1 − 0.8e−jω
(3.22)

b. In the steady state, the input is x(n) = cos(0.05πn) with frequency ω0 =
0.05π and θ0 = 0◦. The response of the system is

H(ej0.05π) =
1

1 − 0.8e−j0.05π
= 4.0928e−j0.5377

Therefore,

yss(n) = 4.0928 cos(0.05πn − 0.5377) = 4.0928 cos [0.05π(n − 3.42)]

This means that at the output the sinusoid is scaled by 4.0928 and shifted
by 3.42 sampling intervals. This can be verified using MATLAB.

>> subplot(1,1,1)
>> b = 1; a = [1,-0.8];
>> n=[0:100];x = cos(0.05*pi*n);
>> y = filter(b,a,x);
>> subplot(2,1,1); stem(n,x);
>> ylabel(’x(n)’); title(’Input Sequence’)
>> subplot(2,1,2); stem(n,y);
>> xlabel(’n’); ylabel(’y(n)’); title(’Output Sequence’)

From the plots in Figure 3.8, we note that the amplitude of yss(n) is approx-
imately 4. To determine the shift in the output sinusoid, we can compare
zero crossings of the input and the output. This is shown in Figure 3.8, from
which the shift is approximately 3.4 samples. �

In Example 3.15, the system was characterized by a first-order dif-
ference equation. It is fairly straightforward to implement (3.22) in
MATLAB, as we did in Example 3.13. In practice, the difference equa-
tions are of large order, and hence we need a compact procedure to
implement the general expression (3.21). This can be done using a simple
matrix-vector multiplication. If we evaluate H(ejω) at k = 0, 1, . . . , K
equispaced frequencies over [0, π], then

H(ejωk) =
∑M

m=0 bm e−jωkm

1 +
∑N

�=1 a� e−jωk�
, k = 0, 1, . . . , K (3.23)

If we let {bm}, {a�} (with a0 = 1), {m = 0, . . . , M}, {� = 0, . . . , N}, and
{ωk} be arrays (or row vectors), then the numerator and the denominator
of (3.23) become

b exp(−jmT ω); a exp(−j�T ω)
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FIGURE 3.8 Plots in Example 3.15

respectively. Now the array H(ejωk) in (3.23) can be computed using a ./
operation. This procedure can be implemented in a MATLAB function to
determine the frequency response function, given {bm} and {a�} arrays.
We will explore this in Example 3.16 and in Problem P3.16.

� EXAMPLE 3.16 A 3rd-order lowpass filter is described by the difference equation

y(n) = 0.0181x(n) + 0.0543x(n − 1) + 0.0543x(n − 2) + 0.0181x(n − 3)

+ 1.76y(n − 1) − 1.1829y(n − 2) + 0.2781y(n − 3)

Plot the magnitude and the phase response of this filter, and verify that it is a
lowpass filter.

Solution We will implement this procedure in MATLAB and then plot the filter
responses.

>> b = [0.0181, 0.0543, 0.0543, 0.0181]; % Filter coefficient array b
>> a = [1.0000, -1.7600, 1.1829, -0.2781]; % Filter coefficient array a
>> m = 0:length(b)-1; l = 0:length(a)-1; % Index arrays m and l
>> K = 500; k = 0:1:K; % Index array k for frequencies
>> w = pi*k/K; % [0, pi] axis divided into 501 points.
>> num = b * exp(-j*m’*w); % Numerator calculations
>> den = a * exp(-j*l’*w); % Denominator calculations
>> H = num ./ den; % Frequency response
>> magH = abs(H); angH = angle(H); % Mag and phase responses
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FIGURE 3.9 Plots for Example 3.16

>> subplot(2,1,1); plot(w/pi,magH); grid; axis([0,1,0,1])
>> ylabel(’Magnitude |H|’);
>> title(’Magnitude Response’);
>> subplot(2,1,2); plot(w/pi,angH/pi); grid
>> xlabel(’Frequency in \pi Units’); ylabel(’Phase in \pi Radians’);
>> title(’Phase Response’);

From the plots in Figure 3.9, we see that the filter is indeed a lowpass filter.�

3.4 SAMPLING AND RECONSTRUCTION OF ANALOG SIGNALS

In many applications—for example, in digital communications—real-
world analog signals are converted into discrete signals using sampling
and quantization operations (collectively called analog-to-digital con-
version, or ADC). These discrete signals are processed by digital signal
processors, and the processed signals are converted into analog signals
using a reconstruction operation (called digital-to-analog conversion, or
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DAC). Using Fourier analysis, we can describe the sampling operation
from the frequency-domain viewpoint, analyze its effects, and then ad-
dress the reconstruction operation. We will also assume that the number
of quantization levels is sufficiently large that the effect of quantization
on discrete signals is negligible. We will study the effects of quantization
in Chapter 10.

3.4.1 SAMPLING
Let xa(t) be an analog (absolutely integrable) signal. Its continuous-time
Fourier transform (CTFT) is given by

Xa(jΩ)
�
=

∞∫

−∞

xa(t)e−jΩtdt (3.24)

where Ω is an analog frequency in radians/sec. The inverse continuous-
time Fourier transform is given by

xa(t) =
1
2π

∞∫

−∞

Xa(jΩ)ejΩtdΩ (3.25)

We now sample xa(t) at sampling interval Ts seconds apart to obtain the
discrete-time signal x(n):

x(n)
�
= xa( nTs)

Let X(ejω) be the discrete-time Fourier transform of x(n). Then it can be
shown [79] that X(ejω) is a countable sum of amplitude-scaled, frequency-
scaled, and translated versions of the Fourier transform Xa(jΩ).

X(ejω) =
1
Ts

∞∑
�=−∞

Xa

[
j

(
ω

Ts
− 2π

Ts
�

)]
(3.26)

This relation is known as the aliasing formula. The analog and digital
frequencies are related through Ts,

ω = ΩTs (3.27)

while the sampling frequency Fs is given by

Fs
�
=

1
Ts

, sam/sec (3.28)

The graphical illustration of (3.26) is shown in Figure 3.10, from which
we observe that, in general, the discrete signal is an aliased version of the
corresponding analog signal because higher frequencies are aliased into
lower frequencies if there is an overlap. However, it is possible to recover
the Fourier transform Xa(jΩ) from X(ejω) [or equivalently, the analog
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FIGURE 3.10 Sampling operation in the time and frequency domains

signal xa(t) from its samples x(n)] if the infinite “replicas” of Xa(jΩ) do
not overlap with each other to form X(ejω). This is true for band-limited
analog signals.

DEFINITION 2 Band-Limited Signal
A signal is band-limited if there exists a finite radian frequency Ω0
such that Xa(jΩ) is zero for |Ω| > Ω0. The frequency F0 = Ω0/2π is
called the signal bandwidth in Hz.
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Referring to Figure 3.10, if π > Ω0Ts—or equivalently, Fs/2 > F0—
then

X(ejω) =
1
Ts

X

(
j

ω

Ts

)
; − π

Ts
<

ω

Ts
≤ π

Ts
(3.29)

which leads to the sampling theorem for band-limited signals.

THEOREM 3 Sampling Principle
A band-limited signal xa(t) with bandwidth F0 can be reconstructed

from its sample values x(n) = xa(nTs) if the sampling frequency Fs =
1/Ts is greater than twice the bandwidth F0 of xa(t).

Fs > 2F0

Otherwise, aliasing would result in x(n). The sampling rate of 2F0 for
an analog band-limited signal is called the Nyquist rate.

Note: After xa(t) is sampled, the highest analog frequency that x(n) rep-
resents is Fs/2 Hz (or ω = π). This agrees with the implication stated in
property 2 of the discrete-time Fourier transform in Section 3.1. Before
we delve into MATLAB implementation of sampling, we first consider
sampling of sinusoidal signals and the resulting Fourier transform in the
following example.

� EXAMPLE 3.17 The analog signal xa(t) = 4 + 2 cos(150πt + π/3) + 4 sin(350πt) is sampled at
Fs = 200 sam/sec to obtain the discrete-time signal x(n). Determine x(n) and
its corresponding DTFT X(ejω).

Solution The highest frequency in the given xa(t) is F0 = 175 Hz. Since Fs = 200, which
is less than 2F0, there will be aliasing in x(n) after sampling. The sampling
interval is Ts = 1/Fs = 0.005 sec. Hence we have

x(n) = xa(nTs) = xa(0.005n)

= 4 + 2 cos
(
0.75πn +

π

3

)
+ 4 sin(1.75πn) (3.30)

Note that the digital frequency, 1.75π, of the third term in (3.30) is outside the
primary interval of −π ≤ ω ≤ π, signifying that aliasing has occurred. From
the periodicity property of digital sinusoidal sequences in Chapter 2, we know
that the period of the digital sinusoid is 2π. Hence we can determine the alias
of the frequency 1.75π. From (3.30), we have

x(n) = 4 + 2 cos(0.75πn + π
3 ) + 4 sin(1.75πn − 2πn)

= 4 + 2 cos(0.75πn + π
3 ) − 4 sin(0.25πn) (3.31)
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Using Euler’s identity, we can expess x(n) as

x(n) = 4 + ejπ/3ej0.75πn + e−jπ/3e−j0.75πn + 2jej0.25πn − 2jej0.25πn (3.32)

From Table 3.1 and the DTFT properties, the DTFT of x(n) is given by

X(ejω) = 8πδ(ω) + 2πejπ/3δ(ω − 0.75π) + 2πe−jπ/3δ(ω + 0.75π)

+ j4πδ(ω − 0.25π) − j4πδ(ω + 0.25π), −π ≤ ω ≤ π (3.33)

The plot of X(ejω) is shown in Figure 3.15. �

3.4.2 MATLAB IMPLEMENTATION
In a strict sense, it is not possible to analyze analog signals using MAT-
LAB unless we use the Symbolic toolbox. However, if we sample xa(t) on
a fine grid that has a sufficiently small time increment to yield a smooth
plot and a large enough maximum time to show all the modes, then we can
approximate its analysis. Let ∆t be the grid interval such that ∆t � Ts.
Then

xG(m)
�
= xa(m∆t) (3.34)

can be used as an array to simulate an analog signal. The sampling in-
terval Ts should not be confused with the grid interval ∆t, which is used
strictly to represent an analog signal in MATLAB. Similarly, the Fourier
transform relation (3.24) should also be approximated in light of (3.34)
as follows:

Xa(jΩ) ≈
∑
m

xG(m)e−jΩm∆t∆t = ∆t
∑
m

xG(m)e−jΩm∆t (3.35)

Now if xa(t) [and hence xG(m)] is of finite duration, then (3.35) is similar
to the discrete-time Fourier transform relation (3.3) and hence can be
implemented in MATLAB in a similar fashion to analyze the sampling
phenomenon.

� EXAMPLE 3.18 Let xa(t) = e−1000|t|. Determine and plot its Fourier transform.

Solution From (3.24),

Xa(jΩ) =

∞∫

−∞

xa(t)e−jΩtdt =

0∫

−∞

e1000te−jΩtdt +

∞∫

0

e−1000te−jΩtdt

=
0.002

1 + ( Ω
1000 )2

(3.36)
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which is a real-valued function since xa(t) is a real and even signal. To evaluate
Xa(jΩ) numerically, we have to first approximate xa(t) by a finite-duration
grid sequence xG(m). Using the approximation e−5 ≈ 0, we note that xa(t)
can be approximated by a finite-duration signal over −0.005 ≤ t ≤ 0.005 (or
equivalently, over [−5, 5] msec). Similarly from (3.36), Xa(jΩ) ≈ 0 for Ω ≥
2π (2000). Hence choosing

∆t = 5 × 10−5 	 1
2 (2000)

= 25 × 10−5

we can obtain xG(m) and then implement (3.35) in MATLAB.

% Analog signal
>> Dt = 0.00005; t = -0.005:Dt:0.005; xa = exp(-1000*abs(t));
% Continuous-time Fourier transform
>>Wmax = 2*pi*2000; K = 500; k = 0:1:K; W = k*Wmax/K;
>>Xa = xa * exp(-j*t’*W) * Dt; Xa = real(Xa);
>>W = [-fliplr(W), W(2:501)]; % Omega from -Wmax to Wmax
>>Xa = [fliplr(Xa), Xa(2:501)]; % Xa over -Wmax to Wmax interval
>>subplot(2,1,1);plot(t*1000,xa);
>>xlabel(’t in msec’); ylabel(’Amplitude’)
>>title(’Analog Signal’)
>>subplot(2,1,2);plot(W/(2*pi*1000),Xa*1000);
>>xlabel(’Frequency in KHz’); ylabel(’Amplitude/1000’)
>>title(’Continuous-Time Fourier Transform’)

Figure 3.11 shows the plots of xa(t) and Xa(jΩ). Note that to reduce the number
of computations, we computed Xa(jΩ) over [0, 4000π] rad/sec (or equivalently,
over [0, 2] KHz) and then duplicated it over [−4000π, 0] for plotting purposes.
The displayed plot of Xa(jΩ) agrees with (3.36). �

� EXAMPLE 3.19 To study the effect of sampling on the frequency-domain quantities, we will
sample xa(t) in Example 3.18 at two different sampling frequencies.

a. Sample xa(t) at Fs = 5000 sam/sec to obtain x1(n). Determine and plot
X1(ejω).

b. Sample xa(t) at Fs = 1000 sam/sec to obtain x2(n). Determine and plot
X2(ejω).

Solution a. Since the bandwidth of xa(t) is 2KHz, the Nyquist rate is 4000 sam/sec,
which is less than the given Fs. Therefore, aliasing will be (almost) nonexis-
tent.
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FIGURE 3.11 Plots in Example 3.18

MATLAB script:

% Analog signal
>> Dt = 0.00005; t = -0.005:Dt:0.005; xa = exp(-1000*abs(t));
% Discrete-time signal
>> Ts = 0.0002; n = -25:1:25; x = exp(-1000*abs(n*Ts));
% Discrete-time Fourier transform
>> K = 500; k = 0:1:K; w = pi*k/K;
>> X = x * exp(-j*n’*w); X = real(X);
>> w = [-fliplr(w), w(2:K+1)]; X = [fliplr(X), X(2:K+1)];
>> subplot(2,1,1);plot(t*1000,xa);
>> xlabel(’t in msec’); ylabel(’Amplitude’)
>> title(’Discrete Signal’); hold on
>> stem(n*Ts*1000,x); gtext(’Ts=0.2 msec’); hold off
>> subplot(2,1,2);plot(w/pi,X);
>> xlabel(’Frequency in \pi Units’); ylabel(’Amplitude’)
>> title(’Discrete-Time Fourier Transform’)

In the top plot in Figure 3.12, we have superimposed the discrete signal x1(n)
over xa(t) to emphasize the sampling. The plot of X2(ejω) shows that it is a
scaled version (scaled by Fs = 5000) of Xa(jΩ). Clearly there is no aliasing.
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FIGURE 3.12 Plots in Example 3.19a

b. Here Fs = 1000 < 4000. Hence there will be a considerable amount of alias-
ing. This is evident from Figure 3.13, in which the shape of X(ejω) is different
from that of Xa(jΩ) and can be seen to be a result of adding overlapping
replicas of Xa(jΩ). �

3.4.3 RECONSTRUCTION
From the sampling theorem and the preceding examples, it is clear that if
we sample band-limited xa(t) above its Nyquist rate, then we can recon-
struct xa(t) from its samples x(n). This reconstruction can be thought of
as a two-step process:

• First, the samples are converted into a weighted impulse train:
∞∑

n=−∞
x(n)δ(t−nTs) = · · ·+x(−1)δ(n+Ts)+x(0)δ(t)+x(1)δ(n−Ts)+ · · ·

• Then, the impulse train is filtered through an ideal analog lowpass filter
band-limited to the [−Fs/2, Fs/2] band:

x(n) −→ Impulse train
conversion −→ Ideal lowpass

filter −→ xa(t)
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FIGURE 3.13 Plots in Example 3.19b

This two-step procedure can be described mathematically using an inter-
polating formula [79],

xa(t) =
∞∑

n=−∞
x(n) sinc [Fs(t − nTs)] (3.37)

where sinc(x) = sin πx
πx is an interpolating function. The physical inter-

pretation of the above reconstruction (3.37) is given in Figure 3.14, from
which we observe that this ideal interpolation is not practically feasible,
because the entire system is noncausal and hence not realizable.

� EXAMPLE 3.20 Consider the sampled signal x(n) from Example 3.17. It is applied as an
input to an ideal D/A converter (i.e., an ideal interpolator) to obtain the
analog signal ya(t). The ideal D/A converter is also operating at Fs = 200
sam/sec. Obtain the reconstructed signal ya(t), and determine whether the
sampling/reconstruction operation resulted in any aliasing. Also, plot the
Fourier transforms Xa(jΩ), X(ejω), and Ya(jΩ).
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FIGURE 3.14 Reconstruction of band-limited signal from its samples

Solution We can determine ya(t) using (3.31). However, since all frequencies in the sinu-
soidal sequence x(n) are between the primary period of −π ≤ ω ≤ π, we can
equivalently obtain ya(t) by substituting n by tFs. Thus from (3.31), we have

ya(t) = x(n)
∣∣
n=tFs

= x(n)
∣∣
n=200t

= 4 + 2 cos
(
0.75π200t +

π

3

)
− 4 sin(0.25π200t)

= 4 + 2 cos
(
150πt +

π

3

)
− 4 sin(50πt) (3.38)

As expected, the 175 Hz component in xa(t) is aliased into the 25 Hz component
in ya(t).
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Using Euler’s identity on the given xa(t) and the CTFT properties, the
CTFT Xa(jΩ) is given by

Xa(jΩ) = 8πδ(Ω) + 2πejπ/3δ(Ω − 150π) + 2πe−jπ/3δ(Ω + 150π)

+ 4jπδ(Ω − 350π) − 4jπδ(Ω + 350π) (3.39)

It is informative to plot the CTFT Xa(jΩ) as a function of the cyclic frequency
F in Hz using Ω = 2πF . Thus the quantity Xa(j2πF ) from (3.39) is given by

Xa(j2πF ) = 4δ(F ) + ejπ/3δ(F − 75) + e−jπ/3δ(F + 75)

+ 2jδ(F − 175) − 2jδ(F + 175) (3.40)

where we have used the identity δ(Ω) = δ(2πF ) = 1
2π

δ(F ). Similarly, the CTFT
Ya(j2πF ) is given by

Ya(j2πF ) = 4δ(F ) + ejπ/3δ(F − 75) + e−jπ/3δ(F + 75)

+ 2jδ(F − 25) − 2jδ(F + 25) (3.41)

Figure 3.15a shows the CTFT of the original signal xa(t) as a function of
F . The DTFT X

(
ejω
)

of the sampled sequence x(n) is shown as a function of
ω in Figure 3.15b, in which the impulses due to shifted replicas are shown in
gray shade for clarity. The ideal D/A converter response is also shown in gray
shade. The CTFT of the reconstructed signal ya(t) is shown in Figure 3.15c,
which clearly shows the aliasing effect. �

Practical D/A converters In practice, we need a different approach
than (3.37). The two-step procedure is still feasible, but now we replace
the ideal lowpass filter by a practical analog lowpass filter. Another in-
terpretation of (3.37) is that it is an infinite-order interpolation. We want
finite-order (and in fact low-order) interpolations. There are several ap-
proaches to do this.

• Zero-order-hold (ZOH) interpolation: In this interpolation, a
given sample value is held for the sample interval until the next sample
is received,

x̂a(t) = x(n), nTs ≤ n < (n + 1)Ts

which can be obtained by filtering the impulse train through an inter-
polating filter of the form

h0(t) =

{
1, 0 ≤ t ≤ Ts

0, otherwise
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FIGURE 3.15 Fourier transforms of the sinusoidal signals xa(t), x(n), and ya(t)

which is a rectangular pulse. The resulting signal is a piecewise-constant
(staircase) waveform that requires an appropriately designed analog
postfilter for accurate waveform reconstruction.

x(n) −→ ZOH −→ x̂a(t) −→ Postfilter −→ xa(t)

• First-order-hold (FOH) interpolation: In this case, the adjacent
samples are joined by straight lines. This can be obtained by filtering
the impulse train through

h1(t) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 +
t

Ts
, 0 ≤ t ≤ Ts

1 − t

Ts
, Ts ≤ t ≤ 2Ts

0, otherwise

Once again, an appropriately designed analog postfilter is required for
accurate reconstruction. These interpolations can be extended to higher
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orders. One particularly useful interpolation employed by MATLAB is
the following.

• Cubic spline interpolation: This approach uses spline interpolants
for a smoother, but not necessarily more accurate, estimate of the ana-
log signals between samples. Hence this interpolation does not require
an analog postfilter. The smoother reconstruction is obtained by us-
ing a set of piecewise continuous third-order polynomials called cubic
splines, given by

xa (t) = α0(n) + α1(n) (t − nTs) + α2(n) (t − nTs)
2

+α3(n) (t − nTs)
3
, nTs ≤ n < (n + 1)Ts (3.42)

where {αi(n), 0 ≤ i ≤ 3} are the polynomial coefficients, which are de-
termined by using least-squares analysis on the sample values [10].
(Strictly speaking, this is not a causal operation but is a convenient
one in MATLAB.)

3.4.4 MATLAB IMPLEMENTATION
For interpolation between samples, MATLAB provides several approaches.
The function sinc(x), which generates the (sinπx) /πx function, can
be used to implement (3.37), given a finite number of samples. If
{x(n), n1 ≤ n ≤ n2} is given, and if we want to interpolate xa (t) on
a very fine grid with the grid interval ∆t, then, from (3.37),

xa (m∆t) ≈
n2∑

n=n1

x(n) sinc [Fs(m∆t − nTs)] , t1 ≤ m∆t ≤ t2 (3.43)

which can be implemented as a matrix-vector multiplication operation as
shown below.

>> n = n1:n2; t = t1:t2; Fs = 1/Ts; nTs = n*Ts; % Ts is the sampling interval
>> xa = x * sinc(Fs*(ones(length(n),1)*t-nTs’*ones(1,length(t))));

Note that it is not possible to obtain an exact analog xa(t) in light of the
fact that we have assumed a finite number of samples. We now demon-
strate the use of the sinc function in the following two examples and also
study the aliasing problem in the time domain.

� EXAMPLE 3.21 From the samples x1(n) in Example 3.19a, reconstruct xa(t) and comment on
the results.

Solution Note that x1(n) was obtained by sampling xa(t) at Ts = 1/Fs = 0.0002 sec. We
will use the grid spacing of 0.00005 sec over −0.005 ≤ t ≤ 0.005, which gives
x(n) over −25 ≤ n ≤ 25.
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FIGURE 3.16 Reconstructed signal in Example 3.21

MATLAB script:

% Discrete-time signal x1(n)
>> Ts = 0.0002; n = -25:1:25; nTs = n*Ts; x = exp(-1000*abs(nTs));
% Analog signal reconstruction
>> Dt = 0.00005; t = -0.005:Dt:0.005;
>> xa = x * sinc(Fs*(ones(length(n),1)*t-nTs’*ones(1,length(t))));
% Check
>> error = max(abs(xa - exp(-1000*abs(t))))
error =

0.0363

The maximum error between the reconstructed and the actual analog signal is
0.0363, which is due to the fact that xa(t) is not strictly band-limited (and also
we have a finite number of samples). From Figure 3.16, we note that visually
the reconstruction is excellent. �

� EXAMPLE 3.22 From the samples x2(n) in Example 3.17b, reconstruct xa(t) and comment on
the results.

Solution In this case, x2(n) was obtained by sampling xa(t) at Ts = 1/Fs = 0.001 sec.
We will again use the grid spacing of 0.00005 sec over −0.005 ≤ t ≤ 0.005,
which gives x(n) over −5 ≤ n ≤ 5.

% Discrete-time signal x2(n)
>> Ts = 0.001; n = -5:1:5; nTs = n*Ts; x = exp(-1000*abs(nTs));
% Analog signal reconstruction
>> Dt = 0.00005; t = -0.005:Dt:0.005;
>> xa = x * sinc(Fs*(ones(length(n),1)*t-nTs’*ones(1,length(t))));
% Check
>> error = max(abs(xa - exp(-1000*abs(t))))
error =

0.1852
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FIGURE 3.17 Reconstructed signal in Example 3.22

The maximum error between the reconstructed and the actual analog signals is
0.1852, which is significant and cannot be attributed to the nonband-limitedness
of xa(t) alone. From Figure 3.17, observe that the reconstructed signal differs
from the actual one in many places over the interpolated regions. This is the
visual demonstration of aliasing in the time domain. �

The second MATLAB approach for signal reconstruction is a plotting
approach. The stairs function plots a staircase (ZOH) rendition of the
analog signal, given its samples, while the plot function depicts a linear
(FOH) interpolation between samples.

� EXAMPLE 3.23 Plot the reconstructed signal from the samples x1(n) in Example 3.19 using the
ZOH and the FOH interpolations. Comment on the plots.

Solution Note that in this reconstruction, we do not compute xa(t) but merely plot it
using its samples.

% Discrete-time signal x1(n) : Ts = 0.0002
>> Ts = 0.0002; n = -25:1:25; nTs = n*Ts; x = exp(-1000*abs(nTs));
% Plots
>> subplot(2,1,1); stairs(nTs*1000,x);
>> xlabel(’t in msec’); ylabel(’Amplitude’)
>> title(’Reconstructed Signal from x_1(n) Using ZOH’); hold on
>> stem(n*Ts*1000,x); hold off
%
% Discrete-time signal x1(n) : Ts = 0.001
>> Ts = 0.001; n = -5:1:5; nTs = n*Ts; x = exp(-1000*abs(nTs));
% Plots
>> subplot(2,1,2); plot(nTs*1000,x);
>> xlabel(’t in msec’); ylabel(’Amplitude’)
>> title(’Reconstructed Signal from x_1(n) Using FOH’); hold on
>> stem(n*Ts*1000,x); hold off
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FIGURE 3.18 Signal reconstruction in Example 3.23

The plots are shown in Figure 3.18, from which we observe that the ZOH re-
construction is a crude one and that the further processing of analog signal is
necessary. The FOH reconstruction appears to be a good one, but a careful
observation near t = 0 reveals that the peak of the signal is not correctly repro-
duced. In general, if the sampling frequency is much higher than the Nyquist
rate, then the FOH interpolation provides an acceptable reconstruction. �

The third approach of reconstruction in MATLAB involves the use
of cubic spline functions. The spline function implements interpolation
between sample points. It is invoked by xa = spline(nTs,x,t), in which
x and nTs are arrays containing samples x(n) at nTs instances, respec-
tively, and t array contains a fine grid at which xa(t) values are desired.
Note once again that it is not possible to obtain an exact analog xa(t).

� EXAMPLE 3.24 From the samples x1(n) and x2(n) in Example 3.19, reconstruct xa(t) using the
spline function. Comment on the results.

Solution This example is similar to Examples 3.21 and 3.22. Hence sampling parameters
are the same as before.
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FIGURE 3.19 Reconstructed signal in Example 3.24

MATLAB script:

% a) Discrete-time signal x1(n): Ts = 0.0002
>> Ts = 0.0002; n = -25:1:25; nTs = n*Ts; x = exp(-1000*abs(nTs));
% Analog signal reconstruction
>> Dt = 0.00005; t = -0.005:Dt:0.005; xa = spline(nTs,x,t);
% Check
>> error = max(abs(xa - exp(-1000*abs(t))))
error = 0.0317

The maximum error between the reconstructed and the actual analog signal is
0.0317, which is due to the nonideal interpolation and the fact that xa(t) is
nonband-limited. Comparing this error with that from the sinc (or ideal) inter-
polation, we note that this error is lower. The ideal interpolation generally suf-
fers more from time-limitedness (or from a finite number of samples). From the
top plot in Figure 3.19, we observe that visually the reconstruction is excellent.

MATLAB script:

% Discrete-time signal x2(n): Ts = 0.001
>> Ts = 0.001; n = -5:1:5; nTs = n*Ts; x = exp(-1000*abs(nTs));
% Analog signal reconstruction
>> Dt = 0.00005; t = -0.005:Dt:0.005; xa = spline(nTs,x,t);
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% Check
>> error = max(abs(xa - exp(-1000*abs(t))))
error = 0.1679

The maximum error in this case is 0.1679, which is significant and cannot be
attributed to the nonideal interpolation or nonband-limitedness of xa(t). From
the bottom plot in Figure 3.19, observe that the reconstructed signal again
differs from the actual one in many places over the interpolated regions. �

From these examples, it is clear that for practical purposes the spline
interpolation provides the best results.

3.5 PROBLEMS

P3.1 Using the matrix-vector multiplication approach discussed in this chapter, write a
MATLAB function to compute the DTFT of a finite-duration sequence. The format of
the function should be

function [X] = dtft(x,n,w)
% Computes discrete-time Fourier transform
% [X] = dtft(x,n,w)
% X = DTFT values computed at w frequencies
% x = finite duration sequence over n
% n = sample position vector
% w = frequency location vector

Use this function to compute the DTFT X(ejω) of the following finite-duration sequences
over −π ≤ ω ≤ π. Plot DTFT magnitude and angle graphs in one figure window.

1. x(n) = (0.6)|n| [u(n + 10) − u(n − 11)]. Comment on the angle plot.
2. x(n) = n(0.9)n [u(n) − u(n − 21)].
3. x(n) = [cos(0.5πn) + j sin(0.5πn)][u(n) − u(n − 51)]. Comment on the magnitude plot.
4. x(n) = {4

↑
, 3, 2, 1, 1, 2, 3, 4}. Comment on the angle plot.

5. x(n) = {4
↑
, 3, 2, 1, −1, −2, −3, −4}. Comment on the angle plot.

P3.2 Let x1(n) = {1
↑
, 2, 2, 1}. A new sequence x2(n) is formed using

x2(n) =

{
x1(n), 0 ≤ n ≤ 3
x1(n − 4), 4 ≤ n ≤ 7
0, otherwise

(3.44)

1. Express X2(ejω) in terms of X1(ejω) without explicitly computing X1(ejω).
2. Verify your result using MATLAB by computing and plotting magnitudes of the

respective DTFTs.
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P3.3 Determine analytically the DTFT of each of the following sequences. Plot the magnitude
and angle of X(ejω) over 0 ≤ ω ≤ π.

1. x(n) = 2 (0.5)n u(n + 2)
2. x(n) = (0.6)|n| [u(n + 10) − u(n − 11)]
3. x(n) = n (0.9)n u(n + 3)
4. x(n) = (n + 3) (0.8)n−1 u(n − 2)
5. x(n) = 4 (−0.7)n cos(0.25πn)u(n)

P3.4 The following finite-duration sequences are called windows and are very useful in DSP:

Rectangular: RM (n) =

{
1, 0 ≤ n < M
0, otherwise

Hanning: CM (n) = 0.5
[
1 − cos

2πn

M − 1

]
RM (n)

Triangular: TM (n) =

[
1 − |M − 1 − 2n|

M − 1

]
RM (n)

Hamming: HM (n) =
[
0.54 − 0.46 cos

2πn

M − 1

]
RM (n)

For each of these windows, determine their DTFTs for M = 10, 25, 50, 101. Scale
transform values so that the maximum value is equal to 1. Plot the magnitude of the
normalized DTFT over −π ≤ ω ≤ π. Study these plots and comment on their behavior as
a function of M .

P3.5 Using the definition of the DTFT in (3.1), determine the sequences corresponding to the
following DTFTs.

1. X(ejω) = 3 + 2 cos(ω) + 4 cos(2ω)
2. X(ejω) = [1 − 6 cos(3ω) + 8 cos(5ω)] e−j3ω

3. X(ejω) = 2 + j4 sin(2ω) − 5 cos(4ω)
4. X(ejω) = [1 + 2 cos(ω) + 3 cos(2ω)] cos(ω/2)e−j5ω/2

5. X(ejω) = j [3 + 2 cos(ω) + 4 cos(2ω)] sin(ω)e−j3ω

P3.6 Using the definition of the inverse DTFT in (3.2), determine the sequences corresponding
to the following DTFTs.

1. X(ejω) =

{
1, 0 ≤ |ω| ≤ π/3
0, π/3 < |ω| ≤ π

2. X(ejω) =

{
0, 0 ≤ |ω| ≤ 3π/4
1, 3π/4 < |ω| ≤ π

3. X(ejω) =

{
2, 0 ≤ |ω| ≤ π/8
1, π/8 < |ω| ≤ 3π/4
0, 3π/4 < |ω| ≤ π

4. X(ejω) =

{
0, −π ≤ |ω| < π/4
1, π/4 ≤ |ω| ≤ 3π/4
0, 3π/4 < |ω| ≤ π

5. X(ejω) = ω ej(π/2−10ω)
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Remember that the above transforms are periodic in ω with period equal to 2π. Hence
functions are given only over the primary period of −π ≤ ω ≤ π.

P3.7 A complex-valued sequence x(n) can be decomposed into a conjugate symmetric part
xe(n) and a conjugate antisymmetric part xo(n) as discussed in Chapter 2. Show that

F [xe(n)] = XR(ejω) and F [xo(n)] = jXI(ejω)

where XR(ejω) and XI(ejω) are the real and imaginary parts of the DTFT X(ejω),
respectively. Verify this property on

x(n) = 2(0.9)−n [cos(0.1πn) + j sin(0.9πn)] [u(n) − u(n − 10)]

using the MATLAB functions developed in Chapter 2.

P3.8 A complex-valued DTFT X(ejω) can also be decomposed into its conjugate symmetric
part Xe(ejω) and conjugate antisymmetric part Xo(ejω), that is,

X(ejω) = Xe(ejω) + Xo(ejω)

where

Xe(ejω) =
1
2
[X(ejω) + X∗(e−jω)] and Xo(ejω) =

1
2
[X(ejω) − X∗(e−jω)]

Show that

F−1[Xe(ejω)] = xR(n) and F−1[Xo(ejω)] = jxI(n)

where xR(n) and xI(n) are the real and imaginary parts of x(n). Verify this property on

x(n) = ej0.1πn [u(n) − u (n − 20)]

using the MATLAB functions developed in Chapter 2.

P3.9 Using the frequency-shifting property of the DTFT, show that the real part of X(ejω) of
a sinusoidal pulse

x(n) = (cos ωon)RM (n)

where RM (n) is the rectangular pulse given in Problem P3.4 is given by

XR(ejω) =
1
2

cos

{
(ω − ω0)(M − 1)

2

}
sin {(ω − ω0) M/2}
sin {(ω − ω0) /2}

+
1
2

cos

{
(ω + ω0)(M − 1)

2

}
sin {[ω − (2π − ω0)] M/2}
sin {[ω − (2π − ω0)] /2}

Compute and plot XR(ejω) for ωo = π/2 and M = 5, 15, 25, 100. Use the plotting
interval [−π, π]. Comment on your results.

P3.10 Let x(n) = T10(n) be a triangular pulse given in Problem P3.4. Using properties of the
DTFT, determine and plot the DTFT of the following sequences.

1. x(n) = T10(−n)
2. x(n) = T10(n) − T10(n − 10)
3. x(n) = T10(n) ∗ T10(−n)
4. x(n) = T10(n)ejπn

5. x(n) = cos(0.1πn)T10(n)
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P3.11 For each of the linear, shift-invariant systems described by the impulse response,
determine the frequency response function H(ejω). Plot the magnitude response |H(ejω)|
and the phase response � H(ejω) over the interval [−π, π].

1. h(n) = (0.9)|n|

2. h(n) = sinc(0.2n)[u(n + 20) − u(n − 20)], where sinc(0) = 1
3. h(n) = sinc(0.2n)[u(n) − u(n − 40)]
4. h(n) = [(0.5)n + (0.4)n]u(n)
5. h(n) = (0.5)|n| cos(0.1πn)

P3.12 Let x(n) = A cos(ω0n + θ0) be an input sequence to an LTI system described by the
impulse response h(n). Show that the output sequence y(n) is given by

y(n) = A|H(ejω0)| cos[ω0n + θ0 + � H(ejω0)]

P3.13 Let x(n) = 3 cos (0.5πn + 60◦) + 2 sin (0.3πn) be the input to each of the systems
described in Problem P3.11. In each case, determine the output sequence y(n).

P3.14 An ideal lowpass filter is described in the frequency domain by

Hd(ejω) =

{
1 · e−jαω, |ω| ≤ ωc

0, ωc < |ω| ≤ π

where ωc is called the cutoff frequency and α is called the phase delay.

1. Determine the ideal impulse response hd(n) using the IDTFT relation (3.2).
2. Determine and plot the truncated impulse response

h(n) =

{
hd(n), 0 ≤ n ≤ N − 1

0, otherwise

for N = 41, α = 20, and ωc = 0.5π.
3. Determine and plot the frequency response function H(ejω), and compare it with the

ideal lowpass filter response Hd(ejω). Comment on your observations.

P3.15 An ideal highpass filter is described in the frequency-domain by

Hd(ejω) =

{
1 · e−jαω, ωc < |ω| ≤ π

0, |ω| ≤ ωc

where ωc is called the cutoff frequency and α is called the phase delay.

1. Determine the ideal impulse response hd(n) using the IDTFT relation (3.2).
2. Determine and plot the truncated impulse response

h(n) =

{
hd(n), 0 ≤ n ≤ N − 1

0, otherwise

for N = 31, α = 15, and ωc = 0.5π.
3. Determine and plot the frequency response function H(ejω), and compare it with the

ideal highpass filter response Hd(ejω). Comment on your observations.
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P3.16 For a linear, shift-invariant system described by the difference equation

y(n) =
M∑

m=0

bmx (n − m) −
N∑

�=1

a�y (n − �)

the frequency-response function is given by

H(ejω) =

∑M

m=0 bme−jωm

1 +
∑N

�=1 a�e−jω�

Write a MATLAB function freqresp to implement this relation. The format of this
function should be

function [H] = freqresp(b,a,w)
% Frequency response function from difference equation
% [H] = freqresp(b,a,w)
% H = frequency response array evaluated at w frequencies
% b = numerator coefficient array
% a = denominator coefficient array (a(1)=1)
% w = frequency location array

P3.17 Determine H(ejω), and plot its magnitude and phase for each of the following systems.

1. y(n) = 1
5

∑4
m=0 x(n − m)

2. y(n) = x(n) − x(n − 2) + 0.95y(n − 1) − 0.9025y(n − 2)
3. y(n) = x(n) − x(n − 1) + x(n − 2) + 0.95y(n − 1) − 0.9025y(n − 2)
4. y(n) = x(n) − 1.7678x(n − 1) + 1.5625x(n − 2) + 1.1314y(n − 1) − 0.64y(n − 2)
5. y(n) = x(n) −

∑5
�=1 (0.5)� y (n − �)

P3.18 A linear, shift-invariant system is described by the difference equation

y(n) =
3∑

m=0

x (n − 2m) −
3∑

�=1

(0.81)� y (n − 2�)

Determine the steady-state response of the system to the following inputs.

1. x(n) = 5 + 10 (−1)n

2. x(n) = 1 + cos (0.5πn + π/2)
3. x(n) = 2 sin (πn/4) + 3 cos (3πn/4)
4. x(n) =

∑5
k=0 (k + 1) cos (πkn/4)

5. x(n) = cos (πn)

In each case, generate x(n), 0 ≤ n ≤ 200, and process it through the filter function to
obtain y(n). Compare your y(n) with the steady-state responses in each case.

P3.19 An analog signal xa (t) = sin (1000πt) is sampled using the following sampling intervals.
In each case, plot the spectrum of the resulting discrete-time signal.
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1. Ts = 0.1 msec
2. Ts = 1 msec
3. Ts = 0.01 sec

P3.20 We implement the following analog filter using a discrete filter:

xa (t) −→ A/D
x(n)−→ h(n)

y(n)−→ D/A −→ ya (t)

The sampling rate in the A/D and D/A is 8000 sam/sec, and the impulse response is
h(n) = (−0.9)n u(n).

1. What is the digital frequency in x(n) if xa (t) = 10 cos (10,000πt)?
2. Determine the steady-state output ya (t) if xa (t) = 10 cos (10,000πt).
3. Determine the steady-state output ya (t) if xa (t) = 5 sin(8,000πt).
4. Find two other analog signals xa (t), with different analog frequencies, that will give

the same steady-state output ya(t) when xa(t) = 10 cos(10,000πt) is applied.
5. To prevent aliasing, a prefilter would be required to process xa (t) before it passes to

the A/D converter. What type of filter should be used, and what should be the largest
cutoff frequency that would work for the given configuration?

P3.21 Consider an analog signal xa (t) = cos(20πt), 0 ≤ t ≤ 1. It is sampled at Ts = 0.01, 0.05,
and 0.1 sec intervals to obtain x(n).

1. For each Ts, plot x(n).
2. Reconstruct the analog signal ya (t) from the samples x(n) using the sinc interpolation

(use ∆t = 0.001) and determine the frequency in ya (t) from your plot. (Ignore the end
effects.)

3. Reconstruct the analog signal ya (t) from the samples x(n) using the cubic spline
interpolation, and determine the frequency in ya (t) from your plot. (Again, ignore the
end effects.)

4. Comment on your results.

P3.22 Consider the analog signal xa (t) = cos (20πt + θ) , 0 ≤ t ≤ 1. It is sampled at Ts = 0.05
sec intervals to obtain x(n). Let θ = 0, π/6, π/4, π/3, π/2. For each of these θ values,
perform the following.

1. Plot xa (t) and superimpose x(n) on it using the plot(n,x,’o’) function.
2. Reconstruct the analog signal ya (t) from the samples x(n) using the sinc interpolation

(Use ∆t = 0.001) and superimpose x(n) on it.
3. Reconstruct the analog signal ya (t) from the samples x(n) using the cubic spline

interpolation and superimpose x(n) on it.
4. You should observe that the resultant reconstruction in each case has the correct

frequency but a different amplitude. Explain this observation. Comment on the role of
phase of xa (t) on the sampling and reconstruction of signals.
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C H A P T E R 4
The z-Transform

In Chapter 3, we studied the discrete-time Fourier transform approach for
representing discrete signals using complex exponential sequences. This
representation clearly has advantages for LTI systems because it describes
systems in the frequency domain using the frequency response function
H(ejω). The computation of the sinusoidal steady-state response is greatly
facilitated by the use of H(ejω). Furthermore, response to any arbitrary
absolutely summable sequence x(n) can easily be computed in the fre-
quency domain by multiplying the transform X(ejω) and the frequency
response H(ejω). However, there are two shortcomings to the Fourier
transform approach. First, there are many useful signals in practice—
such as u(n) and nu(n)—for which the discrete-time Fourier transform
does not exist. Second, the transient response of a system due to ini-
tial conditions or due to changing inputs cannot be computed using the
discrete-time Fourier transform approach.

Therefore, we now consider an extension of the discrete-time Fourier
transform to address these two problems. This extension is called the
z-transform. Its bilateral (or two-sided) version provides another domain
in which a larger class of sequences and systems can be analyzed, and its
unilateral (or one-sided) version can be used to obtain system responses
with initial conditions or changing inputs.

4.1 THE BILATERAL z-TRANSFORM

The z-transform of a sequence x(n) is given by

X(z)
�
= Z[x(n)] =

∞∑
n=−∞

x(n)z−n (4.1)
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where z is a complex variable. The set of z values for which X(z) exists
is called the region of convergence (ROC) and is given by

Rx− < |z| < Rx+ (4.2)

for some nonnegative numbers Rx− and Rx+.
The inverse z-transform of a complex function X(z) is given by

x(n)
�
= Z−1[X(z)] =

1
2πj

∮

C

X(z)zn−1dz (4.3)

where C is a counterclockwise contour encircling the origin and lying
in the ROC.

Comments:

1. The complex variable z is called the complex frequency given by z =
|z|ejω, where |z| is the magnitude and ω is the real frequency.

2. Since the ROC (4.2) is defined in terms of the magnitude |z|, the shape
of the ROC is an open ring, as shown in Figure 4.1. Note that Rx−
may be equal to zero and/or Rx+ could possibly be ∞.

3. If Rx+ < Rx−, then the ROC is a null space and the z-transform does
not exist.

4. The function |z| = 1 (or z = ejω) is a circle of unit radius in the z-plane
and is called the unit circle. If the ROC contains the unit circle, then
we can evaluate X(z) on the unit circle:

X(z)|z=ejω = X(ejω) =
∞∑

n=−∞
x(n)e−jωn = F [x(n)]

Therefore, the discrete-time Fourier transform X(ejω) may be viewed
as a special case of the z-transform X(z).

Re{z}

Rx+

Rx –

Im{z}

FIGURE 4.1 A general region of convergence
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Im{z}

Re{z}
0

a

FIGURE 4.2 The ROC in Example 4.1

� EXAMPLE 4.1 Let x1(n) = anu(n), 0 < |a| < ∞. (This sequence is called a positive-time
sequence.) Then

X1(z) =
∞∑
0

anz−n =
∞∑
0

(
a

z

)n

=
1

1 − az−1 ; if
∣∣∣a
z

∣∣∣ < 1

=
z

z − a
, |z| > |a| ⇒ ROC1: |a|︸︷︷︸

Rx−

< |z| < ∞︸︷︷︸
Rx+

Note: X1(z) in this example is a rational function; that is,

X1(z)
�
=

B(z)
A(z)

=
z

z − a

where B(z) = z is the numerator polynomial and A(z) = z−a is the denominator
polynomial. The roots of B(z) are called the zeros of X(z), whereas the roots
of A(z) are called the poles of X(z). In this example, X1(z) has a zero at the
origin z = 0 and a pole at z = a. Hence x1(n) can also be represented by a
pole-zero diagram in the z-plane in which zeros are denoted by ◦ and poles by
×, as shown in Figure 4.2. �

� EXAMPLE 4.2 Let x2(n) = −bnu(−n−1), 0 < |b| < ∞. (This sequence is called a negative-time
sequence.) Then

X2(z) = −
−1∑
−∞

bnz−n = −
−1∑
−∞

(
b

z

)n

= −
∞∑
1

(
z

b

)n

= 1 −
∞∑
0

(
z

b

)n

= 1 − 1
1 − z/b

=
z

z − b
, ROC2: 0︸︷︷︸

Rx−

< |z| < |b|︸︷︷︸
Rx+

The ROC2 and the pole-zero plot for this x2(n) are shown in Figure 4.3.

Im{z}

Re{z}
0

b

FIGURE 4.3 The ROC in Example 4.2
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Note: If b = a in this example, then X2(z) = X1(z) except for their respective
ROCs; that is, ROC1 �= ROC2. This implies that the ROC is a distinguishing
feature that guarantees the uniqueness of the z-transform. Hence it plays a very
important role in system analysis. �

� EXAMPLE 4.3 Let x3(n) = x1(n) + x2(n) = anu(n) − bnu(−n − 1) (This sequence is called a
two-sided sequence.) Then, using the preceding two examples,

X3(z) =
∞∑

n=0

anz−n −
−1∑
−∞

bnz−n

=
{

z

z − a
, ROC1: |z| > |a|

}
+
{

z

z − b
, ROC2: |z| < |b|

}

=
z

z − a
+

z

z − b
; ROC3: ROC1 ∩ ROC2

If |b| < |a|, then ROC3 is a null space, and X3(z) does not exist. If |a| < |b|,
then the ROC3 is |a| < |z| < |b|, and X3(z) exists in this region as shown in
Figure 4.4. �

4.1.1 PROPERTIES OF THE ROC
From the observation of the ROCs in the preceding three examples, we
state the following properties.

1. The ROC is always bounded by a circle since the convergence
condition is on the magnitude |z|.

2. The sequence x1(n) = anu(n) in Example 4.1 is a special case of a right-
sided sequence, defined as a sequence x(n) that is zero for some n <
n0. From Example 4.1, the ROC for right-sided sequences is always
outside of a circle of radius Rx−. If n0 ≥ 0, then the right-sided
sequence is also called a causal sequence.

3. The sequence x2(n) = −bnu(−n−1) in Example 4.2 is a special case of a
left-sided sequence, defined as a sequence x(n) that is zero for some n >
n0. If n0 ≤ 0, the resulting sequence is called an anticausal sequence.
From Example 4.2, the ROC for left-sided sequences is always inside
of a circle of radius Rx+.

Im{z}

Re{z}
0

a

b

a > b

Im{z}

Re{z}
0

a

b

a < b

FIGURE 4.4 The ROC in Example 4.3
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4. The sequence x3(n) in Example 4.3 is a two-sided sequence. The ROC
for two-sided sequences is always an open ring Rx− < |z| < Rx+,
if it exists.

5. The sequences that are zero for n < n1 and n > n2 are called
finite-duration sequences. The ROC for such sequences is the entire
z-plane. If n1 < 0, then z = ∞ is not in the ROC. If n2 > 0, then
z = 0 is not in the ROC.

6. The ROC cannot include a pole, since X(z) converges uniformly in
there.

7. There is at least one pole on the boundary of a ROC of a rational X(z).
8. The ROC is one contiguous region; that is, the ROC does not come in

pieces.

In digital signal processing, signals are assumed to be causal since
almost every digital data is acquired in real time. Therefore, the only
ROC of interest to us is the one given in statement 2.

4.2 IMPORTANT PROPERTIES OF THE z-TRANSFORM

The properties of the z-transform are generalizations of the properties
of the discrete-time Fourier transform that we studied in Chapter 3. We
state the following important properties of the z-transform without proof.

1. Linearity:

Z [a1x1(n) + a2x2(n)] = a1X1(z) + a2X2(z); ROC: ROCx1 ∩ ROCx2

(4.4)

2. Sample shifting:

Z [x (n − n0)] = z−n0X(z); ROC: ROCx (4.5)

3. Frequency shifting:

Z [anx(n)] = X
(z

a

)
; ROC: ROCx scaled by |a| (4.6)

4. Folding:

Z [x (−n)] = X (1/z) ; ROC: Inverted ROCx (4.7)

5. Complex conjugation:

Z [x∗(n)] = X∗(z∗); ROC: ROCx (4.8)
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108 Chapter 4 THE z-TRANSFORM

6. Differentiation in the z-domain:

Z [nx(n)] = −z
dX(z)

dz
; ROC: ROCx (4.9)

This property is also called the multiplication-by-a-ramp property.
7. Multiplication:

Z [x1(n)x2 (n)] =
1

2πj

∮

C

X1(ν)X2 (z/ν) ν−1dν; (4.10)

ROC: ROCx1 ∩ Inverted ROCx2

where C is a closed contour that encloses the origin and lies in the
common ROC.

8. Convolution:

Z [x1(n) ∗ x2(n)] = X1(z)X2(z); ROC: ROCx1 ∩ ROCx2 (4.11)

This last property transforms the time-domain convolution operation
into a multiplication between two functions. It is a significant property
in many ways. First, if X1(z) and X2(z) are two polynomials, then their
product can be implemented using the conv function in MATLAB.

� EXAMPLE 4.4 Let X1(z) = 2+3z−1+4z−2, and let X2(z) = 3+4z−1+5z−2+6z−3. Determine
X3(z) = X1(z)X2(z).

Solution From the definition of the z-transform, we observe that

x1(n) = {2
↑
, 3, 4} and x2(n) = {3

↑
, 4, 5, 6}

Then the convolution of these two sequences will give the coefficients of the
required polynomial product.

MATLAB script:

>> x1 = [2,3,4]; x2 = [3,4,5,6]; x3 = conv(x1,x2)
x3 = 6 17 34 43 38 24

Hence

X3(z) = 6 + 17z−1 + 34z−2 + 43z−3 + 38z−4 + 24z−5

Using the conv m function developed in Chapter 2, we can also multiply
two z-domain polynomials corresponding to noncausal sequences. �

� EXAMPLE 4.5 Let X1(z) = z + 2 + 3z−1, and let X2(z) = 2z2 + 4z + 3 + 5z−1. Determine
X3(z) = X1(z)X2(z).
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Solution Note that

x1(n) = {1, 2
↑
, 3} and x2(n) = {2, 4, 3

↑
, 5}

Using the MATLAB script

>> x1 = [1,2,3]; n1 = [-1:1]; x2 = [2,4,3,5]; n2 = [-2:1];
>> [x3,n3] = conv_m(x1,n1,x2,n2)
x3 =

2 8 17 23 19 15
n3 =

-3 -2 -1 0 1 2

we have

X3(z) = 2z3 + 8z2 + 17z + 23 + 19z−1 + 15z−2 �

In passing, we note that to divide one polynomial by another one, we
would require an inverse operation called deconvolution [79, Chapter 6].
In MATLAB, [p,r] = deconv(b,a) computes the result of dividing b
by a in a polynomial part p and a remainder r. For example, if we divide
the polynomial X3(z) in Example 4.4 by X1(z), as follows,

>> x3 = [6,17,34,43,38,24]; x1 = [2,3,4]; [x2,r] = deconv(x3,x1)
x2 =

3 4 5 6
r =

0 0 0 0 0 0

then we obtain the coefficients of the polynomial X2(z) as expected. To
obtain the sample index, we will have to modify the deconv function as
we did in the conv m function. This is explored in Problem P4.10. This
operation is useful in obtaining a proper rational part from an improper
rational function.

The second important use of the convolution property is in system
output computations, as we shall see in a later section. This interpretation
is particularly useful for verifying the z-transform expression X(z) of a
causal sequence using MATLAB. Note that since MATLAB is a numerical
processor (unless the Symbolic toolbox is used), it cannot be used for
symbolic z-transform calculations. We will now elaborate on this. Let
x(n) be a sequence with a rational transform

X(z) =
B(z)
A(z)

where B(z) and A(z) are polynomials in z−1. If we use the coefficients of
B(z) and A(z) as the b and a arrays in the filter routine and excite this
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filter by the impulse sequence δ(n), then from (4.11) and using Z[δ(n)] =
1, the output of the filter will be x(n). (This is a numerical approach
of computing the inverse z-transform; we will discuss the analytical ap-
proach in the next section.) We can compare this output with the given
x(n) to verify that X(z) is indeed the transform of x(n). This is illus-
trated in Example 4.6. An equivalent approach is to use the impz function
discussed in Chapter 2.

4.2.1 SOME COMMON z-TRANSFORM PAIRS
Using the definition of z-transform and its properties, one can determine
z-transforms of common sequences. A list of some of these sequences is
given in Table 4.1.

TABLE 4.1 Some common z-transform pairs

Sequence Transform ROC

δ(n) 1 ∀ z

u(n)
1

1 − z−1 |z| > 1

−u(−n − 1)
1

1 − z−1 |z| < 1

anu(n)
1

1 − az−1 |z| > |a|

−bnu(−n − 1)
1

1 − bz−1 |z| < |b|

[an sin ω0n] u(n)
(a sin ω0)z−1

1 − (2a cos ω0)z−1 + a2z−2 |z| > |a|

[an cos ω0n] u(n)
1 − (a cos ω0)z−1

1 − (2a cos ω0)z−1 + a2z−2 |z| > |a|

nanu(n)
az−1

(1 − az−1)2
|z| > |a|

−nbnu(−n − 1)
bz−1

(1 − bz−1)2
|z| < |b|

� EXAMPLE 4.6 Using z-transform properties and the z-transform table, determine the z-
transform of

x(n) = (n − 2)(0.5)(n−2) cos
[
π

3
(n − 2)

]
u(n − 2)

Solution Applying the sample-shift property,

X(z) = Z[x(n)] = z−2Z
[
n(0.5)n cos

(
πn

3

)
u(n)

]
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with no change in the ROC. Applying the multiplication by a ramp property,

X(z) = z−2

{
−z

dZ[(0.5)n cos(π
3 n)u(n)]

dz

}

with no change in the ROC. Now the z-transform of (0.5)n cos(π
3 n)u(n) from

Table 4.1 is

Z
[
(0.5)n cos

(
πn

3

)
u(n)

]
=

1 − (0.5 cos π
3 )z−1

1 − 2(0.5 cos π
3 )z−1 + 0.25z−2 ; |z| > 0.5

=
1 − 0.25z−1

1 − 0.5z−1 + 0.25z−2 ; |z| > 0.5

Hence

X(z) = −z−1 d

dz

{
1 − 0.25z−1

1 − 0.5z−1 + 0.25z−2

}
, |z| > 0.5

= −z−1

{
−0.25z−2 + 0.5z−3 − 0.0625z−4

1 − z−1 + 0.75z−2 − 0.25z−3 + 0.0625z−4

}
, |z| > 0.5

=
0.25z−3 − 0.5z−4 + 0.0625z−5

1 − z−1 + 0.75z−2 − 0.25z−3 + 0.0625z−4 , |z| > 0.5

MATLAB verification: To check that this X(z) is indeed the correct expression,
let us compute the first eight samples of the sequence x(n) corresponding to
X(z), as discussed before.

>> b = [0,0,0,0.25,-0.5,0.0625]; a = [1,-1,0.75,-0.25,0.0625];
>> [delta,n]=impseq(0,0,7)
delta =

1 0 0 0 0 0 0 0
n =

0 1 2 3 4 5 6 7
>> x = filter(b,a,delta) % check sequence
x =
Columns 1 through 4

0 0 0 0.25000000000000
Columns 5 through 8
-0.25000000000000 -0.37500000000000 -0.12500000000000 0.07812500000000
>> x = [(n-2).*(1/2).ˆ(n-2).*cos(pi*(n-2)/3)].*stepseq(2,0,7) % original sequence
x =
Columns 1 through 4

0 0 0 0.25000000000000
Columns 5 through 8
-0.25000000000000 -0.37500000000000 -0.12500000000000 0.07812500000000

This approach can be used to verify the z-transform computations. �
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4.3 INVERSION OF THE z-TRANSFORM

From equation (4.3), the inverse z-transform computation requires an
evaluation of a complex contour integral that, in general, is a complicated
procedure. The most practical approach is to use the partial fraction ex-
pansion method. It makes use of the z-transform Table 4.1 (or similar
tables available in many textbooks). The z-transform, however, must be
a rational function. This requirement is generally satisfied in digital signal
processing.

Central Idea When X(z) is a rational function of z−1, it can be ex-
pressed as a sum of simple factors using the partial fraction expansion.
The individual sequences corresponding to these factors can then be writ-
ten down using the z-transform table.

The inverse z-transform procedure can be summarized using the fol-
lowing steps:

1. Consider the rational function

X(z) =
b0 + b1z

−1 + · · · + bMz−M

1 + a1z−1 + · · · + aNz−N
, Rx− < |z| < Rx+ (4.12)

2. Express (4.12) as

X(z) =
b̃0 + b̃1z

−1 + · · · + b̃N−1z
−(N−1)

1 + a1z−1 + · · · + aNz−N︸ ︷︷ ︸
Proper rational part

+
M−N∑
k=0

Ckz−k

︸ ︷︷ ︸
Polynomial part if M≥N

where the first term on the right-hand side is the proper rational part
and the second term is the polynomial (finite-length) part. This can
be obtained by performing polynomial division if M ≥ N using the
deconv function.

3. Perform a partial fraction expansion on the proper rational part of
X(z) to obtain

X(z) =
N∑

k=1

Rk

1 − pkz−1 +
M−N∑
k=0

Ckz−k

︸ ︷︷ ︸
M≥N

(4.13)

where pk is the kth pole of X(z) and Rk is the residue at pk. It is
assumed that the poles are distinct, for which the residues are given by

Rk =
b̃0 + b̃1z

−1 + · · · + b̃N−1z
−(N−1)

1 + a1z−1 + · · · + aNz−N
(1 − pkz−1)

∣∣∣∣∣
z=pk
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For repeated poles, the expansion (4.13) has a more general form. If a
pole pk has multiplicity r, then its expansion is given by

r∑
�=1

Rk,�z
−(�−1)

(1 − pkz−1)�
=

Rk,1

1 − pkz−1 +
Rk,2z

−1

(1 − pkz−1)2
+ · · · +

Rk,rz
−(r−1)

(1 − pkz−1)r

(4.14)

where the residues Rk,� are computed using a more general formula,
which is available in reference [79].

4. Assuming distinct poles as in (4.13), write x(n) as

x(n) =
N∑

k=1

RkZ−1
[

1
1 − pkz−1

]
+

M−N∑
k=0

Ckδ(n − k)

︸ ︷︷ ︸
M≥N

5. Finally, use the relation from Table 4.1

Z−1
[

1
1 − pkz−1

]
=

{
pn

ku(n) |zk| ≤ Rx−

−pn
ku(−n − 1) |zk| ≥ Rx+

(4.15)

to complete x(n).

A similar procedure is used for repeated poles.

� EXAMPLE 4.7 Find the inverse z-transform of x(z) =
z

3z2 − 4z + 1
.

Solution Write

X(z) =
z

3(z2 − 4
3z + 1

3 )
=

1
3z−1

1 − 4
3z−1 + 1

3z−2

=
1
3z−1

(1 − z−1)(1 − 1
3z−1)

=
1
2

1 − z−1 −
1
2

1 − 1
3z−1

or

X(z) =
1
2

( 1
1 − z−1

)
− 1

2

(
1

1 − 1
3z−1

)

Now, X(z) has two poles: z1 = 1 and z2 = 1
3 , and since the ROC is not specified,

there are three possible ROCs, as shown in Figure 4.5.

a. ROC1: 1 < |z| < ∞. Here both poles are on the interior side of the ROC1;
that is, |z1| ≤ Rx− = 1 and |z2| ≤ 1. Hence from (4.15),

x1(n) =
1
2
u(n) − 1

2

(1
3

)n

u(n)

which is a right-sided sequence.
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Im{z}

Re{z}
0 1/3 1

ROC1

Im{z}

Re{z}
1/3 1

ROC2

Im{z}

Re{z}
1/3 1

ROC3

FIGURE 4.5 The ROCs in Example 4.7

b. ROC2: 0 < |z| < 1
3 . Here both poles are on the exterior side of the ROC2;

that is, |z1| ≥ Rx+ = 1
3 and |z2| ≥ 1

3 . Hence from (4.15),

x2(n) =
1
2

{−u(−n − 1)} − 1
2

{
−
(

1
3

)n
u(−n − 1)

}

=
1
2

(1
3

)n

u(−n − 1) − 1
2
u(−n − 1)

which is a left-sided sequence.
c. ROC3: 1

3 < |z| < 1. Here pole z1 is on the exterior side of the ROC3, that is,
|z1| ≥ Rx+ = 1 and pole z2 is on the interior side, that is, |z2| ≤ 1

3 . Hence
from (4.15),

x3(n) = −1
2
u(−n − 1) − 1

2

(1
3

)n

u(n)

which is a two-sided sequence. �

4.3.1 MATLAB IMPLEMENTATION
A MATLAB function residuez is available to compute the residue part
and the direct (or polynomial) terms of a rational function in z−1. Let

X(z) =
b0 + b1z

−1 + · · · + bMz−M

a0 + a1z−1 + · · · + aNz−N
=

B(z)
A(z)

=
N∑

k=1

Rk

1 − pkz−1 +
M−N∑
k=0

Ckz−k

︸ ︷︷ ︸
M≥N

be a rational function in which the numerator and the denominator poly-
nomials are in ascending powers of z−1. Then [R,p,C]=residuez(b,a)
computes the residues, poles, and direct terms of X(z) in which two poly-
nomials B(z) and A(z) are given in two vectors b and a, respectively.
The returned column vector R contains the residues, column vector p
contains the pole locations, and row vector C contains the direct terms.
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If p(k)=...=p(k+r-1) is a pole of multiplicity r, then the expansion in-
cludes the term of the form

Rk

1 − pkz−1 +
Rk+1

(1 − pkz−1)2
+ · · · +

Rk+r−1

(1 − pkz−1)r (4.16)

which is different from (4.14).
Similarly, [b,a]=residuez(R,p,C), with three input arguments and

two output arguments, converts the partial fraction expansion back to
polynomials with coefficients in row vectors b and a.

� EXAMPLE 4.8 To verify our residue calculations, let us consider the rational function

X(z) =
z

3z2 − 4z + 1

given in Example 4.7.

Solution First, rearrange X(z) so that it is a function in ascending powers of z−1:

X(z) =
z−1

3 − 4z−1 + z−2 =
0 + z−1

3 − 4z−1 + z−2

Now, using the MATLAB script

>> b = [0,1]; a = [3,-4,1]; [R,p,C] = residuez(b,a)
R =

0.5000
-0.5000

p =
1.0000
0.3333

c =
[]

we obtain

X(z) =
1
2

1 − z−1 −
1
2

1 − 1
3z−1

as before. Similarly, to convert back to the rational function form,

>> [b,a] = residuez(R,p,C)
b =

0.0000
0.3333
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a =
1.0000

-1.3333
0.3333

so that

X(z) =
0 + 1

3z−1

1 − 4
3z−1 + 1

3z−2
=

z−1

3 − 4z−1 + z−2 =
z

3z2 − 4z + 1

as before. �

� EXAMPLE 4.9 Compute the inverse z-transform of

X(z) =
1

(1 − 0.9z−1)2 (1 + 0.9z−1)
, |z| > 0.9

Solution We will evaluate the denominator polynomial as well as the residues using the
following MATLAB script:

>> b = 1; a = poly([0.9,0.9,-0.9])
a =

1.0000 -0.9000 -0.8100 0.7290
>> [R,p,C]=residuez(b,a)
R =

0.2500
0.5000
0.2500

p =
0.9000
0.9000

-0.9000
c =

[]

Note that the denominator polynomial is computed using MATLAB’s polyno-
mial function poly, which computes the polynomial coefficients, given its roots.
We could have used the conv function, but the use of the poly function is more
convenient for this purpose. From the residue calculations and using the order
of residues given in (4.16), we have

X(z) =
0.25

1 − 0.9z−1 +
0.5

(1 − 0.9z−1)2
+

0.25
1 + 0.9z−1 , |z| > 0.9

=
0.25

1 − 0.9z−1 +
0.5
0.9

z

(
0.9z−1

)

(1 − 0.9z−1)2
+

0.25
1 + 0.9z−1 , |z| > 0.9
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Hence from Table 4.1 and using the z-transform property of time-shift,

x(n) = 0.25(0.9)nu(n) +
5
9
(n + 1)(0.9)n+1u(n + 1) + 0.25 (−0.9)n u(n)

which, upon simplification, becomes

x(n) = 0.75(0.9)nu(n) + 0.5n(0.9)nu(n) + 0.25 (−0.9)n u(n)

MATLAB verification:

>> [delta,n] = impseq(0,0,7); x = filter(b,a,delta) % Check sequence
x =
Columns 1 through 4
1.00000000000000 0.90000000000000 1.62000000000000 1.45800000000000

Columns 5 through 8
1.96830000000000 1.77147000000000 2.12576400000000 1.91318760000000

>> x = (0.75)*(0.9).ˆn + (0.5)*n.*(0.9).ˆn + (0.25)*(-0.9).ˆn % answer sequence
x =
Columns 1 through 4
1.00000000000000 0.90000000000000 1.62000000000000 1.45800000000000

Columns 5 through 8
1.96830000000000 1.77147000000000 2.12576400000000 1.91318760000000 �

� EXAMPLE 4.10 Determine the inverse z-transform of

X(z) =
1 + 0.4

√
2z−1

1 − 0.8
√

2z−1 + 0.64z−2

so that the resulting sequence is causal and contains no complex numbers.

Solution We will have to find the poles of X(z) in the polar form to determine the ROC
of the causal sequence.

MATLAB script:

>> b = [1,0.4*sqrt(2)]; a=[1,-0.8*sqrt(2),0.64];
>> [R,p,C] = residuez(b,a)
R =

0.5000 - 1.0000i
0.5000 + 1.0000i

p =
0.5657 + 0.5657i
0.5657 - 0.5657i

C =
[]

>> Mp=(abs(p))’ % Pole magnitudes
Mp =

0.8000 0.8000
>> Ap=(angle(p))’/pi % Pole angles in pi units
Ap =

0.2500 -0.2500
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From these calculations,

X(z) =
0.5 − j

1 − 0.8e+j π
4 z−1

+
0.5 + j

1 − 0.8e−j π
4 z−1

, |z| > 0.8

and from Table 4.1, we have
x(n) = (0.5 − j) 0.8ne+j π

4 nu(n) + (0.5 + j) 0.8ne−j π
4 nu(n)

= 0.8n[0.5{e+j π
4 n + e−j π

4 n} − j{e+j π
4 n − e−j π

4 n}]u(n)

= 0.8n
[
cos
(

πn

4

)
+ 2 sin

(
πn

4

)]
u(n)

MATLAB verification:

>> [delta, n] = impseq(0,0,6);
x = filter(b,a,delta) % Check sequence
x =
Columns 1 through 4
1.00000000000000 1.69705627484771 1.28000000000000 0.36203867196751

Columns 5 through 8
-0.40960000000000 -0.69511425017762 -0.52428800000000 -0.14829104003789

>> x = ((0.8).ˆn).*(cos(pi*n/4)+2*sin(pi*n/4))
x =
Columns 1 through 4
1.00000000000000 1.69705627484771 1.28000000000000 0.36203867196751

Columns 5 through 8
-0.40960000000000 -0.69511425017762 -0.52428800000000 -0.14829104003789 �

4.4 SYSTEM REPRESENTATION IN THE z-DOMAIN

Similar to the frequency response function H(ejω), we can define the
z-domain function, H(z), called the system function. However, unlike
H(ejω), H(z) exists for systems that may not be BIBO stable.

DEFINITION 1 The System Function
The system function H(z) is given by

H(z)
�
= Z [h(n)] =

∞∑
−∞

h(n)z−n; Rh− < |z| < Rh+ (4.17)

Using the convolution property (4.11) of the z-transform, the output
transform Y (z) is given by

Y (z) = H(z) X(z) : ROCy = ROCh ∩ ROCx (4.18)
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provided ROCx overlaps with ROCh. Therefore, a linear and time-
invariant system can be represented in the z-domain by

X(z) −→ H(z) −→ Y (z) = H(z) X(z)

4.4.1 SYSTEM FUNCTION FROM THE DIFFERENCE
EQUATION REPRESENTATION

When LTI systems are described by a difference equation

y(n) +
N∑

k=1

aky(n − k) =
M∑

�=0

b�x(n − �) (4.19)

the system function H(z) can easily be computed. Taking the z-transform
of both sides, and using properties of the z-transform,

Y (z) +
N∑

k=1

akz−kY (z) =
M∑

�=0

b�z
−�X(z)

or

H(z)
�
=

Y (z)
X(z)

=
∑M

�=0 b�z
−�

1 +
∑N

k=1 akz−k
=

B(z)
A(z)

=
b0z

−M
(
zM + · · · + bM

b0

)

z−N (zN + · · · + aN )
(4.20)

After factorization, we obtain

H(z) = b0 zN−M

∏N
�=1(z − z�)∏N
k=1(z − pk)

(4.21)

where z�’s are the system zeros and pk’s are the system poles. Thus H(z)
(and hence an LTI system) can also be represented in the z-domain using
a pole-zero plot. This fact is useful in designing simple filters by proper
placement of poles and zeros.

To determine zeros and poles of a rational H(z), we can use the
MATLAB function roots on both the numerator and the denominator
polynomials. (Its inverse function poly determines polynomial coefficients
from its roots, as discussed in the previous section.) It is also possible to
use MATLAB to plot these roots for a visual display of a pole-zero plot.
The function zplane(b,a) plots poles and zeros, given the numerator
row vector b and the denominator row vector a. As before, the symbol o
represents a zero and the symbol x represents a pole. The plot includes
the unit circle for reference. Similarly, zplane(z,p) plots the zeros in
column vector z and the poles in column vector p. Note very carefully the
form of the input arguments for the proper use of this function.
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4.4.2 TRANSFER FUNCTION REPRESENTATION
If the ROC of H(z) includes a unit circle (z = ejω), then we can evaluate
H(z) on the unit circle, resulting in a frequency response function or
transfer function H(ejω). Then from (4.21),

H(ejω) = b0 ej(N−M)ω
∏M

1 (ejω − z�)∏N
1 (ejω − pk)

(4.22)

The factor (ejω −z�) can be interpreted as a vector in the complex z-plane
from a zero z� to the unit circle at z = ejω, while the factor (ejω − pk)
can be interpreted as a vector from a pole pk to the unit circle at z = ejω.
This is shown in Figure 4.6. Hence the magnitude response function

|H(ejω)| = |b0|
|ejω − z1| · · · |ejω − zM |
|ejω − p1| · · · |ejω − pN | (4.23)

can be interpreted as a product of the lengths of vectors from the zeros
to the unit circle divided by the lengths of vectors from the poles to the
unit circle and scaled by |b0|. Similarly, the phase response function

� H(ejω) =[0 or π]︸ ︷︷ ︸
Constant

+ [(N − M)ω]︸ ︷︷ ︸
Linear

+
M∑
1

� (ejω − zk) −
N∑
1

� (ejω − pk)

︸ ︷︷ ︸
Nonlinear

(4.24)

can be interpreted as a sum of a constant factor, a linear-phase factor,
and a nonlinear-phase factor (angles from the “zero vectors” minus the
sum of angles from the “pole vectors”).

4.4.3 MATLAB IMPLEMENTATION
In Chapter 3, we plotted magnitude and phase responses in MATLAB
by directly implementing their functional forms. MATLAB also provides

Im {z}

Unit
circle

Re{z}
0

pk

z

w

l

FIGURE 4.6 Pole and zero vectors
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a function called freqz for this computation, which uses the preceding
interpretation. In its simplest form, this function is invoked by

[H,w] = freqz(b,a,N)

which returns the N-point frequency vector w and the N-point complex
frequency response vector H of the system, given its numerator and de-
nominator coefficients in vectors b and a. The frequency response is eval-
uated at N points equally spaced around the upper half of the unit circle.
Note that the b and a vectors are the same vectors we use in the filter
function or derived from the difference equation representation (4.19).

The second form

[H,w] = freqz(b,a,N,’whole’)

uses N points around the whole unit circle for computation.
In yet another form,

H = freqz(b,a,w)

it returns the frequency response at frequencies designated in vector w,
normally between 0 and π. It should be noted that the freqz function can
also be used for numerical computation of the DTFT of a finite-duration,
causal sequence x(n). In this approach, b = x and a = 1.

� EXAMPLE 4.11 Consider a causal system

y(n) = 0.9y(n − 1) + x(n)

a. Determine H(z) and sketch its pole-zero plot.
b. Plot |H(ejω)| and � H(ejω).
c. Determine the impulse response h(n).

Solution The difference equation can be put in the form

y(n) − 0.9y(n − 1) = x(n)

a. From (4.21),

H(z) =
1

1 − 0.9z−1 ; |z| > 0.9

since the system is causal. There is one pole at 0.9 and one zero at the origin.
We will use MATLAB to illustrate the use of the zplane function.

>> b = [1, 0]; a = [1, -0.9]; zplane(b,a)
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FIGURE 4.7 Pole-zero plot of Example 4.11a

Note that we specified b=[1,0] instead of b=1 because the zplane function
assumes that scalars are zeros or poles. The resulting pole-zero plot is shown
in Figure 4.7.

b. Using (4.23) and (4.24), we can determine the magnitude and phase of
H(ejω). Once again, we will use MATLAB to illustrate the use of the freqz
function. Using its first form, we will take 100 points along the upper half of
the unit circle.

MATLAB script:

>> [H,w] = freqz(b,a,100); magH = abs(H); phaH = angle(H);
>> subplot(2,1,1);plot(w/pi,magH);grid
>> title(’Magnitude Response’); ylabel(’Magnitude’);
>> subplot(2,1,2);plot(w/pi,phaH/pi);grid
>> xlabel(’Frequency in \pi Units’); ylabel(’Phase in \pi Units’);
>> title(’Phase Response’)

The response plots are shown in Figure 4.8. If you study these plots carefully,
you will observe that the plots are computed between 0 ≤ ω ≤ 0.99π and
fall short at ω = π. This is due to the fact that in MATLAB the lower half
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FIGURE 4.8 Frequency response plots in Example 4.11

of the unit circle begins at ω = π. To overcome this problem, we will use the
second form of the freqz function as follows.

>> [H,w] = freqz(b,a,200,’whole’);
>> magH = abs(H(1:101)); phaH = angle(H(1:101));

Now the 101st element of the array H will correspond to ω = π. A similar
result can be obtained using the third form of the freqz function.

>> w = [0:1:100]*pi/100; H = freqz(b,a,w);
>> magH = abs(H); phaH = angle(H);

In the future, we will use any one of these forms, depending on our conve-
nience. Also note that in the plots we divided the w and phaH arrays by pi
so that the plot axes are in the units of π and easier to read. This practice
is strongly recommended.

c. From the z-transform in Table 4.1,

h(n) = Z−1
[ 1
1 − 0.9z−1 , |z| > 0.9

]
= (0.9)nu(n) �
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� EXAMPLE 4.12 Given that

H(z) =
z + 1

z2 − 0.9z + 0.81

is a causal system, find

a. its transfer function representation,
b. its difference equation representation, and
c. its impulse response representation.

Solution The poles of the system function are at z = 0.9 � ± π/3. Hence the ROC of this
causal system is |z| > 0.9. Therefore, the unit circle is in the ROC, and the
discrete-time Fourier transform H(ejω) exists.

a. Substituting z = ejω in H(z),

H(ejω) =
ejω + 1

ej2ω − 0.9ejω + 0.81
=

ejω + 1
(ejω − 0.9ejπ/3)(ejω − 0.9e−jπ/3)

b. Using H(z) = Y (z)/X(z),

Y (z)
X(z)

=
z + 1

z2 − 0.9z + 0.81

(
z−2

z−2

)
=

z−1 + z−2

1 − 0.9z−1 + 0.81z−2

Cross multiplying,

Y (z) − 0.9z−1Y (z) + 0.81z−2Y (z) = z−1X(z) + z−2X(z)

Now taking the inverse z-transform,

y(n) − 0.9y(n − 1) + 0.81y(n − 2) = x(n − 1) + x(n − 2)

or

y(n) = 0.9y(n − 1) − 0.81y(n − 2) + x(n − 1) + x(n − 2)

c. Using the MATLAB script

>> b = [0,1,1]; a = [1,-0.9,0.81]; [R,p,C] = residuez(b,a)
R =
-0.6173 - 0.9979i
-0.6173 + 0.9979i

p =
0.4500 + 0.7794i
0.4500 - 0.7794i

C =
1.2346

>> Mp = (abs(p))’
Mp =

0.9000 0.9000
>> Ap = (angle(p))’/pi
Ap =

0.3333 -0.3333
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we have

H(z) = 1.2346 +
−0.6173 + j0.9979
1 − 0.9e−jπ/3z−1 +

−0.6173 − j0.9979
1 − 0.9ejπ/3z−1 , |z| > 0.9

Hence from Table 4.1,

h(n) = 1.2346δ(n) + [(−0.6173 + j0.9979)0.9ne−jπn/3

+ (−0.6173 − j0.9979)0.9nejπn/3]u(n)

= 1.2346δ(n) + 0.9n[−1.2346 cos(πn/3) + 1.9958 sin(πn/3)]u(n)

= 0.9n[−1.2346 cos(πn/3) + 1.9958 sin(πn/3)]u(n − 1)

The last step results from the fact that h(0) = 0. �

4.4.4 RELATIONSHIPS BETWEEN SYSTEM REPRESENTATIONS
In this and the previous two chapters, we developed several system rep-
resentations. Figure 4.9 depicts the relationships among these representa-
tions in a graphical form.

Diff Equation h (n)

H (z)

H (e jw )

Substitute
z = e jw

Express H(z) in z –1,
cross multiply, and

take inverse

Take inverse
z-transform

Take inverse
DTFT

Take Fourier
transform

Take DTFT,
solve for Y /X

Take
z-transform

Take
z-transform,

solve for Y /X

FIGURE 4.9 System representations in pictorial form

4.4.5 STABILITY AND CAUSALITY
For LTI systems, the BIBO stability is equivalent to

∑∞
−∞ |h(k)| < ∞.

From the existence of the discrete-time Fourier transform, this stability
implies that H(ejω) exists, which further implies that the unit circle |z|= 1
must be in the ROC of H(z). This result is called the z-domain stability
theorem; therefore, the dashed paths in Figure 4.9 exist only if the system
is stable.
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THEOREM 2 z-Domain LTI Stability
An LTI system is stable if and only if the unit circle is in the ROC

of H(z).

For LTI causality, we require that h(n) = 0, for n < 0 (i.e., a right-
sided sequence). This implies that the ROC of H(z) must be outside some
circle of radius Rh−. This is not a sufficient condition, since any right-
sided sequence has a similar ROC. However, when the system is stable,
then its causality is easy to check.

THEOREM 3 z-Domain Causal LTI Stability
A causal LTI system is stable if and only if the system function

H(z) has all its poles inside the unit circle.

� EXAMPLE 4.13 A causal LTI system is described by the following difference equation:

y(n) = 0.81y(n − 2) + x(n) − x(n − 2)

Determine

a. the system function H(z),
b. the unit impulse response h(n),
c. the unit step response v(n), that is, the response to the unit step u(n), and
d. the frequency response function H(ejω), and plot its magnitude and phase

over 0 ≤ ω ≤ π.

Solution Since the system is causal, the ROC will be outside a circle with radius equal
to the largest pole magnitude.

a. Taking the z-transform of both sides of the difference equation and then
solving for Y (z)/X(z) or using (4.20), we obtain

H(z) =
1 − z−2

1 − 0.81z−2 =
1 − z−2

(1 + 0.9z−1) (1 − 0.9z−1)
, |z| > 0.9

b. Using the MATLAB script for the partial fraction expansion,

>> b = [1,0,-1]; a = [1,0,-0.81]; [R,p,C] = residuez(b,a);
R =
-0.1173
-0.1173

p =
-0.9000
0.9000

C =
1.2346
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we have

H(z) = 1.2346 − 0.1173
1

1 + 0.9z−1 − 0.1173
1

1 − 0.9z−1 , |z| > 0.9

or from Table 4.1,

h(n) = 1.2346δ(n) − 0.1173 {1 + (−1)n} (0.9)nu(n)

c. From Table 4.1, Z[u(n)] = U(z) =
1

1 − z−1 , |z| > 1. Hence

V (z) = H(z)U(z)

=

[
(1 + z−1)(1 − z−1)

(1 + 0.9z−1) (1 − 0.9z−1)

] [ 1
1 − z−1

]
, |z| > 0.9 ∩ |z| > 1

=
1 + z−1

(1 + 0.9z−1) (1 − 0.9z−1)
, |z| > 0.9

or

V (z) = 1.0556
1

1 − 0.9z−1 − 0.0556
1

1 + 0.9z−1 , |z| > 0.9

Finally,

v(n) = [1.0556(0.9)n − 0.0556 (−0.9)n] u(n)

Note that in the calculation of V (z) there is a pole-zero cancellation at z = 1.
This has two implications. First, the ROC of V (z) is still {|z| > 0.9} and not
{|z| > 0.9 ∩ |z| > 1 = |z| > 1}. Second, the step response v(n) contains no
steady-state term u(n).

d. Substituting z = ejω in H(z),

H(ejω) =
1 − e−j2ω

1 − 0.81e−j2ω

We will use the MATLAB script to compute and plot responses.

>> w = [0:1:500]*pi/500; H = freqz(b,a,w);
>> magH = abs(H); phaH = angle(H);
>> subplot(2,1,1); plot(w/pi,magH); grid
>> title(’Magnitude Response’); ylabel(’Magnitude’)
>> subplot(2,1,2); plot(w/pi,phaH/pi); grid
>> xlabel(’Frequency in \pi Units’); ylabel(’Phase in \pi Units’)
>> title(’Phase Response’)

The frequency response plots are shown in Figure 4.10. �
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FIGURE 4.10 Frequency response plots for Example 4.13

4.5 SOLUTIONS OF THE DIFFERENCE EQUATIONS

In Chapter 2, we mentioned two forms for the solution of linear constant
coefficient difference equations. One form involved finding the particu-
lar and the homogeneous solutions, while the other form involved find-
ing the zero-input (initial condition) and the zero-state responses. Using
z-transforms, we now provide a method for obtaining these forms. In ad-
dition, we will also discuss the transient and the steady-state responses.
In digital signal processing, difference equations generally evolve in the
positive n direction. Therefore, our time frame for these solutions will be
n ≥ 0. For this purpose, we define a version of the bilateral z-transform
called the one-sided z-transform.

DEFINITION 4 The One-Sided z-Transform
The one-sided z-transform of a sequence x(n) is given by

Z+[x(n)]
�
= Z [x(n)u(n)]

�
= X+(z) =

∞∑
n=0

x(n)z−n (4.25)
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Then the sample shifting property is given by

Z+ [x(n − k)] = Z [x(n − k)u(n)]

=
∞∑

n=0

x(n − k)z−n =
∞∑

m=−k

x(m)z−(m+k)

=
−1∑

m=−k

x(m)z−(m+k) +

[ ∞∑
m=0

x(m)z−m

]
z−k

or

Z+ [x(n − k)] = x(−1)z1−k +x(−2)z2−k + · · ·+x(−k)+z−kX+(z) (4.26)

This result can now be used to solve difference equations with nonzero
initial conditions or with changing inputs. We want to solve the difference
equation

y(n) +
N∑

k=1

aky(n − k) =
M∑

m=0

bmx(n − m), n ≥ 0

subject to these initial conditions:

{y(i), i = −1, . . . ,−N} and {x(i), i = −1, . . . ,−M}

We now demonstrate its solution using an example.

� EXAMPLE 4.14 Solve

y(n) − 3
2
y(n − 1) +

1
2
y(n − 2) = x(n), n ≥ 0

where

x(n) =
(1

4

)n

u(n)

subject to y(−1) = 4 and y(−2) = 10.

Solution Taking the one-sided z-transform of both sides of the difference equation, we
obtain

Y +(z)− 3
2
[y(−1)+ z−1Y +(z)]+

1
2
[y(−2)+ z−1y(−1)+ z−2Y +(z)] =

1
1 − 1

4z−1

Substituting the initial conditions and rearranging,

Y +(z)
[
1 − 3

2
z−1 +

1
2
z−2
]

=
1

1 − 1
4z−1

+ (1 − 2z−1)
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or

Y +(z) =

1
1 − 1

4z−1

1 − 3
2z−1 + 1

2z−2
+

1 − 2z−1

1 − 3
2z−1 + 1

2z−2
(4.27)

Finally,

Y +(z) =
2 − 9

4z−1 + 1
2z−2

(1 − 1
2z−1)(1 − z−1)(1 − 1

4z−1)

Using the partial fraction expansion, we obtain

Y +(z) =
1

1 − 1
2z−1

+
2
3

1 − z−1 +
1
3

1 − 1
4z−1

(4.28)

After inverse transformation, the solution is

y(n) =
[(1

2

)n

+
2
3

+
1
3

(1
4

)n]
u(n) (4.29)

�

Forms of the solutions The preceding solution is the complete re-
sponse of the difference equation. It can be expressed in several forms.

• Homogeneous and particular parts:

y(n) =
[(

1
2

)n

+
2
3

]
u(n)

︸ ︷︷ ︸
Homogeneous part

+
1
3

(
1
4

)n

u(n)
︸ ︷︷ ︸
Particular part

The homogeneous part is due to the system poles, and the particular
part is due to the input poles.

• Transient and steady-state responses:

y(n) =
[
1
3

(
1
4

)n

+
(

1
2

)n]
u(n)

︸ ︷︷ ︸
Transient response

+
2
3
u(n)
︸ ︷︷ ︸

Steady-state response

The transient response is due to poles that are inside the unit circle,
whereas the steady-state response is due to poles that are on the unit
circle. Note that when the poles are outside the unit circle, the response
is termed an unbounded response.

• Zero-input (or initial condition) and zero-state responses:
In equation (4.27), Y +(z) has two parts. The first part can be inter-
preted as

YZS(z) = H(z)X(z)
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while the second part as

YZI(z) = H(z)XIC(z)

where XIC(z) can be thought of as an equivalent initial-condition in-
put that generates the same output YZI(z) as generated by the initial
conditions. In this example, xIC(n) is

xIC(n) = {1
↑
,−2}

Now taking the inverse z-transform of each part of (4.27), we write the
complete response as

y(n) =
[
1
3

(
1
4

)n

− 2
(

1
2

)n

+
8
3

]
u(n)

︸ ︷︷ ︸
Zero-state response

+
[
3
(

1
2

)n

− 2
]

u(n)
︸ ︷︷ ︸

Zero-input response

From this example, it is clear that each part of the complete solution
is, in general, a different function and emphasizes a different aspect of
system analysis.

4.5.1 MATLAB IMPLEMENTATION
In Chapter 2, we used the filter function to solve the difference equation,
given its coefficients and an input. This function can also be used to find
the complete response when initial conditions are given. In this form, the
filter function is invoked by

y = filter(b,a,x,xic)

where xic is an equivalent initial-condition input array. To find the com-
plete response in Example 4.14, we will use the MATLAB script

>> n = [0:7]; x = (1/4).ˆn; xic = [1, -2];
>> format long; y1 = filter(b,a,x,xic)
y1 =
Columns 1 through 4
2.00000000000000 1.25000000000000 0.93750000000000 0.79687500000000

Columns 5 through 8
0.73046875000000 0.69824218750000 0.68237304687500 0.67449951171875

>> y2 = (1/3)*(1/4).ˆn+(1/2).ˆn+(2/3)*ones(1,8) % MATLAB check
y2 =
Columns 1 through 4
2.00000000000000 1.25000000000000 0.93750000000000 0.79687500000000

Columns 5 through 8
0.73046875000000 0.69824218750000 0.68237304687500 0.67449951171875
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which agrees with the response given in (4.29). In Example 4.14, we com-
puted xIC(n) analytically. However, in practice, and especially for large-
order difference equations, it is tedious to determine xIC(n) analytically.
MATLAB provides a function called filtic, which is available only in
the Signal Processing toolbox. It is invoked by

xic = filtic(b,a,Y,X)

in which b and a are the filter coefficient arrays and Y and X are the initial-
condition arrays from the initial conditions on y(n) and x(n), respectively,
in the form

Y = [y(−1), y(−2), . . . , y(−N)]
X = [x(−1), x(−2), . . . , x(−M)]

If x(n) = 0, n ≤ −1, then X need not be specified in the filtic function.
In Example 4.14, we could have used

>> Y = [4, 10]; xic = filtic(b,a,Y)
xic =

1 -2

to determine xIC(n).

� EXAMPLE 4.15 Solve the difference equation

y(n) =
1
3

[x(n) + x(n − 1) + x(n − 2)] + 0.95y(n − 1) − 0.9025y(n − 2), n ≥ 0

where x(n) = cos(πn/3)u(n) and

y(−1) = −2, y(−2) = −3; x(−1) = 1, x(−2) = 1

First determine the solution analytically and then by using MATLAB.

Solution Taking a one-sided z-transform of the difference equation

Y +(z) =
1
3
[X+(z) + x(−1) + z−1X+(z) + x(−2) + z−1x(−1) + z−2X+(z)]

+ 0.95[y(−1) + z−1Y +(z)] − 0.9025[y(−2) + z−1y(−1) + z−2Y +(z)]

and substituting the initial conditions, we obtain

Y +(z) =
1
3 + 1

3z−1 + 1
3z−2

1 − 0.95z−1 + 0.9025z−2 X+(z) +
1.4742 + 2.1383z−1

1 − 0.95z−1 + 0.9025z−2

Clearly, xIC(n) = [1.4742, 2.1383]. Now substituting X+(z) =
1 − 0.5z−1

1 − z−1 + z−2

and simplifying, we will obtain Y +(z) as a rational function. This simplification
and further partial fraction expansion can be done using MATLAB.
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MATLAB script:

>> b = [1,1,1]/3; a = [1,-0.95,0.9025];
>> Y = [-2,-3]; X = [1,1]; xic=filtic(b,a,Y,X)
xic =

1.4742 2.1383
>> bxplus = [1,-0.5]; axplus = [1,-1,1]; % X(z) transform coeff.
>> ayplus = conv(a,axplus) % Denominator of Yplus(z)
ayplus =

1.0000 -1.9500 2.8525 -1.8525 0.9025
>> byplus = conv(b,bxplus)+conv(xic,axplus) % Numerator of Yplus(z)
byplus =

1.8075 0.8308 -0.4975 1.9717
>> [R,p,C] = residuez(byplus,ayplus)
R =

0.0584 + 3.9468i 0.0584 - 3.9468i 0.8453 + 2.0311i 0.8453 - 2.0311i
p =

0.5000 - 0.8660i 0.5000 + 0.8660i 0.4750 + 0.8227i 0.4750 - 0.8227i
C =

[]
>> Mp = abs(p), Ap = angle(p)/pi % Polar form
Mp =

1.0000 1.0000 0.9500 0.9500
Ap =

-0.3333 0.3333 0.3333 -0.3333

Hence

Y +(z) =
1.8075 + 0.8308z−1 − 0.4975z−2 + 1.9717z−3

1 − 1.95z−1 + 2.8525z−2 − 1.8525z−3 + 0.9025z−4

=
0.0584 + j3.9468
1 − e−jπ/3z−1 +

0.0584 − j3.9468
1 − ejπ/3z−1

+
0.8453 + j2.0311
1 − 0.95ejπ/3z−1 +

0.8453 − j2.0311
1 − 0.95e−jπ/3z−1

Now from Table 4.1,

y(n) = (0.0584 + j3.9468) e−jπn/3 + (0.0584 − j3.9468) ejπn/3

+ (0.8453 + j2.031) (0.95)n ejπn/3 + (0.8453 − j2.031) (0.95)n e−jπn/3

= 0.1169 cos(πn/3) + 7.8937 sin(πn/3)

+ (0.95)n [1.6906 cos(πn/3) − 4.0623 sin(πn/3)] , n ≥ 0

The first two terms of y(n) correspond to the steady-state response, as well as
to the particular response, while the last two terms are the transient response
(and homogeneous response) terms.

To solve this example using MATLAB, we will need the filtic function,
which we have already used to determine the xIC(n) sequence. The solution
will be a numerical one. Let us determine the first eight samples of y(n).
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MATLAB script:

>> n = [0:7]; x = cos(pi*n/3); y = filter(b,a,x,xic)
y =
Columns 1 through 4
1.80750000000000 4.35545833333333 2.83975000000000 -1.56637197916667

Columns 5 through 8
-4.71759442187500 -3.40139732291667 1.35963484230469 5.02808085078841

% MATLAB verification
>> A=real(2*R(1)); B=imag(2*R(1)); C=real(2*R(3)); D=imag(2*R(4));
>> y=A*cos(pi*n/3)+B*sin(pi*n/3)+((0.95).ˆn).*(C*cos(pi*n/3)+D*sin(pi*n/3))
y =
Columns 1 through 4
1.80750000000048 4.35545833333359 2.83974999999978 -1.56637197916714

Columns 5 through 8
-4.71759442187528 -3.40139732291648 1.35963484230515 5.02808085078871 �

4.6 PROBLEMS

P4.1 Determine the z-transform of the following sequences using the definition (4.1). Indicate the
region of convergence for each sequence and verify the z-transform expression using
MATLAB.

1. x(n) = {3, 2, 1
↑
, −2, −3}.

2. x(n) = (0.8)nu(n − 2). Verify the z-transform expression using MATLAB.
3. x(n) = [(0.5)n + (−0.8)n]u(n). Verify the z-transform expression using MATLAB.
4. x(n) = 2n cos(0.4πn)u(−n).
5. x(n) = (n + 1)(3)nu(n). Verify the z-transform expression using MATLAB.

P4.2 Consider the sequence x(n) = (0.9)n cos(πn/4)u(n). Let

y(n) =

{
x(n/2), n = 0, ±2, ±4, · · ·
0, otherwise

1. Show that the z-transform Y (z) of y(n) can be expressed in terms of the z-transform
X(z) of x(n) as Y (z) = X(z2).

2. Determine Y (z).
3. Using MATLAB, verify that the sequence y(n) has the z-transform Y (z).

P4.3 Determine the z-transform of the following sequences using the z-transform table and the
z-transform properties. Express X(z) as a rational function in z−1. Verify your results using
MATLAB. Indicate the region of convergence in each case, and provide a pole-zero plot.

1. x(n) = 2δ(n − 2) + 3u(n − 3)

2. x(n) = 3(0.75)n cos(0.3πn)u(n) + 4(0.75)n sin(0.3πn)u(n)

3. x(n) = n sin(πn
3 )u(n) + (0.9)nu(n − 2)
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4. x(n) = n2(2/3)n−2u(n − 1)

5. x(n) = (n − 3)( 1
4 )n−2 cos{π

2 (n − 1)}u(n)

P4.4 Let x(n) be a complex-valued sequence with the real part xR(n) and the imaginary part
xI(n).

1. Prove the following z-transform relations:

XR(z)
�
= Z [xR(n)] =

X(z) + X∗(z∗)
2

and XI(z)
�
= Z [xI(n)] =

X(z) − X∗(z∗)
2

2. Verify these relations for x(n) = exp {(−1 + j0.2π)n} u(n).

P4.5 The z-transform of x(n) is X(z) = 1/(1 + 0.5z−1), |z| > 0.5. Determine the z-transforms of
the following sequences and indicate their region of convergence.

1. x1(n) = x(3 − n) + x(n − 3)
2. x2(n) = (1 + n + n2)x(n)
3. x3(n) = ( 1

2 )nx(n − 2)
4. x4(n) = x(n + 2) ∗ x(n − 2)
5. x5(n) = cos(πn/2)x∗(n)

P4.6 Repeat Problem P4.5 if

X(z) =
1 + z−1

1 + 5
6z−1 + 1

6z−2
; |z| >

1
2

P4.7 The inverse z-transform of X(z) is x(n) = (1/2)nu(n). Using the z-transform properties,
determine the sequences in each of the following cases.

1. X1(z) = z−1
z

X(z)
2. X2(z) = zX(z−1)
3. X3(z) = 2X(3z) + 3X(z/3)
4. X4(z) = X(z)X(z−1)

5. X5(z) = z2 dX(z)
dz

P4.8 If sequences x1(n), x2(n), and x3(n) are related by x3(n) = x1(n) ∗ x2(n), then

∞∑
n=−∞

x3(n) =

(
∞∑

n=−∞

x1(n)

)(
∞∑

n=−∞

x2(n)

)

1. Prove this result by substituting the definition of convolution in the left-hand side.
2. Prove this result using the convolution property.
3. Verify this result using MATLAB and choosing any two random sequences x1(n) and

x2(n).

P4.9 Determine the results of the following polynomial operations using MATLAB.

1. X1(z) = (1 − 2z−1 + 3z−2 − 4z−3)(4 + 3z−1 − 2z−2 + z−3)
2. X2(z) = (z2 − 2z + 3 + 2z−1 + z−2)(z3 − z−3)
3. X3(z) = (1 + z−1 + z−2)3

4. X4(z) = X1(z)X2(z) + X3(z)
5. X5(z) = (z−1 − 3z−3 + 2z−5 + 5z−7 − z−9)(z + 3z2 + 2z3 + 4z4)
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P4.10 The deconv function is useful in dividing two causal sequences. Write a MATLAB function
deconv m to divide two noncausal sequences (similar to the conv function). The format of
this function should be

function [p,np,r,nr] = deconv_m(b,nb,a,na)
% Modified deconvolution routine for noncausal sequences
% function [p,np,r,nr] = deconv_m(b,nb,a,na)
%
% p = polynomial part of support np1 <= n <= np2
% np = [np1, np2]
% r = remainder part of support nr1 <= n <= nr2
% nr = [nr1, nr2]
% b = numerator polynomial of support nb1 <= n <= nb2
% nb = [nb1, nb2]
% a = denominator polynomial of support na1 <= n <= na2
% na = [na1, na2]
%

Check your function on the following operation:

z2 + z + 1 + z−1 + z−2 + z−3

z + 2 + z−1 = (z − 1 + 2z−1 − 2z−2) +
3z−2 + 3z−3

z + 2 + z−1

P4.11 Determine the following inverse z-transforms using the partial fraction expansion method.

1. X1(z) = (1 − z−1 − 4z−2 + 4z−3)/(1 − 11
4 z−1 + 13

8 z−2 − 1
4z−3). The sequence is

right-sided.

2. X2(z) = (1 + z−1 − 4z−2 + 4z−3)/(1 − 11
4 z−1 + 13

8 z−2 − 1
4z−3). The sequence is

absolutely summable.

3. X3(z) = (z3 − 3z2 + 4z + 1)/(z3 − 4z2 + z − 0.16). The sequence is left-sided.

4. X4(z) = z/(z3 + 2z2 + 1.25z + 0.25), |z| > 1.

5. X5(z) = z/(z2 − 0.25)2, |z| < 0.5.

P4.12 Consider the sequence

x(n) = Ac(r)n cos(πv0n)u(n) + As(r)n sin(πv0n)u(n) (4.30)

The z-transform of this sequence is a second-order (proper) rational function that contains
a complex-conjugate pole pair. The objective of this problem is to develop a MATLAB
function that can be used to obtain the inverse z-transform of such a rational function so
that the inverse does not contain any complex numbers.

1. Show that the z-transform of x(n) in (4.30) is given by

X(z) =
b0 + b1z

−1

1 + a1z−1 + a2z−2 ; |z| > |r| (4.31)

where

b0 = Ac; b1 = r[As sin(πv0) − Ac cos(πv0)]; a1 = −2r cos(πv0); a2 = r2 (4.32)
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2. Using (4.32), determine the signal parameters Ac, As, r, and v0 in terms of the rational
function parameters b0, b1, a1, and a2.

3. Using your results in part b above, design a MATLAB function, invCCPP, that computes
signal parameters using the rational function parameters. The format of this function
should be

function [As,Ac,r,v0] = invCCPP(b0,b1,a1,a2)

P4.13 Suppose X(z) is given as follows:

X(z) =
2 + 3z−1

1 − z−1 + 0.81z−2 , |z| > 0.9

1. Using the MATLAB function invCCPP given in Problem P4.12, determine x(n) in a form
that contains no complex numbers.

2. Using MATLAB, compute the first 20 samples of x(n), and compare them with your
answer in the above part.

P4.14 The z-transform of a causal sequence is given as

X(z) =
−2 + 5.65z−1 − 2.88z−2

1 − 0.1z−1 + 0.09z−2 + 0.648z−3 (4.33)

which contains a complex-conjugate pole pair as well as a real-valued pole.

1. Using the residuez function, express (4.33) as

X(z) =
( ) + ( )z−1

1 + ( )z−1 + ( )z−2 +
( )

1 + ( )z−1 (4.34)

Note that you will have to use the residuez function in both directions.
2. Now using your function invCCPP and the inverse of the real-valued pole factor,

determine the causal sequence x(n) from the X(z) in (4.34) so that it contains no
complex numbers.

P4.15 For the linear and time-invariant systems described by the following impulse responses,
determine (i) the system function representation, (ii) the difference equation representation,
(iii) the pole-zero plot, and (iv) the output y(n) if the input is x(n) =

(
1
4

)n
u(n).

1. h(n) = 5(1/4)nu(n)

2. h(n) = n(1/3)nu(n) + (−1/4)nu(n)

3. h(n) = 3(0.9)n cos(πn/4 + π/3)u(n + 1)

4. h(n) =
(0.5)n sin[(n + 1)π/3]

sin(π/3)
u(n)

5. h(n) = [2 − sin(πn)]u(n)

P4.16 Consider the system shown in Figure P4.1.

1. Using the z-transform approach, show that the impulse response, h(n), of the overall
system is given by

h(n) = δ(n) − 1
2
δ(n − 1)
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FIGURE P4.1 System for Problem 4.16

2. Determine the difference equation representation of the overall system that relates the
output y(n) to the input x(n).

3. Is this system causal? BIBO stable? Explain clearly to receive full credit.
4. Determine the frequency response H(ejω) of the overall system.
5. Using MATLAB, provide a plot of this frequency response over 0 ≤ ω ≤ π.

P4.17 For the linear and time-invariant systems described by the following system functions,
determine (i) the impulse response representation, (ii) the difference equation
representation, (iii) the pole-zero plot, and (iv) the output y(n) if the input is
x(n) = 3 cos(πn/3)u(n).

1. H(z) = (z + 1)/(z − 0.5), causal system

2. H(z) = (1 + z−1 + z−2)/(1 + 0.5z−1 − 0.25z−2), stable system

3. H(z) = (z2 − 1)/(z − 3)2, anticausal system

4. H(z) =
z

z − 0.25
+

1 − 0.5z−1

1 + 2z−1 , stable system

5. H(z) = (1 + z−1 + z−2)2

P4.18 For the linear, causal, and time-invariant systems described by the following difference
equations, determine (i) the impulse response representation, (ii) the system function
representation, (iii) the pole-zero plot, and (iv) the output y(n) if the input is
x(n) = 2(0.9)nu(n).

1. y(n) = [x(n) + 2x(n − 1) + x(n − 3)] /4

2. y(n) = x(n) + 0.5x(n − 1) − 0.5y(n − 1) + 0.25y(n − 2)

3. y(n) = 2x(n) + 0.9y(n − 1)

4. y(n) = −0.45x(n) − 0.4x(n − 1) + x(n − 2) + 0.4y(n − 1) + 0.45y(n − 2)

5. y(n) =
∑4

m=0(0.8)mx(n − m) −
∑4

�=1(0.9)�y(n − �)

P4.19 The output sequence y(n) in Problem P4.18 is the total response. For each of the systems
given in Problem P4.18, separate y(n) into (i) the homogeneous part, (ii) the particular
part, (iii) the transient response, and (iv) the steady-state response.

P4.20 A stable system has four zeros and four poles as given below.

zeros: ± 1, ±j1 Poles: ± 0.9, ±j0.9
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It is also known that the frequency response function H(ejω) evaluated at ω = π/4 is equal
to 1, that is,

H(ejπ/4) = 1

1. Determine the system function H(z), and indicate its region of convergence.
2. Determine the difference equation representation.
3. Determine the steady-state response yss(n) if the input is x(n) = cos(πn/4)u(n).
4. Determine the transient response ytr(n) if the input is x(n) = cos(πn/4)u(n).

P4.21 A digital filter is described by the frequency response function

H(ejω) = [1 + 2 cos(ω) + 3 cos(2ω)] cos
(

ω

2

)
e−j5ω/2

1. Determine the difference equation representation.
2. Using the freqz function, plot the magnitude and phase of the frequency response of the

filter. Note the magnitude and phase at ω = π/2 and at ω = π.
3. Generate 200 samples of the signal x(n) = sin(πn/2) + 5 cos(πn), and process through

the filter to obtain y(n). Compare the steady-state portion of y(n) to x(n). How are the
amplitudes and phases of two sinusoids affected by the filter?

P4.22 Repeat Problem 4.21 for the following filter:

H(ejω) =
1 + e−j4ω

1 − 0.8145e−j4ω

P4.23 Solve the following difference equation for y(n) using the one-sided z-transform approach:

y(n) = 0.81y(n − 2) + x(n) − x(n − 1), n ≥ 0; y(−1) = 2, y(−2) = 2
x(n) = (0.7)nu(n + 1)

Generate the first 20 samples of y(n) using MATLAB, and compare them with your answer.

P4.24 Solve the difference equation for y(n), n ≥ 0,

y(n) − 0.4y(n − 1) − 0.45y(n − 2) = 0.45x(n) + 0.4x(n − 1) − x(n − 2)

driven by the input x(n) =
[
2 +
(

1
2

)n]
u(n) and subject to

y(−1) = 0, y(−2) = 3; x(−1) = x(−2) = 2

Decompose the solution y(n) into (i) transient response, (ii) steady-state response,
(iii) zero-input response, and (iv) zero-state response.
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140 Chapter 4 THE z-TRANSFORM

P4.25 A stable, linear, and time-invariant system is given by the system function

H(z) =
4z2 − 2

√
2z + 1

z2 − 2
√

2z + 4

1. Determine the difference equation representation for this system.
2. Plot the poles and zeros of H(z), and indicate the ROC.
3. Determine the unit sample response h(n) of this system.
4. Is this system causal? If the answer is yes, justify it. If the answer is no, find a causal

unit sample response that satisfies the system function.

P4.26 Determine the zero-input, zero-state, and steady-state responses of the system

y(n) = 0.9801y(n − 2) + x(n) + 2x(n − 1) + x(n − 2), n ≥ 0; y(−2) = 1, y(−1) = 0

to the input x(n) = 5(−1)nu(n).
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C H A P T E R 5
The Discrete
Fourier Transform

In Chapters 3 and 4, we studied transform-domain representations of dis-
crete signals. The discrete-time Fourier transform provided the frequency-
domain (ω) representation for absolutely summable sequences. The
z-transform provided a generalized frequency-domain (z) representation
for arbitrary sequences. These transforms have two features in common.
First, the transforms are defined for infinite-length sequences. Second, and
the most important, they are functions of continuous variables (ω or z).
From the numerical computation viewpoint (or from MATLAB’s view-
point), these two features are troublesome because one has to evaluate
infinite sums at uncountably infinite frequencies. To use MATLAB, we
have to truncate sequences and then evaluate the expressions at finitely
many points. This is what we did in many examples in the two previous
chapters. The evaluations were obviously approximations to the exact
calculations. In other words, the discrete-time Fourier transform and the
z-transform are not numerically computable transforms.

Therefore, we turn our attention to a numerically computable trans-
form. It is obtained by sampling the discrete-time Fourier transform in the
frequency domain (or the z-transform on the unit circle). We develop this
transform by first analyzing periodic sequences. From Fourier analysis, we
know that a periodic function (or sequence) can always be represented by
a linear combination of harmonically related complex exponentials (which
is a form of sampling). This gives us the discrete Fourier series (DFS) rep-
resentation. Since the sampling is in the frequency domain, we study the
effects of sampling in the time domain and the issue of reconstruction in
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142 Chapter 5 THE DISCRETE FOURIER TRANSFORM

the z-domain. We then extend the DFS to finite-duration sequences, which
leads to a new transform, called the discrete Fourier transform (DFT).
The DFT avoids the two problems mentioned and is a numerically com-
putable transform that is suitable for computer implementation. We study
its properties and its use in system analysis in detail. The numerical com-
putation of the DFT for long sequences is prohibitively time-consuming.
Therefore, several algorithms have been developed to efficiently compute
the DFT. These are collectively called fast Fourier transform (or FFT)
algorithms. We will study two such algorithms in detail.

5.1 THE DISCRETE FOURIER SERIES

In Chapter 2, we defined the periodic sequence by x̃(n), satisfying the
condition

x̃(n) = x̃(n + kN), ∀n, k (5.1)

where N is the fundamental period of the sequence. From Fourier analysis,
we know that the periodic functions can be synthesized as a linear com-
bination of complex exponentials whose frequencies are multiples (or har-
monics) of the fundamental frequency (which in our case is 2π/N). From
the frequency-domain periodicity of the discrete-time Fourier transform,
we conclude that there are a finite number of harmonics; the frequencies
are { 2π

N k, k = 0, 1, . . . , N − 1}. Therefore, a periodic sequence x̃(n) can
be expressed as

x̃(n) =
1
N

N−1∑
k=0

X̃(k)ej 2π
N kn, n = 0,±1, . . . (5.2)

where {X̃(k), k = 0,±1, . . . , } are called the discrete Fourier series co-
efficients, which are given by

X̃(k) =
N−1∑
n=0

x̃(n)e−j 2π
N nk, k = 0,±1, . . . (5.3)

Note that X̃(k) is itself a (complex-valued) periodic sequence with fun-
damental period equal to N , that is,

X̃(k + N) = X̃(k) (5.4)

The pair of equations (5.3) and (5.2), taken together, is called the discrete
Fourier series representation of periodic sequences. Using WN

�
= e−j 2π

N to
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denote the complex exponential term, we express (5.3) and (5.2) as

X̃(k)
�
= DFS[x̃(n)] =

N−1∑
n=0

x̃(n)Wnk
N Analysis or a

DFS equation

x̃(n)
�
= IDFS[X̃(k)] =

1
N

N−1∑
k=0

X̃(k)W−nk
N Synthesis or an inverse

DFS equation
(5.5)

� EXAMPLE 5.1 Find the DFS representation of the periodic sequence

x̃(n) = {. . . , 0, 1, 2, 3, 0
↑
, 1, 2, 3, 0, 1, 2, 3, . . .}

Solution The fundamental period of this sequence is N = 4. Hence W4 = e−j 2π
4 =

−j. Now

X̃(k) =
3∑

n=0

x̃(n)W nk
4 , k = 0, ±1, ±2, . . .

Hence

X̃(0) =
3∑

0

x̃(n)W 0·n
4 =

3∑

0

x̃(n) = x̃(0) + x̃(1) + x̃(2) + x̃(3) = 6

Similarly,

X̃(1) =
3∑

0

x̃(n)W n
4 =

3∑

0

x̃(n)(−j)n = (−2 + 2j)

X̃(2) =
3∑

0

x̃(n)W 2n
4 =

3∑

0

x̃(n)(−j)2n = −2

X̃(3) =
3∑

0

x̃(n)W 3n
4 =

3∑

0

x̃(n)(−j)3n = (−2 − 2j)

�

5.1.1 MATLAB IMPLEMENTATION
A careful look at (5.5) reveals that the DFS is a numerically computable
representation. It can be implemented in many ways. To compute each
sample X̃(k), we can implement the summation as a for...end loop.
To compute all DFS coefficients would require another for...end loop.
This will result in a two nested for...end loop implementation. This is
clearly inefficient in MATLAB. An efficient implementation in MATLAB
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144 Chapter 5 THE DISCRETE FOURIER TRANSFORM

would be to use a matrix-vector multiplication for each of the relations
in (5.5). We have used this approach earlier in implementing a numerical
approximation to the discrete-time Fourier transform. Let x̃ and X̃ denote
column vectors corresponding to the primary periods of sequences x̃(n)
and X̃(k), respectively. Then (5.5) is given by

X̃ = WN x̃

x̃ =
1
N

W∗
NX̃

(5.6)

where the matrix WN is given by

WN
�
=
[
W kn

N 0≤k,n≤N−1

]
= k

↓

n −→⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1

1 W 1
N · · · W

(N−1)
N

...
...

. . .
...

1 W
(N−1)
N · · · W

(N−1)2

N

⎤
⎥⎥⎥⎥⎥⎦

(5.7)

The matrix WN is a square matrix and is called a DFS matrix. The
following MATLAB function dfs implements this procedure.

function [Xk] = dfs(xn,N)
% Computes discrete Fourier series coefficients
% ---------------------------------------------
% [Xk] = dfs(xn,N)
% Xk = DFS coeff. array over 0 <= k <= N-1
% xn = One period of periodic signal over 0 <= n <= N-1
% N = Fundamental period of xn
%
n = [0:1:N-1]; % Row vector for n
k = [0:1:N-1]; % Row vector for k
WN = exp(-j*2*pi/N); % Wn factor
nk = n’*k; % Creates an N by N matrix of nk values
WNnk = WN .ˆ nk; % DFS matrix
Xk = xn * WNnk; % Row vector for DFS coefficients

The DFS in Example 5.1 can be computed using MATLAB as

>> xn = [0,1,2,3]; N = 4; Xk = dfs(xn,N)
Xk =

6.0000 -2.0000 + 2.0000i -2.0000 - 0.0000i -2.0000 - 2.0000i
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The following idfs function implements the synthesis equation.

function [xn] = idfs(Xk,N)
% Computes inverse discrete Fourier series
% ----------------------------------------
% [xn] = idfs(Xk,N)
% xn = one period of periodic signal over 0 <= n <= N-1
% Xk = DFS coeff. array over 0 <= k <= N-1
% N = fundamental period of Xk
%
n = [0:1:N-1]; % Row vector for n
k = [0:1:N-1]; % Row vector for k
WN = exp(-j*2*pi/N); % Wn factor
nk = n’*k; % Creates an N by N matrix of nk values
WNnk = WN .ˆ (-nk); % IDFS matrix
xn = (Xk * WNnk)/N; % Row vector for IDFS values

Caution: These functions are efficient approaches of implementing (5.5)
in MATLAB. They are not computationally efficient, especially for large
N . We will deal with this problem later in this chapter.

� EXAMPLE 5.2 A periodic “square wave” sequence is given by

x̃(n) =

{
1, mN ≤ n ≤ mN + L − 1

0, mN + L ≤ n ≤ (m + 1) N − 1
; m = 0, ±1, ±2, . . .

where N is the fundamental period and L/N is the duty cycle.

a. Determine an expression for |X̃(k)| in terms of L and N .
b. Plot the magnitude |X̃(k)| for L = 5, N = 20; L = 5, N = 40; L = 5,

N = 60; and L = 7, N = 60.
c. Comment on the results.

Solution A plot of this sequence for L = 5 and N = 20 is shown in Figure 5.1.

a. By applying the analysis equation (5.3),

X̃(k) =
N−1∑

n=0

x̃(n)e−j 2π
N

nk =
L−1∑

n=0

e−j 2π
N

nk =
L−1∑

n=0

(
e−j 2π

N
k
)n

=

⎧
⎪⎨

⎪⎩

L, k = 0, ±N, ±2N, . . .

1 − e−j2πLk/N

1 − e−j2πk/N
, otherwise

The last step follows from the sum of the geometric terms formula (2.7) in
Chapter 2. The last expression can be simplified to

1 − e−j2πLk/N

1 − e−j2πk/N
=

e−jπLk/N

e−jπk/N

ejπLk/N − e−jπLk/N

ejπk/N − e−jπk/N

= e−jπ(L−1)k/N sin (πkL/N)
sin (πk/N)
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FIGURE 5.1 Periodic square wave sequence

or the magnitude of X̃(k) is given by

∣∣∣X̃(k)
∣∣∣ =

⎧
⎪⎨

⎪⎩

L, k = 0, ±N, ±2N, . . .
∣∣∣∣
sin (πkL/N)
sin (πk/N)

∣∣∣∣ , otherwise

b. The MATLAB script for L = 5 and N = 20:

>> L = 5; N = 20; k = [-N/2:N/2]; % Sq wave parameters
>> xn = [ones(1,L), zeros(1,N-L)]; % Sq wave x(n)
>> Xk = dfs(xn,N); % DFS
>> magXk = abs([Xk(N/2+1:N) Xk(1:N/2+1)]); % DFS magnitude
>> subplot(2,2,1); stem(k,magXk); axis([-N/2,N/2,-0.5,5.5])
>> xlabel(’k’); ylabel(’Amplitude’)
>> title(’DFS of SQ. Wave: L=5, N=20’)

The plots for this and all other cases are shown in Figure 5.2. Note that
since X̃(k) is periodic, the plots are shown from −N/2 to N/2.

c. Several interesting observations can be made from plots in Figure 5.2. The
envelopes of the DFS coefficients of square waves look like “sinc” functions.
The amplitude at k = 0 is equal to L, while the zeros of the functions are
at multiples of N/L, which is the reciprocal of the duty cycle. We will study
these functions later in this chapter. �

5.1.2 RELATION TO THE z-TRANSFORM
Let x(n) be a finite-duration sequence of duration N such that

x(n) =

{
Nonzero, 0 ≤ n ≤ N − 1

0, elsewhere
(5.8)
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FIGURE 5.2 The DFS plots of a periodic square wave for various L and N

Then we can compute its z-transform:

X(z) =
N−1∑
n=0

x(n)z−n (5.9)

Now we construct a periodic sequence x̃(n) by periodically repeating x(n)
with period N , that is,

x(n) =

{
x̃(n), 0 ≤ n ≤ N − 1

0, elsewhere
(5.10)

The DFS of x̃(n) is given by

X̃(k) =
N−1∑
n=0

x̃(n)e−j 2π
N nk =

N−1∑
n=0

x(n)
[
ej 2π

N k
]−n

(5.11)

Comparing it with (5.9), we have

X̃(k) = X(z)|
z=ej 2π

N
k (5.12)

which means that the DFS X̃(k) represents N evenly spaced samples of
the z-transform X(z) around the unit circle.
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5.1.3 RELATION TO THE DTFT
Since x(n) in (5.8) is of finite duration of length N , it is also absolutely
summable. Hence its DTFT exists and is given by

X(ejω) =
N−1∑
n=0

x(n)e−jωn =
N−1∑
n=0

x̃(n)e−jωn (5.13)

Comparing (5.13) with (5.11), we have

X̃(k) = X(ejω)
∣∣
ω= 2π

N k
(5.14)

Let

ω1
�
=

2π

N
and ωk

�
=

2π

N
k = kω1

Then the DFS X(k) = X(ejωk) = X(ejkω1), which means that the DFS
is obtained by evenly sampling the DTFT at ω1 = 2π

N intervals. From
(5.12) and (5.14), we observe that the DFS representation gives us a
sampling mechanism in the frequency domain that, in principle, is similar
to sampling in the time domain. The interval ω1 = 2π

N is the sampling
interval in the frequency domain. It is also called the frequency resolution
because it tells us how close the frequency samples (or measurements)
are.

� EXAMPLE 5.3 Let x(n) = {0
↑
, 1, 2, 3}.

a. Compute its discrete-time Fourier transform X(ejω).
b. Sample X(ejω) at kω1 = 2π

4 k, k = 0, 1, 2, 3 and show that it is equal to
X̃(k) in Example 5.1.

Solution The sequence x(n) is not periodic but is of finite duration.

a. The discrete-time Fourier transform is given by

X(ejω) =
∞∑

n=−∞
x(n)e−jωn = e−jω + 2e−j2ω + 3e−j3ω

b. Sampling at kω1 = 2π
4 k, k = 0, 1, 2, 3, we obtain

X(ej0) = 1 + 2 + 3 = 6 = X̃(0)

X(ej2π/4) = e−j2π/4 + 2e−j4π/4 + 3e−j6π/4 = −2 + 2j = X̃(1)

X(ej4π/4) = e−j4π/4 + 2e−j8π/4 + 3e−j12π/4 = 2 = X̃(2)

X(ej6π/4) = e−j6π/4 + 2e−j12π/4 + 3e−j18π/4 = −2 − 2j = X̃(3)

as expected. �
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5.2 SAMPLING AND RECONSTRUCTION IN THE z-DOMAIN

Let x(n) be an arbitrary absolutely summable sequence, which may be of
infinite duration. Its z-transform is given by

X(z) =
∞∑

m=−∞
x(m)z−m

and we assume that the ROC of X (z) includes the unit circle. We sample
X(z) on the unit circle at equispaced points separated in angle by ω1 =
2π/N and call it a DFS sequence,

X̃(k)
�
= X(z)|

z=ej 2π
N

k, k = 0,±1,±2, . . .

=
∞∑

m=−∞
x(m)e−j 2π

N km =
∞∑

m=−∞
x(m)W km

N (5.15)

which is periodic with period N . Finally, we compute the IDFS of X̃(k),

x̃(n) = IDFS
[
X̃(k)

]

which is also periodic with period N . Clearly, there must be a relationship
between the arbitrary x(n) and the periodic x̃(n). This is an important
issue. In order to compute the inverse DTFT or the inverse z-transform
numerically, we must deal with a finite number of samples of X(z) around
the unit circle. Therefore, we must know the effect of such sampling on
the time-domain sequence. This relationship is easy to obtain.

x̃(n) =
1
N

N−1∑
k=0

X̃(k)W−kn
N [from (5.2)]

=
1
N

N−1∑
k=0

{ ∞∑
m=−∞

x(m)W km
N

}
W−kn

N [from (5.15)]

or

x̃(n) =
∞∑

m=−∞
x(m)

1
N

N−1∑
0

W
−k(n−m)
N

︸ ︷︷ ︸
=

⎧
⎨

⎩

1, n − m = rN
0, elsewhere

=

=
∞∑

r=−∞

∞∑
m=−∞

x(m)δ(n − m − rN)

∞∑
m=−∞

x(m)
∞∑

r=−∞
δ(n−m−rN)
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or

x̃(n) =
∞∑

r=−∞
x(n − rN) = · · · + x(n + N) + x(n) + x(n − N) + · · · (5.16)

which means that when we sample X(z) on the unit circle, we obtain a
periodic sequence in the time domain. This sequence is a linear combina-
tion of the original x(n) and its infinite replicas, each shifted by multiples
of ±N . This is illustrated in Example 5.5. From (5.16), we observe that if
x(n) = 0 for n < 0 and n ≥ N , then there will be no overlap or aliasing in
the time domain. Hence we should be able to recognize and recover x(n)
from x̃(n), that is,

x(n) = x̃(n) for 0 ≤ n ≤ (N − 1)

or

x(n) = x̃(n)RN (n) =

{
x̃(n), 0 ≤ n ≤ N − 1
0, elsewhere

where RN (n) is called a rectangular window of length N . Therefore, we
have the following theorem.

THEOREM 1 Frequency Sampling
If x(n) is time-limited (i.e., of finite duration) to [0, N − 1], then

N samples of X(z) on the unit circle determine X(z) for all z.

� EXAMPLE 5.4 Let x1(n) = {6
↑
, 5, 4, 3, 2, 1}. Its DTFT X1(ejω) is sampled at

ωk =
2πk

4
, k = 0, ±1, ±2, ±3, . . .

to obtain a DFS sequence X̃2(k). Determine the sequence x̃2(n), which is the
inverse DFS of X̃2(k).

Solution Without computing the DTFT, the DFS, or the inverse DFS, we can evaluate
x̃2(n) by using the aliasing formula (5.16).

x̃2(n) =
∞∑

r=−∞
x1(n − 4r)

Thus x(4) is aliased into x(0), and x(5) is aliased into x(1). Hence

x̃2(n) = {. . . , 8, 6, 4, 3, 8
↑
, 6, 4, 3, 8, 6, 4, 3, . . .} �
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� EXAMPLE 5.5 Let x(n) = (0.7)n u(n). Sample its z-transform on the unit circle with N = 5,
10, 20, 50 and study its effect in the time domain.

Solution From Table 4.1, the z-transform of x(n) is

X(z) =
1

1 − 0.7z−1 =
z

z − 0.7
, |z| > 0.7

We can now use MATLAB to implement the sampling operation

X̃(k) = X(z)|z=ej2πk/N , k = 0, ±1, ±2, . . .

and the inverse DFS computation to determine the corresponding time-domain
sequence. The MATLAB script for N = 5 is as follows.

>> N = 5; k = 0:1:N-1; % Sample index
>> wk = 2*pi*k/N; zk = exp(j*wk); % Samples of z
>> Xk = (zk)./(zk-0.7); % DFS as samples of X(z)
>> xn = real(idfs(Xk,N)); % IDFS
>> xtilde = xn’* ones(1,8); xtilde = (xtilde(:))’; % Periodic sequence
>> subplot(2,2,1); stem(0:39,xtilde);axis([0,40,-0.1,1.5])
>> ylabel(’Amplitude’); title(’N=5’)

The plots in Figure 5.3 clearly demonstrate the aliasing in the time domain,
especially for N = 5 and N = 10. For large values of N , the tail end of x(n)
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FIGURE 5.3 Plots in Example 5.5
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152 Chapter 5 THE DISCRETE FOURIER TRANSFORM

is sufficiently small to result in any appreciable amount of aliasing in practice.
Such information is useful in effectively truncating an infinite-duration sequence
prior to taking its transform. �

5.2.1 THE z-TRANSFORM RECONSTRUCTION FORMULA
Let x(n) be time-limited to [0, N − 1]. Then from Theorem 1 we should
be able to recover the z-transform X(z) using its samples X̃(k). This is
given by

X(z) = Z [x(n)] = Z [x̃(n)RN (n)]

= Z[ IDFS{ X̃(k)︸ ︷︷ ︸
Samples of X(z)

}RN (n)]

This approach results in the z-domain reconstruction formula:

X(z) =
N−1∑

0

x(n)z−n =
N−1∑

0

x̃(n)z−n

=
N−1∑

0

{
1
N

N−1∑
0

X̃(k)W−kn
N

}
z−n

=
1
N

N−1∑
k=0

X̃(k)

{
N−1∑

0

W−kn
N z−n

}

=
1
N

N−1∑
k=0

X̃(k)

{
N−1∑

0

(
W−k

N z−1)n
}

=
1
N

N−1∑
k=0

X̃(k)

{
1 − W−kN

N z−N

1 − W−k
N z−1

}

Since W−kN
N = 1, we have

X(z) =
1 − z−N

N

N−1∑
k=0

X̃(k)
1 − W−k

N z−1
(5.17)

5.2.2 THE DTFT INTERPOLATION FORMULA
The reconstruction formula (5.17) can be specialized for the discrete-time
Fourier transform by evaluating it on the unit circle z = ejω. Then

X(ejω) =
1 − e−jωN

N

N−1∑
k=0

X̃(k)
1 − ej2πk/Ne−jω

=
N−1∑
k=0

X̃(k)
1 − e−jωN

N
{
1 − ej2πk/Ne−jω

}
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Consider

1 − e−jωN

N
{
1 − ej2πk/Ne−jω

} =
1 − e−j(ω− 2πk

N )N

N
{

1 − e−j(ω− 2πk
N )
}

=
e−j N

2 (ω− 2πk
N )

e− 1
2 j(ω− 2πk

N )

{
sin
[
(ω − 2πk

N )N
2

]

N sin
[
(ω − 2πk

N ) 1
2

]
}

Let

Φ(ω)
�
=

sin(ωN
2 )

N sin(ω
2 )

e−jω( N−1
2 ) : an interpolating function (5.18)

Then

X(ejω) =
N−1∑
k=0

X̃(k)Φ
(

ω − 2πk

N

)
(5.19)

This is the DTFT interpolation formula to reconstruct X(ejω) from its
samples X̃ (k). Since Φ(0) = 1, we have that X(ej2πk/N ) = X̃(k), which
means that the interpolation is exact at sampling points. Recall the
time-domain interpolation formula (3.33) for analog signals:

xa(t) =
∞∑

n=−∞
x(n) sinc [Fs(t − nTs)] (5.20)

The DTFT interpolating formula (5.19) looks similar.
However, there are some differences. First, the time-domain formula

(5.20) reconstructs an arbitrary nonperiodic analog signal, while the
frequency-domain formula (5.19) gives us a periodic waveform. Second, in
(5.19) we use a sin(Nx)

N sin x interpolation function instead of our more familiar
sin x

x (sinc) function. The Φ(ω) function is a periodic function and hence
is known as a periodic-sinc function. It is also known as the Dirichlet
function. This is the function we observed in Example 5.2.

5.2.3 MATLAB IMPLEMENTATION
The interpolation formula (5.19) suffers the same fate as that of (5.20)
while trying to implement it in practice. One has to generate several inter-
polating functions (5.18) and perform their linear combinations to obtain
the discrete-time Fourier transform X(ejω) from its computed samples
X̃(k). Furthermore, in MATLAB we have to evaluate (5.19) on a finer
grid over 0 ≤ ω ≤ 2π. This is clearly an inefficient approach. Another
approach is to use the cubic spline interpolation function as an efficient
approximation to (5.19). This is what we did to implement the time-
domain interpolation formula for analog signals in Chapter 3. However,
there is an alternate and efficient approach based on the DFT, which we
will study in the next section.
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154 Chapter 5 THE DISCRETE FOURIER TRANSFORM

5.3 THE DISCRETE FOURIER TRANSFORM

The discrete Fourier series provides a mechanism for numerically com-
puting the discrete-time Fourier transform. It also alerts us to a potential
problem of aliasing in the time domain. Mathematics dictates that the
sampling of the discrete-time Fourier transform result in a periodic se-
quence x̃(n). But most of the signals in practice are not periodic. They
are likely to be of finite duration. How can we develop a numerically com-
putable Fourier representation for such signals? Theoretically, we can take
care of this problem by defining a periodic signal whose primary shape is
that of the finite-duration signal and then using the DFS on this periodic
signal. Practically, we define a new transform called the discrete Fourier
transform (DFT), which is the primary period of the DFS. This DFT
is the ultimate numerically computable Fourier transform for arbitrary
finite-duration sequences.

First we define a finite-duration sequence x(n) that has N samples
over 0 ≤ n ≤ N − 1 as an N -point sequence. Let x̃(n) be a periodic signal
of period N , created using the N -point sequence x(n); that is, from (5.19),

x̃(n) =
∞∑

r=−∞
x(n − rN)

This is a somewhat cumbersome representation. Using the modulo-N
operation on the argument, we can simplify it to

x̃(n) = x(n modN) (5.21)

A simple way to interpret this operation is the following: if the argument
n is between 0 and N − 1, then leave it as it is; otherwise add or sub-
tract multiples of N from n until the result is between 0 and N − 1. Note
carefully that (5.21) is valid only if the length of x(n) is N or less. Further-
more, we use the following convenient notation to denote the modulo-N
operation:

x((n))N
�
= x(n modN) (5.22)

Then the compact relationships between x(n) and x̃(n) are

x̃(n) = x((n))N (Periodic extension)

x(n) = x̃(n)RN (n) (Window operation)
(5.23)

The rem(n,N) function in MATLAB determines the remainder after di-
viding n by N . This function can be used to implement our modulo-N
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operation when n ≥ 0. When n < 0, we need to modify the result to
obtain correct values. This is shown below in the m=mod(n,N) function.

function m = mod(n,N)
% Computes m = (n mod N) index
% ----------------------------
% m = mod(n,N)
m = rem(n,N); m = m+N; m = rem(m,N);

In this function, n can be any integer array, and the array m contains the
corresponding modulo-N values.

From the frequency sampling theorem, we conclude that N equispaced
samples of the discrete-time Fourier transform X(ejω) of the N -point se-
quence x(n) can uniquely reconstruct X(ejω). These N samples around
the unit circle are called the discrete Fourier transform coefficients. Let
X̃(k) = DFS x̃(n), which is a periodic sequence (and hence of infinite
duration). Its primary interval then is the discrete Fourier transform,
which is of finite duration. These notions are made clear in the follow-
ing definitions. The discrete Fourier transform of an N -point sequence is
given by

X(k)
�
= DFT [x(n)] =

{
X̃(k), 0 ≤ k ≤ N − 1
0, elsewhere

= X̃(k)RN (k)

or

X(k) =
N−1∑
n=0

x(n)Wnk
N , 0 ≤ k ≤ N − 1 (5.24)

Note that the DFT X(k) is also an N -point sequence; that is, it is not
defined outside of 0 ≤ k ≤ N − 1. From (5.23), X̃(k) = X((k))N ;
that is, outside the 0 ≤ k ≤ N − 1 interval only the DFS X̃(k) is de-
fined, which of course is the periodic extension of X(k). Finally, X(k) =
X̃(k)RN (k) means that the DFT X(k) is the primary interval of X̃(k).

The inverse discrete Fourier transform of an N -point DFT X(k) is
given by

x(n)
�
= IDFT [X(k)] = x̃(n)RN (n)

or

x(n) =
1
N

N−1∑
k=0

X(k)W−kn
N , 0 ≤ n ≤ N − 1 (5.25)

Once again, x(n) is not defined outside 0 ≤ n ≤ N − 1. The extension of
x (n) outside this range is x̃(n).
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156 Chapter 5 THE DISCRETE FOURIER TRANSFORM

5.3.1 MATLAB IMPLEMENTATION
It is clear from the discussions at the top of this section that the DFS is
practically equivalent to the DFT when 0 ≤ n ≤ N − 1. Therefore, the
implementation of the DFT can be done in a similar fashion. If x(n) and
X(k) are arranged as column vectors x and X, respectively, then from
(5.24) and (5.25) we have

X = WNx

x =
1
N

W∗
NX

(5.26)

where WN is the matrix defined in (5.7) and will now be called a DFT
matrix. Hence the earlier dfs and idfs MATLAB functions can be re-
named as the dft and idft functions to implement the discrete Fourier
transform computations.

function [Xk] = dft(xn,N)
% Computes discrete Fourier transform
% -----------------------------------
% [Xk] = dft(xn,N)
% Xk = DFT coeff. array over 0 <= k <= N-1
% xn = N-point finite-duration sequence
% N = Length of DFT
%
n = [0:1:N-1]; % Row vector for n
k = [0:1:N-1]; % Row vector for k
WN = exp(-j*2*pi/N); % Wn factor
nk = n’*k; % Creates an N by N matrix of nk values
WNnk = WN .ˆ nk; % DFT matrix
Xk = xn * WNnk; % Row vector for DFT coefficients

function [xn] = idft(Xk,N)
% Computes inverse discrete transform
% -----------------------------------
% [xn] = idft(Xk,N)
% xn = N-point sequence over 0 <= n <= N-1
% Xk = DFT coeff. array over 0 <= k <= N-1
% N = length of DFT
%
n = [0:1:N-1]; % Row vector for n
k = [0:1:N-1]; % Row vector for k
WN = exp(-j*2*pi/N); % Wn factor
nk = n’*k; % Creates an N by N matrix of nk values
WNnk = WN .ˆ (-nk); % IDFT matrix
xn = (Xk * WNnk)/N; % Row vector for IDFT values

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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� EXAMPLE 5.6 Let x(n) be a four-point sequence:

x(n) =

{
1, 0 ≤ n ≤ 3

0, otherwise

a. Compute the discrete-time Fourier transform X(ejω) and plot its magni-
tude and phase.

b. Compute the four-point DFT of x(n).

Solution a. The discrete-time Fourier transform is given by

X(ejω) =
3∑

0

x(n)e−jωn = 1 + e−jω + e−j2ω + e−j3ω

=
1 − e−j4ω

1 − e−jω
=

sin(2ω)
sin(ω/2)

e−j3ω/2

Hence
∣∣∣X(ejω)

∣∣∣ =
∣∣∣∣

sin(2ω)
sin(ω/2)

∣∣∣∣

and

� X(ejω) =

⎧
⎪⎪⎨

⎪⎪⎩

−3ω

2
, when

sin(2ω)
sin(ω/2)

> 0

−3ω

2
± π, when

sin(2ω)
sin(ω/2)

< 0

The plots are shown in Figure 5.4.
b. Let us denote the four-point DFT by X4 (k). Then

X4(k) =
3∑

n=0

x(n)W nk
4 ; k = 0, 1, 2, 3; W4 = e−j2π/4 = −j

These calculations are similar to those in Example 5.1. We can also use
MATLAB to compute this DFT.

>> x = [1,1,1,1]; N = 4; X = dft(x,N);
>> magX = abs(X), phaX = angle(X)*180/pi
magX =

4.0000 0.0000 0.0000 0.0000
phaX =

0 -134.9810 -90.0000 -44.9979

Hence

X4(k) = {4
↑
, 0, 0, 0}

Note that when the magnitude sample is zero, the corresponding angle is not
zero. This is due to a particular algorithm used by MATLAB to compute the
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FIGURE 5.4 The DTFT plots in Example 5.6

angle part. Generally, these angles should be ignored. The plot of DFT values
is shown in Figure 5.5. The plot of X(ejω) is also shown as a dashed line for
comparison. From the plot in Figure 5.5, we observe that X4 correctly gives
four samples of X(ejω), but it has only one nonzero sample. Is this surprising?
By looking at the four-point x(n), which contains all 1’s, one must conclude
that its periodic extension is

x̃(n) = 1, ∀n

which is a constant (or a DC) signal. This is what is predicted by the DFT
X4(k), which has a nonzero sample at k = 0 (or ω = 0) and has no values at
other frequencies. �

� EXAMPLE 5.7 How can we obtain other samples of the DTFT X(ejω)?

Solution It is clear that we should sample at dense (or finer) frequencies; that is, we should
increase N . Suppose we take twice the number of points, or N = 8 instead of
N = 4. This we can achieve by treating x(n) as an eight-point sequence by
appending four zeros.

x(n) = {1
↑
, 1, 1, 1, 0, 0, 0, 0}
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FIGURE 5.5 The DFT plots of Example 5.6

This is a very important operation called a zero-padding operation. This oper-
ation is necessary in practice to obtain a dense spectrum of signals, as we shall
see. Let X8 (k) be an eight-point DFT, then

X8 (k) =
7∑

n=0

x(n)W nk
8 ; k = 0, 1, . . . , 7; W8 = e−jπ/4

In this case, the frequency resolution is ω1 = 2π/8 = π/4.

MATLAB script:

>> x = [1,1,1,1, zeros(1,4)]; N = 8; X = dft(x,N);
>> magX = abs(X), phaX = angle(X)*180/pi
magX =

4.0000 2.6131 0.0000 1.0824 0.0000 1.0824 0.0000 2.6131
phaX =

0 -67.5000 -134.9810 -22.5000 -90.0000 22.5000 -44.9979 67.5000

Hence
X8 (k) = {4

↑
, 2.6131e−j67.5◦

, 0, 1.0824e−j22.5◦
, 0, 1.0824ej22.5◦

,

0, 2.6131ej67.5◦
}
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FIGURE 5.6 The DFT plots of Example 5.7: N = 8

which is shown in Figure 5.6. Continuing further, if we treat x(n) as a 16-point
sequence by padding 12 zeros, such that

x(n) = {1
↑
, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

then the frequency resolution is ω1 = 2π/16 = π/8 and W16 = e−jπ/8. There-
fore, we get a more dense spectrum with spectral samples separated by π/8.
The sketch of X16 (k) is shown in Figure 5.7.

It should be clear then that if we obtain many more spectral samples by
choosing a large N value, then the resulting DFT samples will be very close to
each other and we will obtain plot values similar to those in Figure 5.4. However,
the displayed stem-plots will be dense. In this situation, a better approach to
display samples is to either show them using dots or join the sample values using
the plot command (i.e., using the FOH studied in Chapter 3). Figure 5.8 shows
the magnitude and phase of the 128-point DFT x128(k) obtained by padding
120 zeros. The DFT magnitude plot overlaps the DTFT magnitude plot shown
as dotted-line, while the phase plot shows discrepancy at discontinuities due to
finite N value, which should be expected. �
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FIGURE 5.7 The DFT plots of Example 5.7: N = 16
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FIGURE 5.8 The DFT plots of Example 5.7 for N = 128 are shown as line
plots

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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Comments: Based on the last two examples, there are several comments
that we can make.

1. Zero-padding is an operation in which more zeros are appended to the
original sequence. The resulting longer DFT provides closely spaced
samples of the discrete-time Fourier transform of the original sequence.
In MATLAB, zero-padding is implemented using the zeros function.

2. In Example 5.6, all we needed to accurately plot the discrete-time
Fourier transform X(ejω) of x(n) was X4 (k), the four-point DFT. This
is because x(n) had only four nonzero samples, so we could have used
the interpolation formula (5.19) on X4 (k) to obtain X(ejω). However,
in practice, it is easier to obtain X8 (k) and X16 (k), and so on, to fill in
the values of X(ejω) rather than using the interpolation formula. This
approach can be made even more efficient using fast Fourier transform
algorithms to compute the DFT.

3. The zero-padding gives us a high-density spectrum and provides a better
displayed version for plotting. But it does not give us a high-resolution
spectrum, because no new information is added to the signal; only ad-
ditional zeros are added in the data.

4. To get a high-resolution spectrum, one has to obtain more data from
the experiment or observations (see Example 5.8, below). There are
also other advanced methods that use additional side information or
nonlinear techniques.

� EXAMPLE 5.8 To illustrate the difference between the high-density spectrum and the
high-resolution spectrum, consider the sequence

x(n) = cos (0.48πn) + cos (0.52πn)

We want to determine its spectrum based on the finite number of samples.

a. Determine and plot the discrete-time Fourier transform of x(n), 0 ≤ n ≤ 10.
b. Determine and plot the discrete-time Fourier transform of x(n),

0 ≤ n ≤ 100.

Solution We could determine analytically the discrete-time Fourier transform in each
case, but MATLAB is a good vehicle to study these problems.

a. We can first determine the 10-point DFT of x(n) to obtain an estimate of its
discrete-time Fourier transform.
MATLAB script:

>> n = [0:1:99]; x = cos(0.48*pi*n)+cos(0.52*pi*n);
>> n1 = [0:1:9] ;y1 = x(1:1:10);
>> subplot(2,1,1) ;stem(n1,y1); title(’signal x(n), 0 <= n <= 9’);xlabel(’n’)
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FIGURE 5.9 Signal and its spectrum in Example 5.8a: N = 10

>> Y1 = dft(y1,10); magY1 = abs(Y1(1:1:6));
>> k1 = 0:1:5 ;w1 = 2*pi/10*k1;
>> subplot(2,1,2);stem(w1/pi,magY1);title(’Samples of DTFT Magnitude’);
>> xlabel(’Frequency in \pi Units’)

The plots in Figure 5.9 show there aren’t enough samples to draw any conclu-
sions. Therefore, we will pad 90 zeros to obtain a dense spectrum. As explained
in Example 5.7, this spectrum is plotted using the plot command.

MATLAB script:

>> n2 = [0:1:99]; y2 = [x(1:1:10) zeros(1,90)];
>> subplot(2,1,1) ;stem(n2,y2) ;title(’signal x(n), 0 <= n <= 9 + 90 zeros’);
>> xlabel(’n’)
>> Y2 =dft(y2,100); magY2 = abs(Y2(1:1:51));
>> k2 = 0:1:50; w2 = 2*pi/100*k2;
>> subplot(2,1,2); plot(w2/pi,magY2); title(’DTFT Magnitude’);
>> xlabel(’Frequency in \pi Units’)

Now the plot shows that the sequence has a dominant frequency at ω = 0.5π
(Figure 5.10). This fact is not supported by the original sequence, which has two
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FIGURE 5.10 Signal and its spectrum in Example 5.8a: N = 100

frequencies. The zero-padding provided a smoother version of the spectrum in
Figure 5.9.

b. To get better spectral information, we will take the first 100 samples of x(n)
and determine its discrete-time Fourier transform.

MATLAB script:

>> subplot(2,1,1); stem(n,x);
>> title(’signal x(n), 0 <= n <= 99’); xlabel(’n’)
>> X = dft(x,100); magX = abs(X(1:1:51));
>> k = 0:1:50; w = 2*pi/100*k;
>> subplot(2,1,2); plot(w/pi,magX); title(’DTFT Magnitude’);
>> xlabel(’Frequency in \pi Units’)

Now the discrete-time Fourier transform plot clearly shows two frequencies,
which are very close to each other (Figure 5.11). This is the high-resolution
spectrum of x(n). Note that padding more zeros to the 100-point sequence will
result in a smoother rendition of the spectrum in Figure 5.11 but will not reveal
any new information. Readers are encouraged to verify this. �
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FIGURE 5.11 Signal and its spectrum in Example 5.8b: N = 100

5.4 PROPERTIES OF THE DISCRETE FOURIER TRANSFORM

The DFT properties are derived from those of the DFS because mathe-
matically DFS is the valid representation. We discuss several useful prop-
erties, which are given without proof. These properties also apply to the
DFS with necessary changes. Let X(k) be an N -point DFT of the se-
quence x(n). Unless otherwise stated, the N -point DFTs will be used in
these properties.

1. Linearity: The DFT is a linear transform

DFT [ax1(n) + bx2(n)] = aDFT [x1(n)] + b DFT [x2(n)] (5.27)

Note: If x1(n) and x2(n) have different durations—that is, they are
N1-point and N2-point sequences, respectively—then choose N3 =
max(N1, N2) and proceed by taking N3-point DFTs.

2. Circular folding: If an N -point sequence is folded, then the result
x(−n) would not be an N -point sequence, and it would not be possible
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to compute its DFT. Therefore, we use the modulo-N operation on the
argument (−n) and define folding by

x ((−n))N =

{
x(0), n = 0
x(N − n), 1 ≤ n ≤ N − 1

(5.28)

This is called a circular folding. To visualize it, imagine that the se-
quence x(n) is wrapped around a circle in the counterclockwise direc-
tion so that indices n = 0 and n = N overlap. Then x((−n))N can
be viewed as a clockwise wrapping of x(n) around the circle; hence
the name circular folding. In MATLAB, the circular folding can be
achieved by x=x(mod(-n,N)+1). Note that the arguments in MATLAB
begin with 1. The DFT of a circular folding is given by

DFT [x ((−n))N ] = X ((−k))N =

{
X(0), k = 0
X(N − k), 1 ≤ k ≤ N − 1

(5.29)

� EXAMPLE 5.9 Let x(n) = 10 (0.8)n , 0 ≤ n ≤ 10.

a. Determine and plot x ((−n))11.
b. Verify the circular folding property.

Solution a. MATLAB script:

>> n = 0:10; x = 10*(0.8) .ˆ n; y = x(mod(-n,11)+1);
>> subplot(2,1,1); stem(n,x); title(’Original Sequence’)
>> xlabel(’n’); ylabel(’Amplitude’);
>> subplot(2,1,2); stem(n,y);
>> title(’Circularly Folded Sequence x((-n))_{11}’);
>> xlabel(’n’); ylabel(’Amplitude’);

The plots in Figure 5.12 show the effect of circular folding.

b. MATLAB script:

>> X = dft(x,11); Y = dft(y,11);
>> subplot(2,2,1); stem(n,real(X));
>> title(’Real(DFT[x(n)])’); xlabel(’k’);
>> subplot(2,2,2); stem(n,imag(X));
>> title(’Imag(DFT[x(n)])’); xlabel(’k’);
>> subplot(2,2,3); stem(n,real(Y));
>> title(’Real(DFT[x((-n))_{11}])’); xlabel(’k’);
>> subplot(2,2,4); stem(n,imag(Y));
>> title(’Imag(DFT[x((-n))_{11}])’); xlabel(’k’);

The plots in Figure 5.13 verify the property. �
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FIGURE 5.12 Circular folding in Example 5.9a
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FIGURE 5.13 Circular folding property in Example 5.9b
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3. Conjugation: Similar to the above property, we have to introduce the
circular folding in the frequency domain:

DFT [x∗(n)] = X∗ ((−k))N (5.30)

4. Symmetry properties for real sequences: Let x(n) be a real-
valued N -point sequence. Then x(n) = x∗(n). Using (5.30),

X(k) = X∗ ((−k))N (5.31)

This symmetry is called a circular conjugate symmetry. It further im-
plies that

Re [X(k)] = Re [X ((−k))N ] =⇒ Circular-even sequence

Im [X(k)] = − Im [X ((N − k))N ] =⇒ Circular-odd sequence

|X(k)| = |X ((−k))N | =⇒ Circular-even sequence

� X(k) = −� X ((−k))N =⇒ Circular-odd sequence
(5.32)

Comments:

1. Observe the magnitudes and angles of the various DFTs in Examples
5.6 and 5.7. They do satisfy the above circular symmetries. These sym-
metries are different than the usual even and odd symmetries. To visu-
alize this, imagine that the DFT samples are arranged around a circle
so that the indices k = 0 and k = N overlap; then the samples will
be symmetric with respect to k = 0, which justifies the name circular
symmetry.

2. The corresponding symmetry for the DFS coefficients is called the pe-
riodic conjugate symmetry.

3. Since these DFTs have symmetry, one needs to compute X(k) only for

k = 0, 1, . . . ,
N

2
; N even

or for
k = 0, 1, . . . ,

N − 1
2

; N odd

This results in about 50 percent savings in computation as well as in
storage.

4. From (5.30)
X(0) = X∗((−0))N = X∗(0)

which means that the DFT coefficient at k = 0 must be a real number.
But k = 0 means that the frequency ωk = kω1 = 0, which is the DC
frequency. Hence the DC coefficient for a real-valued x(n) must be a
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real number. In addition, if N is even, then N/2 is also an integer.
Then from (5.32),

X (N/2) = X∗ ((−N/2))N = X∗ (N/2)

which means that even the k = N/2 component is also real-valued.
This component is called the Nyquist component since k = N/2 means
that the frequency ωN/2 = (N/2)(2π/N) = π, which is the digital
Nyquist frequency.

The real-valued signals can also be decomposed into their even and odd
components, xe(n) and xo (n), respectively, as discussed in Chapter 2.
However, these components are not N -point sequences, and therefore we
cannot take their N -point DFTs. Hence we define a new set of components
using the circular folding discussed above. These are called circular-even
and circular-odd components defined by

xec (n)
�
= 1

2 [x(n) + x ((−n))N ] =

{
x(0), n = 0
1
2 [x (n) + x (N − n)] , 1 ≤ n ≤ N − 1

xoc (n)
�
= 1

2 [x(n) − x ((−n))N ] =

{
0, n = 0
1
2 [x (n) − x (N − n)] , 1 ≤ n ≤ N − 1

(5.33)

Then
DFT [xec (n)] = Re [X(k)] = Re [X ((−k))N ]

DFT [xoc (n)] = Im [X(k)] = Im [X ((−k))N ]
(5.34)

Implication: If x(n) is real and circular-even, then its DFT is also real
and circular-even. Hence only the first 0 ≤ n ≤ N/2 coefficients are
necessary for complete representation.

Using (5.33), it is easy to develop a function to decompose an N -point
sequence into its circular-even and circular-odd components. The follow-
ing circevod function uses the mod function given earlier to implement
the modulo-N operation.

function [xec, xoc] = circevod(x)
% Signal decomposition into circular-even and circular-odd parts
% --------------------------------------------------------------
% [xec, xoc] = circevod(x)
%
if any(imag(x) ˜= 0)

error(’x is not a real sequence’)
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end
N = length(x); n = 0:(N-1);
xec = 0.5*(x + x(mod(-n,N)+1)); xoc = 0.5*(x - x(mod(-n,N)+1));

� EXAMPLE 5.10 Let x(n) = 10 (0.8)n , 0 ≤ n ≤ 10 as in Example 5.9.

a. Decompose and plot the xec(n) and xoc(n) components of x(n).
b. Verify the property in (5.34).

Solution a. MATLAB script:

>> n = 0:10; x = 10*(0.8) .ˆ n;
>> [xec,xoc] = circevod(x);
>> subplot(2,1,1); stem(n,xec); title(’Circular-Even Component’)
>> xlabel(’n’); ylabel(’Amplitude’); axis([-0.5,10.5,-1,11])
>> subplot(2,1,2); stem(n,xoc); title(’Circular-Odd Component’)
>> xlabel(’n’); ylabel(’Amplitude’); axis([-0.5,10.5,-4,4])

The plots in Figure 5.14 show the circularly symmetric components of x(n).
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FIGURE 5.14 Circular-even and circular-odd components of the sequence in
Example 5.10a
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FIGURE 5.15 Plots of DFT symmetry properties in Example 5.10b

b. MATLAB script:

>> X = dft(x,11); Xec = dft(xec,11); Xoc = dft(xoc,11);
>> subplot(2,2,1); stem(n,real(X)); axis([-0.5,10.5,-5,50])
>> title(’Real(DFT[x(n)])’); xlabel(’k’);
>> subplot(2,2,2); stem(n,imag(X)); axis([-0.5,10.5,-20,20])
>> title(’Imag(DFT[x(n)])’); xlabel(’k’);
>> subplot(2,2,3); stem(n,real(Xec)); axis([-0.5,10.5,-5,50])
>> title(’DFT[xec(n)]’); xlabel(’k’);
>> subplot(2,2,4); stem(n,imag(Xoc)); axis([-0.5,10.5,-20,20])
>> title(’DFT[xoc(n)]’); xlabel(’k’);

From the plots in Figure 5.15, we observe that the DFT of xec(n) is the same as
the real part of X(k) and that the DFT of xoc(n) is the same as the imaginary
part of X(k). �

A similar property for complex-valued sequences is explored in Prob-
lem P5.18.

5. Circular shift of a sequence: If an N -point sequence is shifted in
either direction, then the result is no longer between 0 ≤ n ≤ N − 1.
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Therefore, we first convert x(n) into its periodic extension x̃(n), and
then shift it by m samples to obtain

x̃(n − m) = x ((n − m))N (5.35)

This is called a periodic shift of x̃(n). The periodic shift is then con-
verted into an N -point sequence. The resulting sequence

x̃(n − m)RN (n) = x ((n − m))N RN (n) (5.36)

is called the circular shift of x(n). Once again, to visualize this, imagine
that the sequence x(n) is wrapped around a circle. Now rotate the circle
by k samples and unwrap the sequence from 0 ≤ n ≤ N − 1. Its DFT
is given by

DFT [x ((n − m))N RN (n)] = W km
N X(k) (5.37)

� EXAMPLE 5.11 Let x(n) = 10 (0.8)n , 0 ≤ n ≤ 10 be an 11-point sequence.

a. Sketch x((n + 4))11R11(n), that is, a circular shift by four samples toward
the left.

b. Sketch x((n − 3))15R15(n), that is, a circular shift by three samples toward
the right, where x(n) is assumed to be a 15-point sequence.

Solution We will use a step-by-step graphical approach to illustrate the circular shifting
operation. This approach shows the periodic extension x̃(n) = x((n))N of x(n),
followed by a linear shift in x̃(n) to obtain x̃(n−m) = x((n−m))N , and finally
truncating x̃(n − m) to obtain the circular shift.

a. Figure 5.16 shows four sequences. The top-left shows x(n), the bottom-left
shows x̃(n), the top-right shows x̃(n +4), and, finally, the bottom-right shows
x((n+4))11R11(n). Note carefully that as samples move out of the [0, N −1]
window in one direction, they reappear from the opposite direction. This is
the meaning of the circular shift, and it is different from the linear shift.

b. In this case, the sequence x(n) is treated as a 15-point sequence by padding
four zeros. Now the circular shift will be different than when N = 11. This
is shown in Figure 5.17. In fact, the circular shift x ((n − 3))15 looks like a
linear shift x(n − 3). �

To implement a circular shift, we do not have to go through the
periodic shift as shown in Example 5.11. It can be implemented directly
in two ways. In the first approach, the modulo-N operation can be used
on the argument (n − m) in the time domain. This is shown below in the
cirshftt function.
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FIGURE 5.16 Graphical interpretation of circular shift, N = 11
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FIGURE 5.17 Graphical interpretation of circular shift, N = 15
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function y = cirshftt(x,m,N)
% Circular shift of m samples wrt size N in sequence x: (time domain)
% -------------------------------------------------------------------
% [y] = cirshftt(x,m,N)
% y = output sequence containing the circular shift
% x = input sequence of length <= N
% m = sample shift
% N = size of circular buffer
% Method: y(n) = x((n-m) mod N)
% Check for length of x
if length(x) > N

error(’N must be >= the length of x’)
end
x = [x zeros(1,N-length(x))];
n = [0:1:N-1]; n = mod(n-m,N); y = x(n+1);

In the second approach, the property (5.37) can be used in the frequency
domain. This is explored in Problem P5.20.

� EXAMPLE 5.12 Given an 11-point sequence x(n) = 10 (0.8)n , 0 ≤ n ≤ 10, determine and plot
x ((n − 6))15.

Solution MATLAB script:

>> n = 0:10; x = 10*(0.8) .ˆ n; y = cirshftt(x,6,15);
>> n = 0:14; x = [x, zeros(1,4)];
>> subplot(2,1,1); stem(n,x); title(’Original Sequence x(n)’)
>> xlabel(’n’); ylabel(’Amplitude’);
>> subplot(2,1,2); stem(n,y);
>> title(’Circularly Shifted Sequence x((n-6))_{15}’)
>> xlabel(’n’); ylabel(’Amplitude’);

The results are shown in Figure 5.18. �

6. Circular shift in the frequency domain: This property is a dual
of the preceding property given by

DFT
[
W−�n

N x(n)
]

= X ((k − �))N RN (k) (5.38)

7. Circular convolution: A linear convolution between two N -point
sequences will result in a longer sequence. Once again, we have to
restrict our interval to 0 ≤ n ≤ N − 1. Therefore, instead of linear
shift, we should consider the circular shift. A convolution operation
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FIGURE 5.18 Circularly shifted sequence in Example 5.12

that contains a circular shift is called the circular convolution and is
given by

x1(n) N© x2(n) =
N−1∑
m=0

x1(m)x2 ((n − m))N , 0 ≤ n ≤ N − 1 (5.39)

Note that the circular convolution is also an N -point sequence. It has
a structure similar to that of a linear convolution. The differences
are in the summation limits and in the N -point circular shift. Hence
it depends on N and is also called an N -point circular convolution.
Therefore, the use of the notation N© is appropriate. The DFT prop-
erty for the circular convolution is

DFT
[
x1(n) N© x2(n)

]
= X1(k) · X2(k) (5.40)

An alternate interpretation of this property is that when we multi-
ply two N -point DFTs in the frequency domain, we get the circular
convolution (and not the usual linear convolution) in the time domain.

� EXAMPLE 5.13 Let x1(n) = {1, 2, 2} and x2(n) = {1, 2, 3, 4}. Compute the four-point circular
convolution x1(n) 4© x2(n).
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Solution Note that x1(n) is a three-point sequence, and hence we will have to pad one
zero to make it a four-point sequence before we perform the circular convolution.
We will compute this convolution in the time domain as well as in the frequency
domain. In the time domain, we will use the mechanism of circular convolution;
in the frequency domain, we will use the DFTs.

• Time-domain approach: The four-point circular convolution is given by

x1(n) 4© x2(n) =
3∑

m=0

x1 (m) x2 ((n − m))4

Thus we have to create a circularly folded and shifted sequence x2((n−m))N

for each value of n, multiply it sample by sample with x1(m), add the samples
to obtain the circular convolution value for that n, and then repeat the
procedure for 0 ≤ n ≤ 3. Consider

x1(m) = {1, 2, 2, 0} and x2(m) = {1, 2, 3, 4}

for n = 0

3∑

m=0

x1(m) · x2 ((0 − m))5 =
3∑

m=0

[{1, 2, 2, 0} · {1, 4, 3, 2}]

=
3∑

m=0

{1, 8, 6, 0} = 15

for n = 1

3∑

m=0

x1(m) · x2 ((1 − m))5 =
3∑

m=0

[{1, 2, 2, 0} · {2, 1, 4, 3}]

=
3∑

m=0

{2, 2, 8, 0} = 12

for n = 2

3∑

m=0

x1(m) · x2 ((2 − m))5 =
3∑

m=0

[{1, 2, 2, 0} · {3, 2, 1, 4}]

=
3∑

m=0

{3, 4, 2, 0} = 9

for n = 3

3∑

m=0

x1(m) · x2 ((3 − m))5 =
3∑

m=0

[{1, 2, 2, 0} · {4, 3, 2, 1}]

=
3∑

m=0

{4, 6, 4, 0} = 14
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Hence

x1(n) 4© x2(n) = {15, 12, 9, 14}

• Frequency-domain approach: In this approach, we first compute four-point
DFTs of x1(n) and x2(n), multiply them sample by sample, and then take
the inverse DFT of the result to obtain the circular convolution.

DFT of x1(n)

x1(n) = {1, 2, 2, 0} =⇒ X1(k) = {5, −1 − j2, 1, −1 + j2}

DFT of x2(n)

x2(n) = {1, 2, 3, 4} =⇒ X2(k) = {10, −2 + j2, −2, −2 − j2}

Now

X1(k) · X2(k) = {50, 6 + j2, −2, 6 − j2}

Finally, after IDFT,

x1(n) 4© x2(n) = {15, 12, 9, 14}

which is the same as before. �

Similar to the circular shift implementation, we can implement the
circular convolution in a number of different ways. The simplest approach
would be to implement (5.39) literally by using the cirshftt function
and requiring two nested for...end loops. Obviously, this is not efficient.
Another approach is to generate a sequence x ((n − m))N for each n in
[0, N − 1] as rows of a matrix and then implement (5.39) as a matrix-
vector multiplication similar to our dft function. This would require
one for...end loop. The following circonvt function incorporates these
steps.

function y = circonvt(x1,x2,N)
% N-point circular convolution between x1 and x2: (time-domain)
% -------------------------------------------------------------
% [y] = circonvt(x1,x2,N)
% y = output sequence containing the circular convolution
% x1 = input sequence of length N1 <= N
% x2 = input sequence of length N2 <= N
% N = size of circular buffer
% Method: y(n) = sum (x1(m)*x2((n-m) mod N))
% Check for length of x1
if length(x1) > N

error(’N must be >= the length of x1’)
end
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% Check for length of x2
if length(x2) > N

error(’N must be >= the length of x2’)
end
x1=[x1 zeros(1,N-length(x1))];
x2=[x2 zeros(1,N-length(x2))];
m = [0:1:N-1]; x2 = x2(mod(-m,N)+1); H = zeros(N,N);
for n = 1:1:N
H(n,:) = cirshftt(x2,n-1,N);
end
y = x1*conj(H’);

Problems P5.24 and P5.25 explore an approach to eliminate the for...
end loop in the circonvt function. The third approach would be to im-
plement the frequency-domain operation (5.40) using the dft function.
This is explored in Problem P5.26.

� EXAMPLE 5.14 Let us use MATLAB to perform the circular convolution in Example 5.13.

Solution The sequences are x1(n) = {1, 2, 2} and x2(n) = {1, 2, 3, 4}.

MATLAB script:

>> x1 = [1,2,2]; x2 = [1,2,3,4]; y = circonvt(x1, x2, 4)
y =

15 12 9 14

Hence

x1(n) 4© x2(n) = {15, 12, 9, 14}

as before. �

� EXAMPLE 5.15 In this example, we will study the effect of N on the circular convolution.
Obviously, N ≥ 4; otherwise, there will be a time-domain aliasing for x2(n).
We will use the same two sequences from Example 5.13.

a. Compute x1(n) 5© x2(n).

b. Compute x1(n) 6© x2(n).

c. Comment on the results.

Solution The sequences are x1(n) = {1, 2, 2} and x2(n) = {1, 2, 3, 4}. Even though the
sequences are the same as in Example 5.14, we should expect different results
for different values of N . This is not the case with the linear convolution, which
is unique, given two sequences.
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a. MATLAB script for five-point circular convolution:

>> x1 = [1,2,2]; x2 = [1,2,3,4]; y = circonvt(x1, x2, 5)
y =

9 4 9 14 14

Hence

x1(n) 5© x2(n) = {9, 4, 9, 14, 14}

b. MATLAB script for six-point circular convolution:

>> x1 = [1,2,2]; x2 = [1,2,3,4]; y = circonvt(x1, x2, 6)
y =

1 4 9 14 14 8

Hence

x1(n) 6© x2(n) = {1, 4, 9, 14, 14, 8}

c. A careful observation of four-, five-, and six-point circular convolutions from
this and the previous example indicates some unique features. Clearly, an
N -point circular convolution is an N -point sequence. However, some sam-
ples in these convolutions have the same values, while other values can be
obtained as a sum of samples in other convolutions. For example, the first
sample in the five-point convolution is a sum of the first and the last sam-
ples of the six-point convolution. The linear convolution between x1(n) and
x2(n) is given by

x1(n) ∗ x2(n) = {1, 4, 9, 14, 14, 8}

which is equivalent to the six-point circular convolution. These and other
issues are explored in the next section. �

8. Multiplication: This is the dual of the circular convolution property.
It is given by

DFT [x1(n) · x2(n)] =
1
N

X1(k) N© X2(k) (5.41)

in which the circular convolution is performed in the frequency domain.
The MATLAB functions developed for circular convolution can also be
used here since X1 (k) and X2 (k) are also N -point sequences.

9. Parseval’s relation: This relation computes the energy in the fre-
quency domain.

Ex =
N−1∑
n=0

|x(n)|2 =
1
N

N−1∑
k=0

|X(k)|2 (5.42)
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The quantity |X(k)|2
N is called the energy spectrum of finite-duration se-

quences. Similarly, for periodic sequences, the quantity | X̃(k)
N |2 is called

the power spectrum.

5.5 LINEAR CONVOLUTION USING THE DFT

One of the most important operations in linear systems is the linear convo-
lution. In fact, FIR filters are generally implemented in practice using this
linear convolution. On the other hand, the DFT is a practical approach
for implementing linear system operations in the frequency domain. As we
shall see later, it is also an efficient operation in terms of computations.
However, there is one problem. The DFT operations result in a circular
convolution (something that we do not desire), not in a linear convolution
that we want. Now we shall see how to use the DFT to perform a linear
convolution (or equivalently, how to make a circular convolution identical
to the linear convolution). We alluded to this problem in Example 5.15.

Let x1(n) be an N1-point sequence, and let x2(n) be an N2-point
sequence. Define the linear convolution of x1(n) and x2(n) by x3(n),
that is,

x3(n) = x1(n) ∗ x2(n)

=
∞∑

k=−∞
x1(k)x2(n − k) =

N1−1∑
0

x1(k)x2(n − k) (5.43)

Then x3(n) is an (N1 + N2 − 1)-point sequence. If we choose N =
max(N1, N2) and compute an N -point circular convolution x1(n) N©
x2(n), then we get an N -point sequence, which obviously is different
from x3(n). This observation also gives us a clue. Why not choose N =
N1+N2−1 and perform an (N1+N2−1)-point circular convolution? Then
at least both of these convolutions will have an equal number of samples.

Therefore, let N = N1 + N2 − 1, and let us treat x1(n) and x2(n) as
N -point sequences. Define the N -point circular convolution by x4(n).

x4(n) = x1(n) N© x2(n) (5.44)

=

[
N−1∑
m=0

x1(m)x2((n − m))N

]
RN (n)

=

[
N−1∑
m=0

x1(m)
∞∑

r=−∞
x2(n − m − rN)

]
RN (n)
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=

⎡
⎢⎢⎢⎢⎣

∞∑
r=−∞

N1−1∑
m=0

x1(m)x2(n − m − rN)

︸ ︷︷ ︸
x3(n−rN)

⎤
⎥⎥⎥⎥⎦

RN (n)

=

[ ∞∑
r=−∞

x3(n − rN)

]
RN (n) using (5.43)

This analysis shows that, in general, the circular convolution is an aliased
version of the linear convolution. We observed this fact in Example 5.15.
Now since x3(n) is an N = (N1 + N2 − 1)-point sequence, we have

x4(n) = x3(n); 0 ≤ n ≤ (N − 1)

which means that there is no aliasing in the time domain.

Conclusion: If we make both x1(n) and x2(n) N = (N1 +N2 − 1)-point
sequences by padding an appropriate number of zeros, then the circular
convolution is identical to the linear convolution.

� EXAMPLE 5.16 Let x1(n) and x2(n) be the following two four-point sequences:

x1(n) = {1, 2, 2, 1} , x2(n) = {1, −1, −1, 1}

a. Determine their linear convolution x3(n).
b. Compute the circular convolution x4(n) so that it is equal to x3(n).

Solution We will use MATLAB to do this problem.

a. MATLAB script:

>> x1 = [1,2,2,1]; x2 = [1,-1,-1,1]; x3 = conv(x1,x2)
x3 = 1 1 -1 -2 -1 1 1

Hence the linear convolution x3(n) is a seven-point sequence given by

x3(n) = {1, 1, −1, −2, −1, 1, 1}

b.We will have to use N ≥ 7. Choosing N = 7, we have

>> x4 = circonvt(x1,x2,7)
x4 = 1 1 -1 -2 -1 1 1

Hence

x4 = {1, 1, −1, −2, −1, 1, 1} = x3(n) �
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5.5.1 ERROR ANALYSIS
To use the DFT for linear convolution, we must choose N properly. How-
ever, in practice it may not be possible to do so, especially when N is very
large and there is a limit on memory. Then an error will be introduced
when N is chosen less than the required value to perform the circular
convolution. We want to compute this error, which is useful in practice.
Obviously, N ≥ max(N1, N2). Therefore, let

max(N1, N2) ≤ N < (N1 + N2 − 1)

Then, from our previous analysis (5.44),

x4(n) =

[ ∞∑
r=−∞

x3(n − rN)

]
RN (n)

Let an error e(n) be given by

e(n)
�
= x4(n) − x3(n)

=

⎡
⎣∑

r �=0

x3(n − rN)

⎤
⎦RN (n)

Since N ≥ max(N1, N2), only two terms corresponding to r = ±1 remain
in the above summation. Hence

e(n) = [x3(n − N) + x3(n + N)]RN (n)

Generally, x1(n) and x2(n) are causal sequences. Then x3(n) is also causal,
which means that

x3(n − N) = 0; 0 ≤ n ≤ N − 1

Therefore,
e(n) = x3(n + N), 0 ≤ n ≤ N − 1 (5.45)

This is a simple yet important relation. It implies that when
max(N1, N2) ≤ N < (N1 +N2 −1) the error value at n is the same as the
linear convolution value computed N samples away. Now the linear con-
volution will be zero after (N1+N2−1) samples. This means that the first
few samples of the circular convolution are in error, while the remaining
ones are the correct linear convolution values.

� EXAMPLE 5.17 Consider the sequences x1(n) and x2(n) from the previous example. Evaluate
circular convolutions for N = 6, 5, and 4. Verify the error relations in each case.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Linear Convolution Using the DFT 183

Solution Clearly, the linear convolution x3(n) is still the same.

x3(n) = {1, 1, −1, −2, −1, 1, 1}

When N = 6, we obtain a six-point sequence:

x4(n) = x1(n) 6© x2(n) = {2, 1, −1, −2, −1, 1}

Therefore,

e(n) = {2, 1, −1, −2, −1, 1} − {1, 1, −1, −2, −1, 1} , 0 ≤ n ≤ 5

= {1, 0, 0, 0, 0, 0}

= x3(n + 6)

as expected. When N = 5, we obtain a five-point sequence,

x4(n) = x1(n) 5© x2(n) = {2, 2, −1, −2, −1}
and

e(n) = {2, 2, −1, −2, −1} − {1, 1, −1, −2, −1} , 0 ≤ n ≤ 4

= {1, 1, 0, 0, 0}

= x3(n + 5)

Finally, when N = 4, we obtain a four-point sequence,

x4(n) = x1(n) 4© x2(n) = {0, 2, 0, −2}
and

e(n) = {0, 2, 0, −2} − {1, 1, −1, −2} , 0 ≤ n ≤ 3

= {−1, 1, 1, 0}
= x3(n + 4)

The last case of N = 4 also provides the following useful observation.

Observation: When N = max(N1, N2) is chosen for circular convolution, then
the first (M − 1) samples are in error (i.e., different from the linear convolution),
where M = min(N1, N2). This result is useful in implementing long convolutions
in the form of block processing. �

5.5.2 BLOCK CONVOLUTIONS
When we want to filter an input sequence that is being received con-
tinuously, such as a speech signal from a microphone, then for practical
purposes we can think of this sequence as an infinite-length sequence. If
we want to implement this filtering operation as an FIR filter in which
the linear convolution is computed using the DFT, then we experience
some practical problems. We will have to compute a large DFT, which is
generally impractical. Furthermore, output samples are not available until
all input samples are processed. This introduces an unacceptably large
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amount of delay. Therefore, we have to segment the infinite-length input
sequence into smaller sections (or blocks), process each section using the
DFT, and finally assemble the output sequence from the outputs of each
section. This procedure is called a block convolution (or block processing)
operation.

Let us assume that the sequence x(n) is sectioned into N -point se-
quences and that the impulse response of the filter is an M -point se-
quence, where M < N . Then from the observation in Example 5.17, we
note that the N -point circular convolution between the input block and
the impulse response will yield a block output sequence in which the first
(M − 1) samples are not the correct output values. If we simply partition
x(n) into nonoverlapping sections, then the resulting output sequence will
have intervals of incorrect samples. To correct this problem, we can parti-
tion x(n) into sections, each overlapping with the previous one by exactly
(M − 1) samples, save the last (N − M + 1) output samples, and finally
concatenate these outputs into a sequence. To correct for the first (M − 1)
samples in the first output block, we set the first (M − 1) samples in the
first input block to zero. This procedure is called an overlap-save method
of block convolutions. Clearly, when N � M , this method is more effi-
cient. We illustrate it using a simple example.

� EXAMPLE 5.18 Let x(n) = (n + 1) , 0 ≤ n ≤ 9 and h(n) = {1
↑
, 0, −1}. Implement the overlap-

save method using N = 6 to compute y(n) = x(n) ∗ h(n).

Solution Since M = 3, we will have to overlap each section with the previous one by two
samples. Now x(n) is a 10-point sequence, and we will need (M − 1) = 2 zeros
in the beginning. Since N = 6, we will need three sections. Let the sections be

x1(n) = {0, 0, 1, 2, 3, 4}

x2(n) = {3, 4, 5, 6, 7, 8}

x3(n) = {7, 8, 9, 10, 0, 0}

Note that we have to pad x3(n) by two zeros since x(n) runs out of values at
n = 9. Now we will compute the six-point circular convolution of each section
with h(n).

y1 = x1(n) 6© h(n) = {−3, −4, 1, 2, 2, 2}

y2 = x2(n) 6© h(n) = {−4, −4, 2, 2, 2, 2}

y3 = x3(n) 6© h(n) = {7, 8, 2, 2, −9, −10}
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Noting that the first two samples in each section are to be discarded, we assemble
the output y(n) as

y(n) = {1
↑
, 2, 2, 2, 2, 2, 2, 2, 2, 2, −9, −10}

The linear convolution is given by

x(n) ∗ h(n) = {1
↑
, 2, 2, 2, 2, 2, 2, 2, 2, 2, −9, −10}

which agrees with the overlap-save method. �

5.5.3 MATLAB IMPLEMENTATION
Using this example as a guide, we can develop a MATLAB function to
implement the overlap-save method for a very long input sequence x(n).
The key step in this function is to obtain a proper indexing for the
segmentation. Given x(n) for n ≥ 0, we have to set the first (M − 1)
samples to zero to begin the block processing. Let this augmented se-
quence be

x̂(n)
�
= {0, 0, . . . , 0︸ ︷︷ ︸

(M−1) zeros

, x(n)}, n ≥ 0

and let L = N − M + 1; then the kth block xk(n), 0 ≤ n ≤ N − 1, is
given by

xk(n) = x̂(m); kL ≤ m ≤ kL + N − 1, k ≥ 0, 0 ≤ n ≤ N − 1

The total number of blocks is given by

K =
⌊

Nx + M − 2
L

⌋
+ 1

where Nx is the length of x(n) and �·� is the truncation operation. Now
each block can be circularly convolved with h(n) using the circonvt
function developed earlier to obtain

yk(n) = xk(n) N© h(n)

Finally, discarding the first (M − 1) samples from each yk(n) and con-
catenating the remaining samples, we obtain the linear convolution y(n).
This procedure is incorporated in the following ovrlpsav function.
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function [y] = ovrlpsav(x,h,N)
% Overlap-Save method of block convolution
% ----------------------------------------
% [y] = ovrlpsav(x,h,N)
% y = output sequence
% x = input sequence
% h = impulse response
% N = block length
%

Lenx = length(x); M = length(h); M1 = M-1; L = N-M1;
h = [h zeros(1,N-M)];
%
x = [zeros(1,M1), x, zeros(1,N-1)]; % Preappend (M-1) zeros
K = floor((Lenx+M1-1)/(L)); % # of blocks
Y = zeros(K+1,N);
% Convolution with succesive blocks
for k=0:K
xk = x(k*L+1:k*L+N);
Y(k+1,:) = circonvt(xk,h,N);

end
Y = Y(:,M:N)’; % Discard the first (M-1) samples
y = (Y(:))’; % Assemble output

Note: The ovrlpsav function as developed here is not the most efficient
approach. We will come back to this issue when we discuss the fast Fourier
transform.

� EXAMPLE 5.19 To verify the operation of the ovrlpsav function, let us consider the sequences
given in Example 5.18.

Solution MATLAB script:

>> n = 0:9; x = n+1; h = [1,0,-1]; N = 6; y = ovrlpsav(x,h,N)
y =

1 2 2 2 2 2 2 2 2 2 -9 -10

This is the correct linear convolution as expected. �

There is an alternate method called an overlap-add method of block
convolutions. In this method, the input sequence x(n) is partitioned into
nonoverlapping blocks and convolved with the impulse response. The re-
sulting output blocks are overlapped with the subsequent sections and
added to form the overall output. This is explored in Problem P5.32.
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5.6 THE FAST FOURIER TRANSFORM

The DFT (5.24) introduced earlier is the only transform that is discrete in
both the time and the frequency domains and is defined for finite-duration
sequences. Although it is a computable transform, the straightforward
implementation of (5.24) is very inefficient, especially when the sequence
length N is large. In 1965, Cooley and Tukey [8] showed a procedure to
substantially reduce the amount of computations involved in the DFT.
This led to the explosion of applications of the DFT, including in the
digital signal processing area. Furthermore, it also led to the development
of other efficient algorithms. All these efficient algorithms are collectively
known as fast Fourier transform (FFT) algorithms.

Consider an N -point sequence x(n). Its N -point DFT is given by
(5.24) and reproduced here,

X(k) =
N−1∑
n=0

x(n)Wnk
N , 0 ≤ k ≤ N − 1 (5.46)

where WN = e−j2π/N . To obtain one sample of X(k), we need N complex
multiplications and (N−1) complex additions. Hence to obtain a complete
set of DFT coefficients, we need N2 complex multiplications and N(N−1)
� N2 complex additions. Also, one has to store N2 complex coefficients{
Wnk

N

}
(or generate internally at an extra cost). Clearly, the number of

DFT computations for an N -point sequence depends quadratically on N ,
which will be denoted by the notation

CN = o
(
N2)

For large N , o
(
N2
)

is unacceptable in practice. Generally, the pro-
cessing time for one addition is much less than that for one multiplication.
Hence from now on we will concentrate on the number of complex mul-
tiplications, which itself requires four real multiplications and two real
additions.

5.6.1 GOAL OF AN EFFICIENT COMPUTATION
In an efficiently designed algorithm, the number of computations should
be constant per data sample, and therefore the total number of compu-
tations should be linear with respect to N .

The quadratic dependence on N can be reduced by realizing that most
of the computations (which are done again and again) can be eliminated
using the periodicity property

W kn
N = W

k(n+N)
N = W

(k+N)n
N
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and the symmetry property

W
kn+N/2
N = −W kn

N

of the factor
{
Wnk

N

}
.

One algorithm that considers only the periodicity of Wnk
N is the

Goertzel algorithm. This algorithm still requires CN = o(N2) multi-
plications, but it has certain advantages. This algorithm is described in
Chapter 12. We first begin with an example to illustrate the advantages of
the symmetry and periodicity properties in reducing the number of com-
putations. We then describe and analyze two specific FFT algorithms that
require CN = o(N log N) operations. They are the decimation-in-time
(DIT-FFT) and decimation-in-frequency (DIF-FFT) algorithms.

� EXAMPLE 5.20 Let us discuss the computations of a four-point DFT and develop an efficient
algorithm for its computation.

X(k) =
3∑

n=0

x(n)W nk
4 , 0 ≤ k ≤ 3; W4 = e−j2π/4 = −j

Solution These computations can be done in the matrix form

⎡

⎢⎢⎢⎣

X(0)

X(1)

X(2)

X(3)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

W 0
4 W 0

4 W 0
4 W 0

4

W 0
4 W 1

4 W 2
4 W 3

4

W 0
4 W 2

4 W 4
4 W 6

4

W 0
4 W 3

4 W 6
4 W 9

4

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x(0)

x(1)

x(2)

x(3)

⎤

⎥⎥⎥⎦

which requires 16 complex multiplications.

Efficient Approach Using periodicity,

W 0
4 = W 4

4 = 1 ; W 1
4 = W 9

4 = −j

W 2
4 = W 6

4 = −1 ; W 3
4 = j

and substituting in the above matrix form, we get

⎡

⎢⎢⎢⎣

X(0)

X(1)

X(2)

X(3)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

1 1 1 1

1 −j −1 j

1 −1 1 −1

1 j −1 −j

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x(0)

x(1)

x(2)

x(3)

⎤

⎥⎥⎥⎦
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Using symmetry, we obtain

X(0) = x(0) + x(1) + x(2) + x(3) = [x(0) + x(2)
︸ ︷︷ ︸

]

g1

+ [x(1) + x(3)
︸ ︷︷ ︸

g2

]

X(1) = x(0) − jx(1) − x(2) + jx(3) = [x(0) − x(2)
︸ ︷︷ ︸

]

h1

−j[x(1) − x(3)
︸ ︷︷ ︸

h2

]

X(2) = x(0) − x(1) + x(2) − x(3) = [x(0) + x(2)
︸ ︷︷ ︸

]

g1

− [x(1) + x(3)
︸ ︷︷ ︸

g2

]

X(3) = x(0) + jx(1) − x(2) − jx(3) = [x(0) − x(2)
︸ ︷︷ ︸

]

h1

+ j[x(1) − x(3)
︸ ︷︷ ︸

h2

]

Hence an efficient algorithm is

Step 1
g1 = x(0) + x(2)
g2 = x(1) + x(3)
h1 = x(0) − x(2)
h2 = x(1) − x(3)

∥∥∥∥∥∥∥∥∥∥∥∥

Step 2
X(0) = g1 + g2

X(1) = h1 − jh2

X(2) = g1 − g2

X(3) = h1 + jh2

(5.47)

which requires only two complex multiplications, which is a considerably smaller
number, even for this simple example. A signal flowgraph structure for this
algorithm is given in Figure 5.19.

An Interpretation This efficient algorithm (5.47) can be interpreted differ-
ently. First, a four-point sequence x(n) is divided into two two-point sequences,
which are arranged into column vectors as shown here:

[[
x(0)

x(2)

]
,

[
x(1)

x(3)

]]
=

[
x(0) x(1)

x(2) x(3)

]

X (0)x (0)

X (1)x (2)
−1

g1

h1

X (2)x (1)

X (3)x (3)
−1

g2

h2

−j

−1

j

FIGURE 5.19 Signal flowgraph in Example 5.20
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190 Chapter 5 THE DISCRETE FOURIER TRANSFORM

Second, a smaller two-point DFT of each column is taken.

W2

[
x(0) x(1)

x(2) x(3)

]
=

[
1 1

1 −1

][
x(0) x(1)

x(2) x(3)

]

=

[
x(0) + x(2) x(1) + x(3)

x(0) − x(2) x(1) − x(3)

]
=

[
g1 g2

h1 h2

]

Then each element of the resultant matrix is multiplied by {W pq
4 }, where p is

the row index and q is the column index; that is, the following dot-product is
performed:

[
1 1

1 −j

]
· ∗

[
g1 g2

h1 h2

]
=

[
g1 g2

h1 −jh2

]

Finally, two more smaller two-point DFTs are taken of row vectors.

[
g1 g2

h1 −jh2

]
W2 =

[
g1 g2

h1 −jh2

]⎡

⎣
1 1

1 −1

⎤

⎦ =

[
g1 + g2 g1 − g2

h1 − jh2 h1 + jh2

]

=

[
X(0) X(2)

X(1) X(3)

]

Although this interpretation seems to have more multiplications than the effi-
cient algorithm, it does suggest a systematic approach of computing a larger
DFT based on smaller DFTs. �

5.6.2 DIVIDE-AND-COMBINE APPROACH
To reduce the DFT computation’s quadratic dependence on N , one must
choose a composite number N = LM since

L2 + M2 � N2 for large N

Now divide the sequence into M smaller sequences of length L, compute
M smaller L-point DFTs, and then combine these into a larger DFT
using L smaller M -point DFTs. This is the essence of the divide-and-
combine approach. Let N = LM ; then the indices n and k in (5.46) can
be written as

n = � + Lm, 0 ≤ � ≤ L − 1, 0 ≤ m ≤ M − 1

k = q + Mp, 0 ≤ p ≤ L − 1, 0 ≤ q ≤ M − 1
(5.48)
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and write sequences x(n) and X(k) as arrays x(�, m) and X(p, q), respec-
tively. Then (5.46) can be written as

X(p, q) =
L−1∑
�=0

M−1∑
m=0

x(�, m)W (�+Lm)(q+Mp)
N

=
L−1∑
�=0

{
W �q

N

[
M−1∑
m=0

x(�, m)WLmq
N

]}
WM�p

N

=
L−1∑
�=0

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

W �q
N

[
M−1∑
m=0

x(�, m)Wmq
M

]

︸ ︷︷ ︸
M-point DFT

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

W �p
L

︸ ︷︷ ︸
L-point DFT

(5.49)

Hence (5.49) can be implemented as a three-step procedure:

1. First, we compute the M -point DFT array

F (�, q)�
M−1∑
m=0

x(�, m)Wmq
M ; 0 ≤ q ≤ M − 1 (5.50)

for each of the rows � = 0, . . . , L − 1.

2. Second, we modify F (�, q) to obtain another array.

G(�, q) = W �q
N F (�, q),

0 ≤ � ≤ L − 1
0 ≤ q ≤ M − 1

(5.51)

The factor W �q
N is called a twiddle factor.

3. Finally, we compute the L-point DFTs

X(p, q) =
L−1∑
�=0

G(�, q)W �p
L 0 ≤ p ≤ L − 1 (5.52)

for each of the columns q = 0, . . . , M − 1.

The total number of complex multiplications for this approach can now
be given by

CN = LM2 + N + ML2 < o
(
N2) (5.53)

We illustrate this approach in the following example.
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192 Chapter 5 THE DISCRETE FOURIER TRANSFORM

� EXAMPLE 5.21 Develop the divide-and-combine FFT algorithm for N = 15.

Solution Let L = 3 and M = 5. Then from (5.48), we have

n = � + 3M, 0 ≤ � ≤ 2, 0 ≤ m ≤ 4
k = q + 5p, 0 ≤ p ≤ 2, 0 ≤ q ≤ 4 (5.54)

Hence (5.49) becomes

X(p, q) =
2∑

�=0

{
W �q

15

[
4∑

m=0

x(�, m)Wmq
5

]}
W �p

3 (5.55)

To implement (5.55), we arrange the given sequence x(n) in the form of
an array {x(�, m)} using a column-wise ordering as

x(0) x(3) x(6) x(9) x(12)
x(1) x(4) x(7) x(10) x(13)
x(2) x(5) x(8) x(11) x(14)

(5.56)

The first step is to compute five-point DFTs F (�, q) for each of the three
rows and arrange them back in the same array formation

F (0, 0) F (0, 1) F (0, 2) F (0, 3) F (0, 4)
F (1, 0) F (1, 1) F (1, 2) F (1, 3) F (1, 4)
F (2, 0) F (2, 1) F (2, 2) F (2, 3) F (2, 4)

(5.57)

which requires a total of 3×52 = 75 complex operations. The second step
is to modify F (�, q) to obtain the array G(�, q) using the twiddle factors
W �q

15
G(0, 0) G(0, 1) G(0, 2) G(0, 3) G(0, 4)
G(1, 0) G(1, 1) G(1, 2) G(1, 3) G(1, 4)
G(2, 0) G(2, 1) G(2, 2) G(2, 3) G(2, 4)

(5.58)

which requires 15 complex operations. The last step is to perform three-
point DFTs X(p, q) for each of the five columns to obtain

X(0, 0) X(0, 1) X(0, 2) X(0, 3) X(0, 4)
X(1, 0) X(1, 1) X(1, 2) X(1, 3) X(1, 4)
X(2, 0) X(2, 1) X(2, 2) X(2, 3) X(2, 4)

(5.59)

using a total of 5 × 32 = 45 complex operations. According to (5.54), the
array in (5.59) is a rearrangement of X(k) as

X(0) X(1) X(2) X(3) X(4)
X(5) X(6) X(7) X(8) X(9)
X(10) X(11) X(12) X(13) X(14)

(5.60)
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Finally, after “unwinding” this array in the row-wise fashion, we obtain
the required 15-point DFT X(k). The total number of complex operations
required for this divide-and-combine approach is 135, whereas the direct
approach for the 15-point DFT requires 225 complex operations. Thus
the divide-and-combine approach is clearly efficient. �

The divide-and-combine procedure can be further repeated if M or L
are composite numbers. Clearly, the most efficient algorithm is obtained
when N is a highly composite number, that is, N = Rν . Such algorithms
are called radix-R FFT algorithms. When N = Rν1

1 Rν2
2 . . ., then such de-

compositions are called mixed-radix FFT algorithms. The one most pop-
ular and easily programmable algorithm is the radix-2 FFT algorithm.

5.6.3 RADIX-2 FFT ALGORITHM
Let N = 2ν ; then we choose L = 2 and M = N/2 and divide x(n) into
two N/2-point sequences according to (5.48) as

g1(n) = x(2n)
g2(n) = x(2n + 1)

; 0 ≤ n ≤ N

2
− 1

The sequence g1(n) contains even-ordered samples of x(n), while g2(n)
contains odd-ordered samples of x(n). Let G1(k) and G2(k) be N/2-point
DFTs of g1(n) and g2(n), respectively. Then (5.49) reduces to

X(k) = G1(k) + W k
NG2(k), 0 ≤ k ≤ N − 1 (5.61)

This is called a merging formula, which combines two N/2-point DFTs
into one N -point DFT. The total number of complex multiplications and
additions reduces to

CN =
N2

2
+ N = o

(
N2/2

)

This procedure can be repeated again and again. At each stage, the
sequences are decimated and the smaller DFTs combined. This decima-
tion ends after ν stages when we have N one-point sequences, which are
also one-point DFTs. The resulting procedure is called the decimation-in-
time FFT (DIT-FFT) algorithm, for which the total number of complex
multiplications is

CN = Nν = N log2 N

Clearly, if N is large, then CN is approximately linear in N , which was
the goal of our efficient algorithm. Using additional symmetries, CN can
be reduced to N

2 log2 N . The signal flowgraph for this algorithm is shown
in Figure 5.20 for N = 8.
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FIGURE 5.20 Decimation-in-time FFT structure for N = 8

In an alternate approach, we choose M = 2, L = N/2 and follow the
steps in (5.49). Note that the initial DFTs are two-point DFTs, which
contain no complex multiplications. From (5.50),

F (0, m) = x(0, m) + x(1, m)W 0
2

= x(n) + x(n + N/2), 0 ≤ n ≤ N/2
F (1, m) = x(0, m) + x(1, m)W 1

2

= x(n) − x(n + N/2), 0 ≤ n ≤ N/2

and from (5.51),

G(0, m) = F (0, m)W 0
N

= x(n) + x(n + N/2), 0 ≤ n ≤ N/2

G(1, m) = F (1, m)Wm
N

= [x(n) − x(n + N/2)]W n
N , 0 ≤ n ≤ N/2

(5.62)
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Let G(0, m) = d1(n) and G(1, m) = d2(n) for 0 ≤ n ≤ N/2 − 1 (since
they can be considered as time-domain sequences); then from (5.52) we
have

X(0, q) = X(2q) = D1(q)

X(1, q) = X(2q + 1) = D2(q)
(5.63)

This implies that the DFT values X(k) are computed in a decimated
fashion. Therefore, this approach is called a decimation-in-frequency FFT
(DIF-FFT) algorithm. Its signal flowgraph is a transposed structure of
the DIT-FFT structure, and its computational complexity is also equal
to N

2 log2 N .

5.6.4 MATLAB IMPLEMENTATION
MATLAB provides a function called fft to compute the DFT of a vec-
tor x. It is invoked by X = fft(x,N), which computes the N -point DFT.
If the length of x is less than N, then x is padded with zeros. If the argu-
ment N is omitted, then the length of the DFT is the length of x. If x is a
matrix, then fft(x,N) computes the N -point DFT of each column of x.

This fft function is written in machine language and not using
MATLAB commands (i.e., it is not available as a .m file). Therefore, it
executes very fast. It is written as a mixed-radix algorithm. If N is a
power of two, then a high-speed radix-2 FFT algorithm is employed. If
N is not a power of two, then N is decomposed into prime factors and
a slower mixed-radix FFT algorithm is used. Finally, if N is a prime
number, then the fft function is reduced to the raw DFT algorithm.

The inverse DFT is computed using the ifft function, which has the
same characteristics as fft.

� EXAMPLE 5.22 In this example, we will study the execution time of the fft function for 1 ≤
N ≤ 2048. This will reveal the divide-and-combine strategy for various values
of N . One note of caution. The results obtained in this example are valid only
for MATLAB Versions 5 and earlier. Beginning in Version 6, MATLAB is using
a new numerical computing core called LAPACK. It is optimized for memory
references and cache usage and not for individual floating-point operations.
Therefore, results for Version 6 and later are difficult to interpret. Also, the
execution times given here are for a specific computer and may vary on different
computers.

Solution To determine the execution time, MATLAB provides two functions. The clock
function provides the instantaneous clock reading, while the etime(t1,t2) func-
tion computes the elapsed time between two time marks t1 and t2. To determine
the execution time, we will generate random vectors from length 1 through 2048,
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196 Chapter 5 THE DISCRETE FOURIER TRANSFORM

compute their FFTs, and save the computation time in an array. Finally, we
will plot this execution time versus N .

MATLAB script:

>> Nmax = 2048; fft_time=zeros(1,Nmax);
>> for n=1:1:Nmax
>> x=rand(1,n);
>> t=clock;fft(x);fft_time(n)=etime(clock,t);
>> end
>> n=[1:1:Nmax]; plot(n,fft_time,’.’)
>> xlabel(’N’);ylabel(’Time in Sec’); title(’FFT Execution Times’)

The plot of the execution times is shown in Figure 5.21. This plot is very
informative. The points in the plot do not show one clear function but appear
to group themselves into various trends. The uppermost group depicts a o(N2)
dependence on N , which means that these values must be prime numbers be-
tween 1 and 2048 for which the FFT algorithm defaults to the DFT algorithm.
Similarly, there are groups corresponding to the o

(
N2/2

)
, o

(
N2/3

)
, o

(
N2/4

)
,

and so on, dependencies for which the number N has fewer decompositions.
The last group shows the (almost linear) o (N log N) dependence, which is for
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FIGURE 5.21 FFT execution times for 1 <= N <= 2048
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N = 2ν , 0 ≤ ν ≤ 11. For these values of N , the radix-2 FFT algorithm is used.
For all other values, a mixed-radix FFT algorithm is employed. This shows that
the divide-and-combine strategy is very effective when N is highly composite.
For example, the execution time is 0.16 sec for N = 2048, 2.48 sec for N = 2047,
and 46.96 sec for N = 2039. �

The MATLAB functions developed previously in this chapter should
now be modified by substituting the fft function in place of the dft
function. From the preceding example, care must be taken to use a highly
composite N . A good practice is to choose N = 2ν unless a specific
situation demands otherwise.

5.6.5 FAST CONVOLUTIONS
The conv function in MATLAB is implemented using the filter function
(which is written in C) and is very efficient for smaller values of N (<50).
For larger values of N , it is possible to speed up the convolution using the
FFT algorithm. This approach uses the circular convolution to implement
the linear convolution, and the FFT to implement the circular convolu-
tion. The resulting algorithm is called a fast convolution algorithm. In
addition, if we choose N = 2ν and implement the radix-2 FFT, then the
algorithm is called a high-speed convolution. Let x1 (n) be an N1-point
sequence, and let x2 (n) be an N2-point sequence; then for high-speed
convolution N is chosen to be

N = 2
log2(N1+N2−1)� (5.64)

where �x� is the smallest integer greater than x (also called a ceiling
function). The linear convolution x1 (n) ∗ x2 (n) can now be implemented
by two N -point FFTs, one N -point IFFT, and one N -point dot-product.

x1 (n) ∗ x2 (n) = IFFT [FFT [x1 (n)] · FFT [x2 (n)]] (5.65)

For large values of N , (5.65) is faster than the time-domain convolution,
as we see in the following example.

� EXAMPLE 5.23 To demonstrate the effectiveness of the high-speed convolution, let us compare
the execution times of two approaches. Let x1 (n) be an L-point uniformly
distributed random number between [0, 1], and let x2 (n) be an L-point Gaussian
random sequence with mean 0 and variance 1. We will determine the average
execution times for 1 ≤ L ≤ 150, in which the average is computed over the
100 realizations of random sequences. (Please see the cautionary note given in
Example 5.22.)
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Solution MATLAB script:

conv_time = zeros(1,150); fft_time = zeros(1,150);
%
for L = 1:150

tc = 0; tf=0;
N = 2*L-1; nu = ceil(log10(N)/log10(2)); N = 2ˆnu;
for I=1:100

h = randn(1,L); x = rand(1,L);
t0 = clock; y1 = conv(h,x); t1=etime(clock,t0); tc = tc+t1;
t0 = clock; y2 = ifft(fft(h,N).*fft(x,N)); t2=etime(clock,t0);
tf = tf+t2;

end
%

conv_time(L)=tc/100; fft_time(L)=tf/100;
end
%
n = 1:150; subplot(1,1,1);
plot(n(25:150),conv_time(25:150),n(25:150),fft_time(25:150))

Figure 5.22 shows the linear convolution and the high-speed convolution times
for 25 ≤ L ≤ 150. It should be noted that these times are affected by the
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FIGURE 5.22 Comparison of linear and high-speed convolution times
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computing platform used to execute the MATLAB script. The plot in Figure 5.22
was obtained on a 33 MHz 486 computer. It shows that for low values of L
the linear convolution is faster. The crossover point appears to be L = 50,
beyond which the linear convolution time increases exponentially, while the
high-speed convolution time increases fairly linearly. Note that since N = 2ν ,
the high-speed convolution time is constant over a range on L. �

5.6.6 HIGH-SPEED BLOCK CONVOLUTIONS
Earlier we discussed a block convolution algorithm called the overlap-and-
save method (and its companion the overlap-and-add method), which is
used to convolve a very large sequence with a relatively smaller sequence.
The MATLAB function ovrlpsav developed in that section uses the DFT
to implement the linear convolution. We can now replace the DFT by the
radix-2 FFT algorithm to obtain a high-speed overlap-and-save algorithm.
To further reduce the computations, the FFT of the shorter (fixed) se-
quence can be computed only once. The following hsolpsav function
shows this algorithm.

function [y] = hsolpsav(x,h,N)
% High-speed Overlap-Save method of block convolutions using FFT
% --------------------------------------------------------------
% [y] = hsolpsav(x,h,N)
% y = output sequence
% x = input sequence
% h = impulse response
% N = block length (must be a power of two)
%
N = 2ˆ(ceil(log10(N)/log10(2));
Lenx = length(x); M = length(h);
M1 = M-1; L = N-M1; h = fft(h,N);
%
x = [zeros(1,M1), x, zeros(1,N-1)];
K = floor((Lenx+M1-1)/(L)); % # of blocks
Y = zeros(K+1,N);
for k=0:K
xk = fft(x(k*L+1:k*L+N));
Y(k+1,:) = real(ifft(xk.*h));
end
Y = Y(:,M:N)’; y = (Y(:))’;

A similar modification can be done to the overlap-and-add algorithm.
MATLAB also provides the function fftfilt to implement the overlap-
and-add algorithm.
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5.7 PROBLEMS

P5.1 Compute the DFS coefficients of the following periodic sequences using the DFS definition,
and then verify your answers using MATLAB.

1. x̃1(n) = {4, 1, −1, 1}, N = 4
2. x̃2(n) = {2, 0, 0, 0, −1, 0, 0, 0}, N = 8
3. x̃3(n) = {1, 0, −1, −1, 0}, N = 5
4. x̃4(n) = {0, 0, 2j, 0, 2j, 0}, N = 6
5. x̃5(n) = {3, 2, 1}, N = 3

P5.2 Determine the periodic sequences given the following periodic DFS coefficients. First use
the IDFS definition, and then verify your answers using MATLAB.

1. X̃1(k) = {4, 3j, −3j}, N = 3
2. X̃2(k) = {j, 2j, 3j, 4j}, N = 4
3. X̃3(k) = {1, 2 + 3j, 4, 2 − 3j}, N = 4
4. X̃4(k) = {0, 0, 2, 0, 0}, N = 5
5. X̃5(k) = {3, 0, 0, 0, −3, 0, 0, 0}, N = 8

P5.3 Let x̃1(n) be periodic with fundamental period N = 40, where one period is given by

x̃1(n) =
{

5 sin(0.1πn), 0 ≤ n ≤ 19
0, 20 ≤ n ≤ 39

and let x̃2(n) be periodic with fundamental period N = 80, where one period is given by

x̃2(n) =
{

5 sin(0.1πn), 0 ≤ n ≤ 19
0, 20 ≤ n ≤ 79

These two periodic sequences differ in their periodicity but otherwise have the same
nonzero samples.

1. Compute the DFS X̃1(k) of x̃1(n), and plot samples (using the stem function) of its
magnitude and angle versus k.

2. Compute the DFS X̃2(k) of x̃2(n), and plot samples of its magnitude and angle versus k.
3. What is the difference between the two preceding DFS plots?

P5.4 Consider the periodic sequence x̃1(n) given in Problem P5.3. Let x̃2(n) be periodic with
fundamental period N = 40, where one period is given by

x̃2(n) =
{

x̃1(n), 0 ≤ n ≤ 19
−x̃1(n − 20), 20 ≤ n ≤ 39

1. Determine analytically the DFS X̃2(k) in terms of X̃1(k).
2. Compute the DFS X̃2(k) of x̃2(n), and plot samples of its magnitude and angle versus k.
3. Verify your answer in part 1 using the plots of X̃1(k) and X̃2(k)?

P5.5 Consider the periodic sequence x̃1(n) given in Problem P5.3. Let x̃3(n) be periodic with
period 80, obtained by concatenating two periods of x̃1(n), that is,

x̃3(n) = [x̃1(n), x̃1(n)]PERIODIC

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Problems 201

Clearly, x̃3(n) is different from x̃2(n) of Problem P5.3 even though both of them are
periodic with period 80.

1. Compute the DFS X̃3(k) of x̃3(n), and plot samples of its magnitude and angle versus k.
2. What effect does the periodicity doubling have on the DFS?
3. Generalize this result to M -fold periodicity. In particular, show that if

x̃M (n) =

⎡

⎢⎣x̃1(n), x̃1(n), . . . , x̃1(n)
︸ ︷︷ ︸

M times

⎤

⎥⎦

PERIODIC

then

X̃M (Mk) = MX̃1(k), k = 0, 1, . . . , N − 1
X̃M (k) = 0, k �= 0, M, . . . , MN

P5.6 Let X(ejω) be the DTFT of a finite-length sequence

x(n) =

⎧
⎨

⎩

n + 1, 0 ≤ n ≤ 49
100 − n, 50 ≤ n ≤ 99

0, otherwise

1. Let

y1(n) =
10-point
IDFS

[
X(ej0), X(ej2π/10), X(ej4π/10), . . . , X(ej18π/10)

]

Determine y1(n) using the frequency sampling theorem. Verify your answer using
MATLAB.

2. Let

y2(n) =
200-point

IDFS
[
X(ej0), X(ej2π/200), X(ej4π/200), . . . , X(ej398π/200)

]

Determine y2(n) using the frequency sampling theorem. Verify your answer using
MATLAB.

3. Comment on your results in parts (a) and (b).

P5.7 Let x̃(n) be a periodic sequence with period N , and let

ỹ(n)
�
= x̃(−n) = x̃(N − n)

that is, ỹ(n) is a periodically folded version of x̃(n). Let X̃(k) and Ỹ (k) be the DFS
sequences.

1. Show that

Ỹ (k) = X̃(−k) = X̃(N − k)

that is, Ỹ (k) is also a periodically folded version of X̃(k).
2. Let x̃(n) = {2

↑
, 4, 6, 1, 3, 5}PERIODIC with N = 6.
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202 Chapter 5 THE DISCRETE FOURIER TRANSFORM

(a) Sketch ỹ(n) for 0 ≤ n ≤ 5.
(b) Compute X̃(k) for 0 ≤ k ≤ 5.
(c) Compute Ỹ (k) for 0 ≤ k ≤ 5.
(d) Verify the relation in part 1.

P5.8 Consider the following finite-length sequence:

x(n) =
{

sinc2{(n − 50)/2}, 0 ≤ n ≤ 100
0, else

1. Determine the DFT X(k) of x(n). Plot (using the stem function) its magnitude and
phase.

2. Plot the magnitude and phase of the DTFT X(ejω) of x(n) using MATLAB.
3. Verify that the above DFT is the sampled version of X(ejω). It might be helpful to

combine the above two plots in one graph using the hold function.
4. Is it possible to reconstruct the DTFT X(ejω) from the DFT X(k)? If possible, give the

necessary interpolation formula for reconstruction. If not possible, state why this
reconstruction cannot be done.

P5.9 Let a finite-length sequence be given by

x(n) =
{

2e−0.9|n|, −5 ≤ n ≤ 5
0, otherwise

Plot the DTFT X(ejω) of the above sequence using DFT as a computation tool. Choose the
length N of the DFT so that this plot appears to be a smooth graph.

P5.10 Plot the DTFT magnitude and angle of each of the following sequences using the DFT as a
computation tool. Make an educated guess about the length N so that your plots are
meaningful.

1. x(n) = (0.6)|n| [u(n + 10) − u(n − 11)]
2. x(n) = n(0.9)n [u(n) − u(n − 21)]
3. x(n) = [cos(0.5πn) + j sin(0.5πn)][u(n) − u(n − 51)]
4. x(n) = {1, 2, 3, 4

↑
, 3, 2, 1}

5. x(n) = {−1, −2, −3, 0
↑
, 3, 2, 1}

P5.11 Let H(ejω) be the frequency response of a real, causal discrete-time LSI system.

1. If

Re
{

H
(
ejω

)}
=

5∑

k=0

(0.9)k cos (kω)

determine the impulse response h(n) analytically. Verify your answer using DFT as a
computation tool. Choose the length N appropriately.

2. If

Im
{

H
(
ejω

)}
=

5∑

�=0

2� sin (�ω) , and
∫ π

−π

H(ejω)dω = 0
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determine the impulse response h(n) analytically. Verify your answer using DFT as a
computation tool. Again choose the length N appropriately.

P5.12 Let X(k) denote the N -point DFT of an N -point sequence x(n). The DFT X(k) itself is an
N -point sequence.

1. If the DFT of X(k) is computed to obtain another N -point sequence x1(n), show that

x1(n) = Nx((−n))N , 0 ≤ n ≤ N − 1

2. Using this property, design a MATLAB function to implement an N -point circular
folding operation x2(n) = x1((−n))N . The format should be

x2 = circfold(x1,N)
% Circular folding using DFT
% x2 = circfold(x1,N)
% x2 = circularly folded output sequence
% x1 = input sequence of length <= N
% N = circular buffer length

3. Determine the circular folding of the following sequence:

x1(n) = {1, 3, 5, 7, 9, −7, −5, −3, −1}

P5.13 Let X(k) be an N -point DFT of an N -point sequence x(n). Let N be an even integer.

1. If x(n) = x(n + N/2) for all n, then show that X(k) = 0 for k odd (i.e., nonzero for k
even). Verify this result for x(n) = {1, 2, −3, 4, 5, 1, 2, −3, 4, 5}.

2. If x(n) = −x(n + N/2) for all n, then show that X(k) = 0 for k even (i.e., nonzero for
k odd). Verify this result for x(n) = {1, 2, −3, 4, 5, −1, −2, 3, −4, −5}.

P5.14 Let X(k) be an N -point DFT of an N -point sequence x(n). Let N = 4ν where ν is an
integer.

1. If x(n) = x(n + ν) for all n, then show that X(k) is nonzero for k = 4� for 0 ≤ � ≤ ν − 1.
Verify this result for x(n) = {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}.

2. If x(n) = −x(n + ν) for all n, then show that X(k) is nonzero for k = 4� + 2 for
0 ≤ � ≤ ν − 1. Verify this result for x(n) = {1, 2, 3, −1, −2, −3, 1, 2, 3, −1, −2, −3}.

P5.15 Let X(k) be an N -point DFT of an N -point sequence x(n). Let N = 2µν where µ and ν are
integers.

1. If x(n) = x(n + ν) for all n, then show that X(k) is nonzero for k = 2(µ�) for 0 ≤ � ≤
ν − 1. Verify this result for x(n) = {1, −2, 3, 1, −2, 3, 1, −2, 3, 1, −2, 3, 1, −2, 3, 1, −2, 3}.

2. If x(n) = −x(n + ν) for all n, then show that X(k) is nonzero for k = 2(µ� + 1) for
0 ≤ � ≤ ν − 1. Verify this result for x(n) = {1, −2, 3, −1, 2, −3, 1, −2, 3, −1, 2, −3, 1, −2,
3, −1, 2, −3}.

P5.16 Let X(k) and Y (k) be 10-point DFTs of two 10-point sequences x(n) and y(n),
respectively. If

X(k) = exp(j0.2πk), 0 ≤ k ≤ 9

determine Y (k) in each of the following cases without computing the DFT.
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1. y(n) = x((n − 5))10
2. y(n) = x((n + 4))10
3. y(n) = x((3 − n))10
4. y(n) = x(n)ej3πn/5

5. y(n) = x(n) 10© x((−n))10

Verify your answers using MATLAB.

P5.17 The first six values of the 10-point DFT of a real-valued sequence x(n) are given by

{10, −2 + j3, 3 + j4, 2 − j3, 4 + j5, 12}

Determine the DFT of each of the following sequences using DFT properties.

1. x1(n) = x((2 − n))10
2. x2(n) = x((n + 5))10
3. x3(n) = x(n)x((−n))10
4. x4(n) = x(n) 10© x((−n))10
5. x5(n) = x(n)e−j4πn/5

P5.18 Complex-valued N -point sequence x(n) can be decomposed into N -point circular-conjugate-
symmetric and circular-conjugate-antisymmetric sequences using the following relations:

xccs(n)
�
=

1
2

[x(n) + x∗((−n))N ]

xcca(n)
�
=

1
2

[x(n) − x∗((−n))N ]

If XR(k) and XI(k) are the real and imaginary parts of the N -point DFT of x(n), then

DFT [xccs(n)] = XR(k) and DFT [xcca(n)] = jXI(k)

1. Prove these relations property analytically.
2. Modify the circevod function developed in the chapter so that it can be used for

complex-valued sequences.
3. Let X(k) = [3 cos(0.2πk) + j4 sin(0.1πk)][u(k) − u(k − 20)] be a 20-point DFT. Verify

this symmetry property using your circevod function.

P5.19 If X(k) is the N -point DFT of an N -point complex-valued sequence

x(n) = xR(n) + jxI(n)

where xR(n) and xI(n) are the real and imaginary parts of x(n), then

DFT [xR(n)] = Xccs(k) and DFT [jxI(n)] = Xcca(k)

where Xccs(k) and Xcca(k) are the circular-even and circular-odd components of X(k) as
defined in Problem P5.18.

1. Prove this property analytically.
2. This property can be used to compute the DFTs of two real-valued N -point sequences

using one N -point DFT operation. Specifically, let x1(n) and x2(n) be two N -point
sequences. Then we can form a complex-valued sequence

x(n) = x1(n) + jx2(n)
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and use this property. Develop a MATLAB function to implement this approach with
the following format.

function [X1,X2] = real2dft(x1,x2,N)
% DFTs of two real sequences
% [X1,X2] = real2dft(x1,x2,N)
% X1 = n-point DFT of x1
% X2 = n-point DFT of x2
% x1 = sequence of length <= N
% x2 = sequence of length <= N
% N = length of DFT

3. Compute and plot the DFTs of the following two sequences using this function:

x1(n) = cos(0.1πn), x2(n) = sin(0.2πn); 0 ≤ n ≤ 39

P5.20 Using the frequency domain approach, devise a MATLAB function to determine a circular
shift x((n − m))N , given an N1-point sequence x(n) where N1 ≤ N . Your function should
have the following format.

function y = cirshftf(x,m,N)
% Circular shift of m samples wrt size N in sequence x: (freq domain)
% -------------------------------------------------------------------
% y = cirshftf(x,m,N)
% y : output sequence containing the circular shift
% x : input sequence of length <= N
% m : sample shift
% N : size of circular buffer
% Method: y(n) = idft(dft(x(n))*WNˆ(mk))
%
% If m is a scalar then y is a sequence (row vector)
% If m is a vector then y is a matrix, each row is a circular shift
% in x corresponding to entries in vector m
% M and x should not be matrices

Verify your function on the following sequence:

x(n) = {5
↑
, 4, 3, 2, 1, 0, 0, 1, 2, 3, 4}, 0 ≤ n ≤ 10

with (a) m = −5, N = 12 and (b) m = 8, N = 15.

P5.21 Using the analysis and synthesis equations of the DFT, show that the energy of a sequence
satisfies

EX
�
=

N−1∑

n=0

|x(n)|2 =
1
N

N−1∑

k=0

|X(k)|2

This is commonly referred to as a Parseval’s relation for the DFT. Verify this relation using
MATLAB on the sequence in Problem P5.20.
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P5.22 A 512-point DFT X(k) of a real-valued sequence x(n) has the DFT values

X(0) = 20 + jα; X(5) = 20 + j30; X(k1) = −10 + j15; X(152)= 17 + j23;

X(k2) = 20 − j30; X(k3) = 17 − j23; X(480) = −10 − j15; X(256)= 30 + jβ

and all other values are known to be zero.

1. Determine the real-valued coefficients α and β.
2. Determine the values of the integers k1, k2, and k3.
3. Determine the energy of the signal x(n).
4. Express the sequence x(n) in a closed form.

P5.23 Let x(n) be a finite length sequence given by

x(n) =

{
. . . , 0, 0, 0, 1

↑
, 2, −3, 4, −5, 0, . . .

}

Determine and sketch the sequence x((−8 − n))7R7 (n) where

R7 (n) =
{

1, 0 ≤ n ≤ 6
0, elsewhere

P5.24 The circonvt function developed in this chapter implements the circular convolution as a
matrix-vector multiplication. The matrix corresponding to the circular shifts {x((n − m))N ;
0 ≤ n ≤ N − 1} has an interesting structure. This matrix is called a circulant matrix, which
is a special case of Toeplitz matrix introduced in Chapter 2.

1. Consider the sequences given in Example 5.13. Express x1(n) as a column vector x1 and
x2((n − m))N as a circulant matrix X2 with rows corresponding to n = 0, 1, 2, 3.
Characterize this matrix X2. Can it completely be described by its first row (or column)?

2. Determine the circular convolution as X2x1 and verify your calculations.

P5.25 Develop a MATLAB function to construct a circulant matrix C given an N -point sequence
x(n). Use the toeplitz function to implement matrix C. Your subroutine function should
have the following format.

function [C] = circulnt(x,N)
% Circulant Matrix from an N-point sequence
% [C] = circulnt(x,N)
% C = circulant matrix of size NxN
% x = sequence of length <= N
% N = size of circulant matrix

Using this function, modify the circular convolution function circonvt discussed in the
chapter so that the for...end loop is eliminated. Verify your functions on the sequences in
Problem P5.24.

P5.26 Using the frequency domain approach, devise a MATLAB function to implement the
circular convolution operation between two sequences. The format of the sequence should be
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function x3 = circonvf(x1,x2,N)
% Circular convolution in the frequency domain
% x3 = circonvf(x1,x2,N)
% x3 = convolution result of length N
% x1 = sequence of length <= N
% x2 = sequence of length <= N
% N = length of circular buffer

Using your function, compute the circular convolution {4, 3, 2, 1} 4© {1, 2, 3, 4}.

P5.27 The following four sequences are given:

x1(n) = {1
↑
, 3, 2, −1}; x2(n) = {2

↑
, 1, 0, −1}; x3(n) = x1(n) ∗ x2(n); x4(n) = x1(n) 5© x2(n)

1. Determine and sketch x3(n).
2. Using x3(n) alone, determine and sketch x4(n). Do not directly compute x4(n).

P5.28 Compute the N -point circular convolution for the following sequences. Plot their samples.

1. x1(n) = sin(πn/3)R6(n), x2(n) = cos(πn/4)R8(n); N = 10
2. x1(n) = cos (2πn/N) RN (n), x2(n) = sin (2πn/N) RN (n); N = 32
3. x1(n) = (0.8)n RN (n), x2(n) = (−0.8)n RN (n); N = 20
4. x1(n) = nRN (n), x2(n) = (N − n) RN (n); N = 10
5. x1(n) = (0.8)nR20, x2(n) = u(n) − u(n − 40); N = 50

P5.29 Let x1(n) and x2(n) be two N -point sequences.

1. If y(n) = x1(n) N© x2(n) show that

N−1∑

n=0

y(n) =

(
N−1∑

n=0

x1(n)

)(
N−1∑

n=0

x2(n)

)

2. Verify this result for the following sequences:

x1(n) = {9, 4, −1, 4, −4, −1, 8, 3}; x2(n) = {−5, 6, 2, −7, −5, 2, 2, −2}

P5.30 Let X(k) be the eight-point DFT of a three-point sequence x(n) = {5
↑
, −4, 3}. Let Y (k) be

the eight-point DFT of a sequence y(n). Determine y(n) when Y (k) = W 5k
8 X(−k)8.

P5.31 For the following sequences, compute (i) the N -point circular convolution x3(n) = x1(n)
N© x2(n), (ii) the linear convolution x4(n) = x1(n) ∗ x2(n), and (iii) the error sequence

e(n) = x3(n) − x4(n).

1. x1(n) = {1, 1, 1, 1} , x2(n) = cos (πn/4) R6(n); N = 8
2. x1(n) = cos (2πn/N) R16(n), x2(n) = sin (2πn/N) R16(n); N = 32
3. x1(n) = (0.8)n R10(n), x2(n) = (−0.8)n R10(n); N = 15
4. x1(n) = nR10(n), x2(n) = (N − n) R10(n); N = 10
5. x1(n) = {1, −1, 1, −1} , x2(n) = {1, 0, −1, 0}; N = 5

In each case, verify that e(n) = x4 (n + N).
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208 Chapter 5 THE DISCRETE FOURIER TRANSFORM

P5.32 The overlap-add method of block convolution is an alternative to the overlap-save method.
Let x(n) be a long sequence of length ML where M, L � 1. Divide x(n) into M segments
{xm(n), m = 1, . . . , M} each of length L

xm(n) =
{

x(n), mL ≤ n ≤ (m + 1) L − 1
0, elsewhere so that x(n) =

M−1∑

m=0

xm(n)

Let h(n) be an L-point impulse response. Then

y(n) = x(n) ∗ h(n) =
M−1∑

m=0

xm(n) ∗ h(n) =
M−1∑

m=0

ym(n); ym(n)
�
= xm(n) ∗ h(n)

Clearly, ym(n) is a (2L − 1)-point sequence. In this method, we have to save the
intermediate convolution results and then properly overlap these before adding to form the
final result y(n). To use DFT for this operation, we have to choose N ≥ (2L − 1).

1. Develop a MATLAB function to implement the overlap-add method using the circular
convolution operation. The format should be

function [y] = ovrlpadd(x,h,N)
% Overlap-Add method of block convolution
% [y] = ovrlpadd(x,h,N)
%
% y = output sequence
% x = input sequence
% h = impulse response
% N = block length >= 2*length(h)-1

2. Incorporate the radix-2 FFT implementation in this function to obtain a high-speed
overlap-add block convolution routine. Remember to choose N = 2ν .

3. Verify your functions on the following two sequences:

x(n) = cos (πn/500) R4000(n), h(n) = {1, −1, 1, −1}

P5.33 Given the following sequences x1(n) and x2(n):

x1(n) = {2, 1, 1, 2} , x2(n) = {1, −1, −1, 1}

1. Compute the circular convolution x1(n) N© x2(n) for N = 4, 7, and 8.
2. Compute the linear convolution x1(n) ∗ x2(n).
3. Using results of calculations, determine the minimum value of N necessary so that linear

and circular convolutions are the same on the N -point interval.
4. Without performing the actual convolutions, explain how you could have obtained the

result of P5.33.3.

P5.34 Let

x(n) =
{

A cos (2π�n/N), 0 ≤ n ≤ N − 1
0, elsewhere = A cos (2π�n/N) RN (n)
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where � is an integer. Notice that x(n) contains exactly � periods (or cycles) of the cosine
waveform in N samples. This is a windowed cosine sequence containing no leakage.

1. Show that the DFT X(k) is a real sequence given by

X(k) =
AN

2
δ (k − �) +

AN

2
δ(k − N + �); 0 ≤ k ≤ (N − 1), 0 < � < N

2. Show that if � = 0, then the DFT X(k) is given by

X(k) = ANδ(k); 0 ≤ k ≤ (N − 1)

3. Explain clearly how these results should be modified if � < 0 or � > N .
4. Verify the results of parts 1, 2, and 3 using the following sequences. Plot the real parts of

the DFT sequences using the stem function.

(a) x1(n) = 3 cos (0.04πn) R200(n)
(b) x2(n) = 5R50(n)
(c) x3(n) = [1 + 2 cos (0.5πn) + cos (πn)] R100(n)
(d) x4(n) = cos (25πn/16) R64(n)
(e) x5(n) = [4 cos (0.1πn) − 3 cos (1.9πn)] R40(n)

P5.35 Let x(n) = A cos (ω0n) RN (n), where ω0 is a real number.

1. Using the properties of the DFT, show that the real and the imaginary parts of X(k) are
given by

X(k) = XR(k) + jXI(k)

XR(k) = (A/2) cos
[

π(N−1)
N

(k − f0N)
] sin [π (k − f0N)]

sin [π(k − f0N)/N ]

+ (A/2) cos
[

π(N−1)
N

(k + f0N)
] sin [π (k − N + f0N)]

sin [π(k − N + f0N)/N ]

XI(k) = − (A/2) sin
[

π(N−1)
N

(k − f0N)
] sin [π (k − f0N)]

sin [π(k − f0N)/N ]

− (A/2) sin
[

π(N−1)
N

(k + f0N)
] sin [π (k − N + f0N)]

sin [π(k − N + f0N)/N ]

2. This result implies that the original frequency ω0 of the cosine waveform has leaked into
other frequencies that form the harmonics of the time-limited sequence, and hence it is
called the leakage property of cosines. It is a natural result due to the fact that
bandlimited periodic cosines are sampled over noninteger periods. Explain this result
using the periodic extension x̃(n) of x(n) and the result in Problem P5.34.1.

3. Verify the leakage property using x(n) = cos (5πn/99) R200(n). Plot the real and the
imaginary parts of X(k) using the stem function.

P5.36 Let

x(n) =
{

A sin (2π�n/N) , 0 ≤ n ≤ N − 1
0, elsewhere = A sin (2π�n/N) RN (n)
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210 Chapter 5 THE DISCRETE FOURIER TRANSFORM

where � is an integer. Notice that x(n) contains exactly � periods (or cycles) of the sine
waveform in N samples. This is a windowed sine sequence containing no leakage.

1. Show that the DFT X(k) is a purely imaginary sequence given by

X(k) =
AN

2j
δ (k − �) − AN

2j
δ(k − N + �); 0 ≤ k ≤ (N − 1), 0 < � < N

2. Show that if � = 0, then the DFT X(k) is given by

X(k) = 0; 0 ≤ k ≤ (N − 1)

3. Explain clearly how these results should be modified if � < 0 or � > N .
4. Verify the results of parts 1, 2, and 3 using the following sequences. Plot the imaginary

parts of the DFT sequences using the stem function.

(a) x1(n) = 3 sin (0.04πn) R200(n)
(b) x2(n) = 5 sin 10πnR50(n)
(c) x3(n) = [2 sin (0.5πn) + sin (πn)] R100(n)
(d) x4(n) = sin (25πn/16) R64(n)
(e) x5(n) = [4 sin (0.1πn) − 3 sin (1.9πn)] R20(n)

P5.37 Let x(n) = A sin (ω0n) RN (n), where ω0 is a real number.

1. Using the properties of the DFT, show that the real and the imaginary parts of X(k) are
given by

X(k) = XR(k) + jXI(k)

XR(k) = − (A/2) sin
[

π(N−1)
N

(k − f0N)
] sin [π (k − f0N)]

sin [π(k − f0N)/N ]

+ (A/2) sin
[

π(N−1)
N

(k + f0N)
] sin [π (k − N + f0N)]

sin [π(k − N + f0N)/N ]

XI(k) = − (A/2) cos
[

π(N−1)
N

(k − f0N)
] sin [π (k − f0N)]

sin [π(k − f0N)/N ]

+ (A/2) cos
[

π(N−1)
N

(k + f0N)
] sin [π (k − N + f0N)]

sin [π(k − N + f0N)/N ]

2. This result is the leakage property of sines. Explain it using the periodic extension x̃(n)
of x(n) and the result in Problem P5.36.1.

3. Verify the leakage property using x(n) = sin (5πn/99) R100(n). Plot the real and the
imaginary parts of X(k) using the stem function.

P5.38 An analog signal xa(t) = 2 sin (4πt) + 5 cos (8πt) is sampled at t = 0.01n for
n = 0, 1, . . . , N − 1 to obtain an N -point sequence x(n). An N -point DFT is used to obtain
an estimate of the magnitude spectrum of xa(t).

1. From the following values of N , choose the one that will provide the accurate estimate of
the spectrum of xa(t). Plot the real and imaginary parts of the DFT spectrum X(k).
(a) N = 40, (b) N = 50, (c) N = 60.
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2. From the following values of N , choose the one that will provide the least amount of
leakage in the spectrum of xa(t). Plot the real and imaginary parts of the DFT spectrum
X(k).
(a) N = 90, (b) N = 95, (c) N = 99.

P5.39 Using (5.49), determine and draw the signal flow graph for the N = 8 point, radix-2
decimation-in-frequency FFT algorithm. Using this flow graph, determine the DFT of the
sequence

x(n) = cos (πn/2) , 0 ≤ n ≤ 7

P5.40 Using (5.49), determine and draw the signal flow graph for the N = 16 point, radix-4
decimation-in-time FFT algorithm. Using this flow graph, determine the DFT of the
sequence

x(n) = cos (πn/2) , 0 ≤ n ≤ 15

P5.41 Let x(n) be a uniformly distributed random number between [−1, 1] for 0 ≤ n ≤ 106. Let

h(n) = sin(0.4πn), 0 ≤ n ≤ 100

1. Using the conv function, determine the output sequence y(n) = x(n) ∗ h(n).
2. Consider the overlap-and-save method of block convolution along with the FFT

algorithm to implement high-speed block convolution. Using this approach, determine
y(n) with FFT sizes of 1024, 2048, and 4096.

3. Compare these approaches in terms of the convolution results and their execution times.
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C H A P T E R 6
Implementation
of Discrete-Time
Filters

In earlier chapters, we studied the theory of discrete systems in both
the time and frequency domains. We will now use this theory for the
processing of digital signals. To process signals, we have to design and
implement systems called filters (or spectrum analyzers in some contexts).
The filter design issue is influenced by such factors as the type of the filter
(i.e., IIR or FIR) and the form of its implementation (structures). Hence,
before we discuss the design issue, we first concern ourselves with how
these filters can be implemented in practice. This is an important concern
because different filter structures dictate different design strategies.

IIR filters, as designed and used in DSP, can be modeled by rational
system functions or, equivalently, by difference equations. Such filters are
termed autoregressive moving average (ARMA) or, more generally, as re-
cursive filters. Although ARMA filters include moving average filters that
are FIR filters, we will treat FIR filters separately from IIR filters for both
design and implementation purposes.

In addition to describing various filter structures, we also begin to con-
sider problems associated with quantization effects when finite-precision
arithmetic is used in the implementation. Digital hardware contains pro-
cessing elements that use finite-precision arithmetic. When filters are im-
plemented either in hardware or in software, filter coefficients as well as
filter operations are subjected to the effects of these finite-precision op-
erations. In this chapter, we treat the effects on filter frequency response
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characteristics due to coefficient quantization. In Chapter 10, we will con-
sider the round-off noise effects in the digital filter implementations.

We begin with a description of basic building blocks that are used
to describe filter structures. In the subsequent sections, we briefly de-
scribe IIR, FIR, and lattice filter structures, respectively, and provide
MATLAB functions to implement these structures. This is followed by
a brief treatment of the representation of numbers and the resulting er-
ror characteristics, which is then used to analyze coefficient quantization
effects.

6.1 BASIC ELEMENTS

Since our filters are LTI systems, we need the following three elements to
describe digital filter structures. These elements are shown in Figure 6.1.

1. Adder: This element has two inputs and one output and is shown in
Figure 6.1a. Note that the addition of three or more signals is imple-
mented by successive two-input adders.

2. Multiplier (gain): This is a single-input, single-output element and is
shown in Figure 6.1b. Note that the multiplication by 1 is understood
and hence not explicitly shown.

3. Delay element (shifter or memory): This element delays the sig-
nal passing through it by one sample, as shown in Figure 6.1c. It is
implemented by using a shift register.

Using these basic elements, we can now describe various structures of
both IIR and FIR filters. MATLAB is a convenient tool in the develop-
ment of these structures that require operations on polynomials.

x1(n) x1(n) + x2(n)

x2(n)

x(n) ax(n)

(a) Adder

(b) Multiplier

a z −1

x(n) x(n − 1)
(c) Delay Element

FIGURE 6.1 Three basic elements
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214 Chapter 6 IMPLEMENTATION OF DISCRETE-TIME FILTERS

6.2 IIR FILTER STRUCTURES

The system function of an IIR filter is given by

H(z) =
B(z)
A(z)

=
∑M

n=0 bnz−n

∑N
n=0 anz−n

=
b0 + b1z

−1 + · · · + bMz−M

1 + a1z−1 + · · · + aNz−N
; a0 = 1

(6.1)
where bn and an are the coefficients of the filter. We have assumed without
loss of generality that a0 = 1. The order of such an IIR filter is called N if
aN �= 0. The difference equation representation of an IIR filter is expressed
as

y(n) =
M∑

m=0

bmx(n − m) −
N∑

m=1

amy(n − m) (6.2)

Three different structures can be used to implement an IIR filter:

1. Direct form: In this form, the difference equation (6.2) is implemented
directly as given. There are two parts to this filter, namely the moving
average part and the recursive part (or equivalently, the numerator
and denominator parts). Therefore, this implementation leads to two
versions: direct form I and direct form II structures.

2. Cascade form: In this form, the system function H(z) in equation
(6.1) is factored into smaller second-order sections, called biquads. The
system function is then represented as a product of these biquads. Each
biquad is implemented in a direct form, and the entire system function
is implemented as a cascade of biquad sections.

3. Parallel form: This is similar to the cascade form, but after factoriza-
tion, a partial fraction expansion is used to represent H(z) as a sum of
smaller second-order sections. Each section is again implemented in a
direct form, and the entire system function is implemented as a parallel
network of sections.

We will briefly discuss these forms in this section. IIR filters are gen-
erally described using the rational form version (or the direct form struc-
ture) of the system function. Hence we will provide MATLAB functions for
converting direct form structures to cascade and parallel form structures.

6.2.1 DIRECT FORM
As the name suggests, the difference equation (6.2) is implemented as
given using delays, multipliers, and adders. For the purpose of illustration,
let M = N = 4. Then the difference equation is

y(n) = b0x(n) + b1x(n − 1) + b2x(n − 2) + b3x(n − 3) + b4x(n − 4)
− a1y(n − 1) − a2y(n − 2) − a3y(n − 3) − a4y(n − 4)
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FIGURE 6.2 Direct form I structure

which can be implemented as shown in Figure 6.2. This block diagram is
called direct form I structure.

The direct form I structure implements each part of the rational func-
tion H(z) separately with a cascade connection between them. The nu-
merator part is a tapped delay line followed by the denominator part,
which is a feedback tapped delay line. Thus there are two separate de-
lay lines in this structure, and hence it requires eight delay elements. We
can reduce this delay element count or eliminate one delay line by inter-
changing the order in which the two parts are connected in the cascade.
Now the two delay lines are close to each other, connected by a unity
gain branch. Therefore, one delay line can be removed, and this reduction
leads to a canonical structure called direct form II structure, shown in
Figure 6.3. It should be noted that both direct forms are equivalent from
the input-output point of view. Internally, however, they have different
signals.

x (n)

(a) Normal (b) Transposed

y (n)
y (n)

b1

b0

b2

b3

b4

z −1−a1

−a2

−a3

−a4

z −1

z −1

z −1

x (n)

b1

b0

b2

b3

b4

z −1 −a1

−a2

−a3

−a4

z −1

z −1

z −1

FIGURE 6.3 Direct form II structure
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216 Chapter 6 IMPLEMENTATION OF DISCRETE-TIME FILTERS

6.2.2 TRANSPOSED STRUCTURE
An equivalent structure to the direct form can be obtained using a pro-
cedure called transposition. In this operation, three steps are performed:

1. All path arrow directions are reversed.
2. All branch nodes are replaced by adder nodes, and all adder nodes are

replaced by branch nodes.
3. The input and output nodes are interchanged.

The resulting structure is called the transposed direct form structure. The
transposed direct form II structure is shown in Figure 6.3b. Problem P6.3
explains this equivalent structure.

6.2.3 MATLAB IMPLEMENTATION
In MATLAB, the direct form structure is described by two row vectors:
b containing the {bn} coefficients and a containing the {an} coefficients.
The filter function, which is discussed in Chapter 2, implements the
transposed direct form II structure.

6.2.4 CASCADE FORM
In this form, the system function H(z) is written as a product of
second-order sections with real coefficients. This is done by factoring
the numerator and denominator polynomials into their respective roots
and then combining either a complex conjugate root pair or any two real
roots into second-order polynomials. In the remainder of this chapter, we
assume that N is an even integer. Then

H(z) =
b0 + b1z

−1 + · · · + bNz−N

1 + a1z−1 + · · · + aNz−N

= b0
1 + b1

b0
z−1 + · · · + bN

b0
z−N

1 + a1z−1 + · · · + aNz−N

= b0

K∏
k=1

1 + Bk,1z
−1 + Bk,2z

−2

1 + Ak,1z−1 + Ak,2z−2 (6.3)

where K is equal to N
2 and Bk,1, Bk,2, Ak,1, and Ak,2 are real numbers

representing the coefficients of second-order sections. The second-order
section

Hk(z) =
Yk+1(z)
Yk(z)

=
1 + Bk,1z

−1 + Bk,2z
−2

1 + Ak,1z−1 + Ak,2z−2 ; k = 1, . . . , K

with
Y1(z) = b0X(z); YK+1(z) = Y (z)

is called the kth biquad section. The input to the kth biquad section is
the output from the (k − 1)th biquad section, and the output from the
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FIGURE 6.4 Biquad section structure

kth biquad is the input to the (k + 1)th biquad. Now each biquad section
Hk(z) can be implemented in direct form II, as shown in Figure 6.4. The
entire filter is then implemented as a cascade of biquads.

As an example, consider N = 4. Figure 6.5 shows a cascade form
structure for this fourth-order IIR filter.

6.2.5 MATLAB IMPLEMENTATION
Given the coefficients {bn} and {an} of the direct form filter, we have to
obtain the coefficients b0, {Bk,i}, and {Ak,i}. This is done by the following
function dir2cas.

function [b0,B,A] = dir2cas(b,a)
% DIRECT form to CASCADE form conversion (cplxpair version)
% ---------------------------------------------------------
% [b0,B,A] = dir2cas(b,a)
% b0 = gain coefficient
% B = K by 3 matrix of real coefficients containing bk’s
% A = K by 3 matrix of real coefficients containing ak’s
% b = numerator polynomial coefficients of DIRECT form
% a = denominator polynomial coefficients of DIRECT form

% Compute gain coefficient b0
b0 = b(1); b = b/b0; a0 = a(1); a = a/a0; b0 = b0/a0;
%
M = length(b); N = length(a);
if N > M
b = [b zeros(1,N-M)];

FIGURE 6.5 Cascade form structure for N = 4
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elseif M > N
a = [a zeros(1,M-N)]; N = M;
else
NM = 0;
end
%
K = floor(N/2); B = zeros(K,3); A = zeros(K,3);
if K*2 == N
b = [b 0]; a = [a 0];
end
%
broots = cplxpair(roots(b)); aroots = cplxpair(roots(a));
for i=1:2:2*K
Brow = broots(i:1:i+1,:); Brow = real(poly(Brow));
B(fix((i+1)/2),:) = Brow;
Arow = aroots(i:1:i+1,:); Arow = real(poly(Arow));
A(fix((i+1)/2),:) = Arow;
end

This function converts the b and a vectors into K×3 size B and A matrices.
It begins by computing b0, which is equal to b0/a0 (assuming a0 �= 1).
It then makes the vectors b and a of equal length by zero-padding the
shorter vector. This ensures that each biquad has a nonzero numerator
and denominator. Next, it computes the roots of the B(z) and A(z) poly-
nomials. Using the cplxpair function, these roots are ordered in complex
conjugate pairs. Now every pair is converted back into a second-order
numerator or denominator polynomial using the poly function. The SP
toolbox function, tf2sos (transfer function to second-order section), also
performs a similar operation.

The cascade form is implemented using the following casfiltr
function.

function y = casfiltr(b0,B,A,x)
% CASCADE form realization of IIR and FIR filters
% -----------------------------------------------
% y = casfiltr(b0,B,A,x);
% y = output sequence
% b0 = gain coefficient of CASCADE form
% B = K by 3 matrix of real coefficients containing bk’s
% A = K by 3 matrix of real coefficients containing ak’s
% x = input sequence
%
[K,L] = size(B);
N = length(x); w = zeros(K+1,N); w(1,:) = x;
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for i = 1:1:K
w(i+1,:) = filter(B(i,:),A(i,:),w(i,:));

end
y = b0*w(K+1,:);

This function employs the filter function in a loop using the coefficients
of each biquad stored in B and A matrices. The input is scaled by b0,
and the output of each filter operation is used as an input to the next
filter operation. The output of the final filter operation is the overall
output.

The following MATLAB function, cas2dir, converts a cascade form
to a direct form. This is a simple operation that involves multiplication of
several second-order polynomials. For this purpose, the MATLAB func-
tion conv is used in a loop over K factors. The SP toolbox function sos2tf
also performs a similar operation.

function [b,a] = cas2dir(b0,B,A)
% CASCADE-to-DIRECT form conversion
% ---------------------------------
% [b,a] = cas2dir(b0,B,A)
% b = numerator polynomial coefficients of DIRECT form
% a = denominator polynomial coefficients of DIRECT form
% b0 = gain coefficient
% B = K by 3 matrix of real coefficients containing bk’s
% A = K by 3 matrix of real coefficients containing ak’s
%
[K,L] = size(B);
b = [1]; a = [1];
for i=1:1:K
b=conv(b,B(i,:)); a=conv(a,A(i,:));
end
b = b*b0;

� EXAMPLE 6.1 A filter is described by the following difference equation:

16y(n) + 12y(n − 1) + 2y(n − 2) − 4y(n − 3) − y(n − 4)

= x(n) − 3x(n − 1) + 11x(n − 2) − 27x(n − 3) + 18x(n − 4)

Determine its cascaded form structure.
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Solution MATLAB script:

>> b=[1 -3 11 -27 18]; a=[16 12 2 -4 -1];
>> [b0,B,A]=dir2cas(b,a)
b0 = 0.0625
B =

1.0000 -0.0000 9.0000
1.0000 -3.0000 2.0000

A =
1.0000 1.0000 0.5000
1.0000 -0.2500 -0.1250

The resulting structure is shown in Figure 6.6. To check that our cascade struc-
ture is correct, let us compute the first eight samples of the impulse response
using both forms.

>> delta = impseq(0,0,7)
delta =

1 0 0 0 0 0 0 0
>> format long
>> hcas=casfiltr(b0,B,A,delta)
hcas =
Columns 1 through 4
0.06250000000000 -0.23437500000000 0.85546875000000 -2.28417968750000

Columns 5 through 8
2.67651367187500 -1.52264404296875 0.28984069824219 0.49931716918945

>> hdir=filter(b,a,delta)
hdir =
Columns 1 through 4
0.06250000000000 -0.23437500000000 0.85546875000000 -2.28417968750000

Columns 5 through 8
2.67651367187500 -1.52264404296875 0.28984069824219 0.49931716918945

�

FIGURE 6.6 Cascade structure in Example 6.1
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6.2.6 PARALLEL FORM
In this form, the system function H(z) is written as a sum of second-order
sections using partial fraction expansion.

H(z) =
B(z)
A(z)

=
b0 + b1z

−1 + · · · + bMz−M

1 + a1z−1 + · · · + aNz−N

=
b̂0 + b̂1z

−1 + · · · + b̂N−1z
1−N

1 + a1z−1 + · · · + aNz−N
+

M−N∑
0

Ckz−k

︸ ︷︷ ︸
Only if M≥N

=
K∑

k=1

Bk,0 + Bk,1z
−1

1 + Ak,1z−1 + Ak,2z−2 +
M−N∑

0

Ckz−k

︸ ︷︷ ︸
Only if M≥N

(6.4)

where K is equal to N
2 and Bk,0, Bk,1, Ak,1, and Ak,2 are real numbers

representing the coefficients of second-order sections. The second-order
section

Hk(z) =
Yk(z)
X(z)

=
Bk,0 + Bk,1z

−1

1 + Ak,1z−1 + Ak,2z−2 ; k = 1, . . . , K

with

Yk(z) = Hk(z)X(z), Y (z) =
∑

Yk(z), M < N

is the kth proper rational biquad section. The filter input is available to
all biquad sections as well as to the polynomial section if M ≥ N (which
is an FIR part). The output from these sections is summed to form the
filter output. Now each biquad section Hk(z) can be implemented in direct
form II. Due to the summation of subsections, a parallel structure can be
built to realize H(z). As an example, consider M = N = 4. Figure 6.7
shows a parallel form structure for this fourth-order IIR filter.

6.2.7 MATLAB IMPLEMENTATION
The following function dir2par converts the direct form coefficients {bn}
and {an} into parallel form coefficients {Bk,i} and {Ak,i}.
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FIGURE 6.7 Parallel form structure for N = 4

function [C,B,A] = dir2par(b,a)
% DIRECT form to PARALLEL form conversion
% --------------------------------------
% [C,B,A] = dir2par(b,a)
% C = polynomial part when length(b) >= length(a)
% B = K by 2 matrix of real coefficients containing bk’s
% A = K by 3 matrix of real coefficients containing ak’s
% b = numerator polynomial coefficients of DIRECT form
% a = denominator polynomial coefficients of DIRECT form
%
M = length(b); N = length(a);

[r1,p1,C] = residuez(b,a);
p = cplxpair(p1,10000000*eps); I = cplxcomp(p1,p); r = r1(I);

K = floor(N/2); B = zeros(K,2); A = zeros(K,3);
if K*2 == N; %N even, order of A(z) odd, one factor is first order
for i=1:2:N-2
Brow = r(i:1:i+1,:); Arow = p(i:1:i+1,:);
[Brow,Arow] = residuez(Brow,Arow,[]);
B(fix((i+1)/2),:) = real(Brow); A(fix((i+1)/2),:) = real(Arow);
end
[Brow,Arow] = residuez(r(N-1),p(N-1),[]);
B(K,:) = [real(Brow) 0]; A(K,:) = [real(Arow) 0];

else
for i=1:2:N-1
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Brow = r(i:1:i+1,:); Arow = p(i:1:i+1,:);
[Brow,Arow] = residuez(Brow,Arow,[]);
B(fix((i+1)/2),:) = real(Brow); A(fix((i+1)/2),:) = real(Arow);
end
end

The dir2cas function first computes the z-domain partial fraction expan-
sion using the residuez function. We need to arrange pole-and-residue
pairs into complex conjugate pole-and-residue pairs followed by real pole-
and-residue pairs. To do this, the cplxpair function from MATLAB can
be used; it sorts a complex array into complex conjugate pairs. However,
two consecutive calls to this function, one each for pole and residue ar-
rays, will not guarantee that poles and residues will correspond to each
other. Therefore, a new cplxcomp function is developed, which compares
two shuffled complex arrays and returns the index of one array, which can
be used to rearrange another array.

function I = cplxcomp(p1,p2)
% I = cplxcomp(p1,p2)
% Compares two complex pairs which contain the same scalar elements
% but (possibly) at differrent indices. This routine should be
% used after CPLXPAIR routine for rearranging pole vector and its
% corresponding residue vector.
% p2 = cplxpair(p1)
%
I=[];
for j=1:1:length(p2)

for i=1:1:length(p1)
if (abs(p1(i)-p2(j)) < 0.0001)
I=[I,i];

end
end

end
I=I’;

After collecting these pole-and-residue pairs, the dir2cas function com-
putes the numerator and denominator of the biquads by employing the
residuez function in the reverse fashion.

These parallel form coefficients are then used in the function
parfiltr, which implements the parallel form. The parfiltr function
uses the filter function in a loop using the coefficients of each biquad
stored in the B and A matrices. The input is first filtered through the FIR
part C and stored in the first row of a w matrix. Then the outputs of all
biquad filters are computed for the same input and stored as subsequent
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rows in the w matrix. Finally, all the columns of the w matrix are summed
to yield the output.

function y = parfiltr(C,B,A,x)
% PARALLEL form realization of IIR filters
% ----------------------------------------
% [y] = parfiltr(C,B,A,x);
% y = output sequence
% C = polynomial (FIR) part when M >= N
% B = K by 2 matrix of real coefficients containing bk’s
% A = K by 3 matrix of real coefficients containing ak’s
% x = input sequence
%
[K,L] = size(B); N = length(x); w = zeros(K+1,N);
w(1,:) = filter(C,1,x);
for i = 1:1:K

w(i+1,:) = filter(B(i,:),A(i,:),x);
end
y = sum(w);

To obtain a direct form from a parallel form, the function par2dir can
be used. It computes poles and residues of each proper biquad and com-
bines these into system poles and residues. Another call of the residuez
function in reverse order computes the numerator and denominator
polynomials.

function [b,a] = par2dir(C,B,A)
% PARALLEL-to-DIRECT form conversion
% ----------------------------------
% [b,a] = par2dir(C,B,A)
% b = numerator polynomial coefficients of DIRECT form
% a = denominator polynomial coefficients of DIRECT form
% C = polynomial part of PARALLEL form
% B = K by 2 matrix of real coefficients containing bk’s
% A = K by 3 matrix of real coefficients containing ak’s
%
[K,L] = size(A); R = []; P = [];

for i=1:1:K
[r,p,k]=residuez(B(i,:),A(i,:)); R = [R;r]; P = [P;p];
end
[b,a] = residuez(R,P,C); b = b(:)’; a = a(:)’;
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� EXAMPLE 6.2 Consider the filter given in Example 6.1.

16y(n) + 12y(n − 1) + 2y(n − 2) − 4y(n − 3) − y(n − 4)

= x(n) − 3x(n − 1) + 11x(n − 2) − 27x(n − 3) + 18x(n − 4)

Now determine its parallel form.

Solution MATLAB script:

>> b=[1 -3 11 -27 18]; a=[16 12 2 -4 -1];
>> [C,B,A]=dir2par(b,a)
C =

-18
B =
-10.0500 -3.9500
28.1125 -13.3625

A =
1.0000 1.0000 0.5000
1.0000 -0.2500 -0.1250

The resulting structure is shown in Figure 6.8. To check our parallel structure,
let us compute the first eight samples of the impulse response using both forms.

>> format long; delta = impseq(0,0,7); hpar=parfiltr(C,B,A,delta)
hpar =
Columns 1 through 4
0.06250000000000 -0.23437500000000 0.85546875000000 -2.28417968750000

FIGURE 6.8 Parallel form structure in Example 6.2
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Columns 5 through 8
2.67651367187500 -1.52264404296875 0.28984069824219 0.49931716918945

>> hdir = filter(b,a,delta)
hdir =
Columns 1 through 4
0.06250000000000 -0.23437500000000 0.85546875000000 -2.28417968750000

Columns 5 through 8
2.67651367187500 -1.52264404296875 0.28984069824219 0.49931716918945

�
� EXAMPLE 6.3 What would be the overall direct, cascade, or parallel form if a structure contains

a combination of these forms? Consider the block diagram shown in Figure 6.9.

Solution This structure contains a cascade of two parallel sections. The first parallel
section contains two biquads, while the second one contains three biquads. We
will have to convert each parallel section into a direct form using the par2dir
function, giving us a cascade of two direct forms. The overall direct form can be
computed by convolving the corresponding numerator and denominator poly-
nomials. The overall cascade and parallel forms can now be derived from the
direct form.

MATLAB script:

>> C0=0; B1=[2 4;3 1]; A1=[1 1 0.9; 1 0.4 -0.4];
>> B2=[0.5 0.7;1.5 2.5;0.8 1]; A2=[1 -1 0.8;1 0.5 0.5;1 0 -0.5];
>> [b1,a1]=par2dir(C0,B1,A1)
b1 =

5.0000 8.8000 4.5000 -0.7000

FIGURE 6.9 Block diagram in Example 6.3
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a1 =
1.0000 1.4000 0.9000 -0.0400 -0.3600

>> [b2,a2]=par2dir(C0,B2,A2)
b2 =

2.8000 2.5500 -1.5600 2.0950 0.5700 -0.7750
a2 =

1.0000 -0.5000 0.3000 0.1500 0.0000 0.0500 -0.2000
>> b=conv(b1,b2) % Overall direct form numerator
b =
Columns 1 through 7
14.0000 37.3900 27.2400 6.2620 12.4810 11.6605 -5.7215
Columns 8 through 9
-3.8865 0.5425

>> a=conv(a1,a2) % Overall direct form denominator
a =
Columns 1 through 7
1.0000 0.9000 0.5000 0.0800 0.1400 0.3530 -0.2440

Columns 8 through 11
-0.2890 -0.1820 -0.0100 0.0720

>> [b0,Bc,Ac]=dir2cas(b,a) % Overall cascade form
b0 =
14.0000

Bc =
1.0000 1.8836 1.1328
1.0000 -0.6915 0.6719
1.0000 2.0776 0.8666
1.0000 0 0
1.0000 -0.5990 0.0588

Ac =
1.0000 1.0000 0.9000
1.0000 0.5000 0.5000
1.0000 -1.0000 0.8000
1.0000 1.5704 0.6105
1.0000 -1.1704 0.3276

>> [C0,Bp,Ap]=dir2par(b,a) % Overall parallel form
C0 = []
Bp =
-20.4201 -1.6000
24.1602 5.1448
2.4570 3.3774

-0.8101 -0.2382
8.6129 -4.0439

Ap =
1.0000 1.0000 0.9000
1.0000 0.5000 0.5000
1.0000 -1.0000 0.8000
1.0000 1.5704 0.6105
1.0000 -1.1704 0.3276
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This example shows that by using the MATLAB functions developed in this
section, we can probe and construct a wide variety of structures. �

6.3 FIR FILTER STRUCTURES

A finite-duration impulse response filter has a system function of the form

H(z) = b0 + b1z
−1 + · · · + bM−1z

1−M =
M−1∑
n=0

bnz−n (6.5)

Hence the impulse response h(n) is

h(n) =
{

bn, 0 ≤ n ≤ M − 1
0, else (6.6)

and the difference equation representation is

y(n) = b0x(n) + b1x(n − 1) + · · · + bM−1x(n − M + 1) (6.7)

which is a linear convolution of finite support.
The order of the filter is M − 1, and the length of the filter (which is

equal to the number of coefficients) is M . The FIR filter structures are
always stable, and they are relatively simple compared to IIR structures.
Furthermore, FIR filters can be designed to have a linear-phase response,
which is desirable in some applications.

We will consider the following four structures.

1. Direct form: In this form, the difference equation (6.7) is implemented
directly as given.

2. Cascade form: In this form, the system function H(z) in (6.5) is
factored into second-order factors, which are then implemented in a
cascade connection.

3. Linear-phase form: When an FIR filter has a linear-phase response,
its impulse response exhibits certain symmetry conditions. In this form,
we exploit these symmetry relations to reduce multiplications by about
half.

4. Frequency-sampling form: This structure is based on the DFT of
the impulse response h(n) and leads to a parallel structure. It is also
suitable for a design technique based on the sampling of frequency
response H(ejω).

We will briefly describe these four forms along with some examples.
The MATLAB function dir2cas developed in the previous section is also
applicable for the cascade form.
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FIGURE 6.10 Direct form FIR structure

6.3.1 DIRECT FORM
The difference equation (6.7) is implemented as a tapped delay line since
there are no feedback paths. Let M = 5 (i.e., a fourth-order FIR filter);
then

y(n) = b0x(n) + b1x(n − 1) + b2x(n − 2) + b3x(n − 3) + b4x(n − 4)

The direct form structure is given in Figure 6.10. Note that since the
denominator is equal to unity, there is only one direct form structure.

6.3.2 MATLAB IMPLEMENTATION
In MATLAB, the direct form FIR structure is described by the row vector
b containing the {bn} coefficients. The structure is implemented by the
filter function, in which the vector a is set to the scalar value 1, as
discussed in Chapter 2.

6.3.3 CASCADE FORM
This form is similar to that of the IIR form. The system function H(z)
is converted into products of second-order sections with real coefficients.
These sections are implemented in direct form and the entire filter as a
cascade of second-order sections. From (6.5),

H(z) = b0 + b1z
−1 + · · · + bM−1z

−M+1 (6.8)

= b0

(
1 +

b1

b0
z−1 + · · · +

bM−1

b0
z−M+1

)

= b0

K∏
k=1

(
1 + Bk,1z

−1 + Bk,2z
−2)

where K is equal to �M
2 � and Bk,1 and Bk,2 are real numbers representing

the coefficients of second-order sections. For M = 7, the cascade form is
shown in Figure 6.11.

FIGURE 6.11 Cascade form FIR structure
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6.3.4 MATLAB IMPLEMENTATION
Although it is possible to develop a new MATLAB function for the FIR
cascade form, we will use our dir2cas function by setting the denominator
vector a equal to 1. Similarly, cas2dir can be used to obtain the direct
form from the cascade form.

6.3.5 LINEAR-PHASE FORM
For frequency-selective filters (e.g., lowpass filters), it is generally desirable
to have a phase response that is a linear function of frequency; that is, we
want

� H(ejω) = β − αω, −π < ω ≤ π (6.9)

where β = 0 or ±π/2 and α is a constant. For a causal FIR filter with
impulse response over [0, M −1] interval, the linear-phase condition (6.9)
imposes the following symmetry conditions on the impulse response h(n)
(see Problem P6.15):

h(n) = h(M − 1 − n); β = 0, α =
M − 1

2
, 0 ≤ n ≤ M − 1 (6.10)

h(n) = −h(M − 1 − n); β = ±π/2, α =
M − 1

2
, 0 ≤ n ≤ M − 1 (6.11)

An impulse response that satisfies (6.10) is called a symmetric impulse
response and that in (6.11) is called an antisymmetric impulse response.
These symmetry conditions can now be exploited in a structure called the
linear-phase form.

Consider the difference equation given in (6.7) with a symmetric im-
pulse response in (6.10). We have

y(n) = b0x(n) + b1x(n − 1) + · · · + b1x(n − M + 2) + b0x(n − M + 1)
= b0[x(n) + x(n − M + 1)] + b1[x(n − 1) + x(n − M + 2)] + · · ·

The block diagram implementation of this difference equation is shown in
Figure 6.12 for both odd and even M .

Clearly, this structure requires 50% fewer multiplications than the di-
rect form. A similar structure can be derived for an antisymmetric impulse
response.

6.3.6 MATLAB IMPLEMENTATION
The linear-phase structure is essentially a direct form drawn differently to
save on multiplications. Hence in MATLAB, representation of the linear-
phase structure is equivalent to the direct form.
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FIGURE 6.12 Linear-phase form FIR structures (symmetric impulse response)

� EXAMPLE 6.4 An FIR filter is given by the system function

H(z) = 1 + 16
1
16

z−4 + z−8

Determine and draw the direct, linear-phase, and cascade form structures.

a. Direct form: The difference equation is given by

y(n) = x(n) + 16.0625x(n − 4) + x(n − 8)

and the direct form structure is shown in Figure 6.13(a).
b. Linear-phase form: The difference equation can be written in the form

y(n) = [x(n) + x(n − 8)] + 16.0625x(n − 4)

and the resulting structure is shown in Figure 6.13b.
c. Cascade form: We use the following MATLAB script.

>> b=[1,0,0,0,16+1/16,0,0,0,1]; [b0,B,A] = dir2cas(b,1)

FIGURE 6.13 FIR filter structures in Example 6.4
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b0 = 1
B =

1.0000 2.8284 4.0000
1.0000 0.7071 0.2500
1.0000 -0.7071 0.2500
1.0000 -2.8284 4.0000

A =
1 0 0
1 0 0
1 0 0
1 0 0

The cascade form structure is shown in Figure 6.13c. �

� EXAMPLE 6.5 For the filter in Example 6.4, what would be the structure if we desire a cascade
form containing linear-phase components with real coefficients?

Solution We are interested in cascade sections that have symmetry and real coefficients.
From the properties of linear-phase FIR filters (see Chapter 7), if such a filter
has an arbitrary zero at z = r � θ, then there must be three other zeros at
(1/r)� θ, r � − θ, and (1/r)� − θ to have real filter coefficients. We can now
make use of this property. First we will determine the zero locations of the
given eighth-order polynomial. Then we will group four zeros that satisfy this
property to obtain one (fourth-order) linear-phase section. There are two such
sections, which we will connect in cascade.

MATLAB script:

>> b=[1,0,0,0,16+1/16,0,0,0,1]; broots=roots(b)
broots =
-1.4142 + 1.4142i
-1.4142 - 1.4142i
1.4142 + 1.4142i
1.4142 - 1.4142i

-0.3536 + 0.3536i
-0.3536 - 0.3536i
0.3536 + 0.3536i
0.3536 - 0.3536i

>> B1=real(poly([broots(1),broots(2),broots(5),broots(6)]))
B1 =

1.0000 3.5355 6.2500 3.5355 1.0000
>> B2=real(poly([broots(3),broots(4),broots(7),broots(8)]))
B2 =

1.0000 -3.5355 6.2500 -3.5355 1.0000

The structure is shown in Figure 6.14. �
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FIGURE 6.14 Cascade of FIR linear-phase elements

6.3.7 FREQUENCY-SAMPLING FORM
In this form, we use the fact that the system function H (z) of an FIR
filter can be reconstructed from its samples on the unit circle. From our
discussions on the DFT in Chapter 5, we recall that these samples are
in fact the M -point DFT values {H (k) , 0 ≤ k ≤ M − 1} of the M -point
impulse response h (n). Therefore, we have

H (z) = Z [h (n)] = Z [IDFT {H (k)}]

Using this procedure, we obtain [see (5.17) in Chapter 5]

H (z) =
(

1 − z−M

M

)M−1∑
k=0

H (k)
1 − W−k

M z−1
(6.12)

This shows that the DFT H (k), rather than the impulse response
h (n) (or the difference equation), is used in this structure. Also note that
the FIR filter described by (6.12) has a recursive form similar to an IIR
filter because (6.12) contains both poles and zeros. The resulting filter is
an FIR filter since the poles at W−k

M are canceled by the roots of

1 − z−M = 0

The system function in (6.12) leads to a parallel structure, as shown in
Figure 6.15 for M = 4.

One problem with the structure in Figure 6.15 is that it requires a
complex arithmetic implementation. Since an FIR filter is almost always a
real-valued filter, it is possible to obtain an alternate realization in which
only real arithmetic is used. This realization is derived using the symmetry
properties of the DFT and the W−k

M factor. Then (6.12) can be expressed
as (see Problem P6.18)

H (z) =
1 − z−M

M

{
L∑

k=1

2 |H (k)|Hk (z) +
H (0)

1 − z−1 +
H (M/2)
1 + z−1

}
(6.13)
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234 Chapter 6 IMPLEMENTATION OF DISCRETE-TIME FILTERS

FIGURE 6.15 Frequency-sampling structure for M = 4

where L = M−1
2 for M odd, L = M

2 − 1 for M even, and {Hk (z) , k = 1,
. . . , L} are second-order sections given by

Hk (z) =
cos [ � H (k)] − z−1 cos

[
� H (k) − 2πk

M

]

1 − 2z−1 cos
( 2πk

M

)
+ z−2

(6.14)

Note that the DFT samples H (0) and H (M/2) are real-valued and that
the third term on the right-hand side of (6.13) is absent if M is odd. Using
(6.13) and (6.14), we show a frequency-sampling structure in Figure 6.16
for M = 4 containing real coefficients.

6.3.8 MATLAB IMPLEMENTATION
Given the impulse response h (n) or the DFT H(k), we have to determine
the coefficients in (6.13) and (6.14). The following MATLAB function,
dir2fs, converts a direct form h(n) to the frequency-sampling form by
directly implementing (6.13) and (6.14).

FIGURE 6.16 Frequency-sampling structure for M = 4 with real coefficients
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function [C,B,A] = dir2fs(h)
% Direct form to frequency-sampling form conversion
% -------------------------------------------------
% [C,B,A] = dir2fs(h)
% C = row vector containing gains for parallel sections
% B = matrix containing numerator coefficients arranged in rows
% A = matrix containing denominator coefficients arranged in rows
% h = impulse response vector of an FIR filter
%
M = length(h); H = fft(h,M);
magH = abs(H); phaH = angle(H)’;
% Check even or odd M
if (M == 2*floor(M/2))

L = M/2-1; % M is even
A1 = [1,-1,0;1,1,0]; C1 = [real(H(1)),real(H(L+2))];

else
L = (M-1)/2; % M is odd

A1 = [1,-1,0]; C1 = [real(H(1))];
end
k = [1:L]’;
% Initialize B and A arrays
B = zeros(L,2); A = ones(L,3);
% Compute denominator coefficients
A(1:L,2) = -2*cos(2*pi*k/M); A = [A;A1];
% Compute numerator coefficients
B(1:L,1) = cos(phaH(2:L+1));
B(1:L,2) = -cos(phaH(2:L+1)-(2*pi*k/M));
% Compute gain coefficients
C = [2*magH(2:L+1),C1]’;

In this function, the impulse response values are supplied through the
h array. After conversion, the C array contains the gain values for each
parallel section. The gain values for the second-order parallel sections
are given first, followed by H (0) and H (M/2) (if M is even). The B
matrix contains the numerator coefficients, which are arranged in length-
2 row vectors for each second-order section. The A matrix contains the
denominator coefficients, which are arranged in length-3 row vectors for
the second-order sections corresponding to those in B, followed by the
coefficients for the first-order sections.

A practical problem with the structure in Figure 6.16 is that it has
poles on the unit circle, which makes this filter critically unstable. If the
filter is not excited by one of the pole frequencies, then the output is
bounded. We can avoid this problem by sampling H (z) on a circle |z| = r,
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where the radius r is very close to 1 but is less than 1 (e.g., r = 0.99),
which results in

H (z) =
1 − rMz−M

M

M−1∑
k=0

H (k)
1 − rW−k

M z−k
; H (k) = H

(
rej2πk/M

)

(6.15)

Now approximating H
(
rej2πk/M

)
≈ H

(
ej2πk/M

)
for r ≈ 1, we can obtain

a stable structure similar to the one in Figure 6.16 containing real values.
This is explored in Problem P6.19.

� EXAMPLE 6.6 Let h (n) = 1
9{1

↑
, 2, 3, 2, 1}. Determine and draw the frequency-sampling form.

Solution MATLAB script:

>> h = [1,2,3,2,1]/9; [C,B,A] = dir2fs(h)
C =

0.5818
0.0849
1.0000

B =
-0.8090 0.8090
0.3090 -0.3090

A =
1.0000 -0.6180 1.0000
1.0000 1.6180 1.0000
1.0000 -1.0000 0

Since M = 5 is odd, there is only one first-order section. Hence

H (z) =
1 − z−5

5

[
0.5818

−0.809 + 0.809z−1

1 − 0.618z−1 + z−2

+ 0.0849
0.309 − 0.309z−1

1 + 1.618z−1 + z−2 +
1

1 − z−1

]

The frequency-sampling form is shown in Figure 6.17. �

� EXAMPLE 6.7 The frequency samples of a 32-point linear-phase FIR filter are given by

|H (k)| =

{
1, k = 0, 1, 2
0.5, k = 3
0, k = 4, 5, . . . , 15

Determine its frequency-sampling form, and compare its computational com-
plexity with the linear-phase form.
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FIGURE 6.17 Frequency-sampling structure in Example 6.6

Solution In this example, since the samples of the DFT H (k) are given, we could use
(6.13) and (6.14) directly to determine the structure. However, we will use the
dir2fs function for which we will have to determine the impulse response h (n).
Using the symmetry property and the linear-phase constraint, we assemble the
DFT H (k) as

H (k) = |H (k)| ej � H(k), k = 0, 1, . . . , 31

|H (k)| = |H (32 − k)| , k = 1, 2, . . . , 31; H (0) = 1

� H (k) = −31
2

2π

32
k = − � H (32 − k) , k = 0, 1, . . . , 31

Now the IDFT of H (k) will result in the desired impulse response.

MATLAB script:

>> M = 32; alpha = (M-1)/2;
>> magHk = [1,1,1,0.5,zeros(1,25),0.5,1,1];
>> k1 = 0:15; k2 = 16:M-1;
>> angHk = [-alpha*(2*pi)/M*k1, alpha*(2*pi)/M*(M-k2)];
>> H = magHk.*exp(j*angHk); h = real(ifft(H,M)); [C,B,A] = dir2fs(h)

C =
2.0000
2.0000
1.0000
0.0000
0.0000
0.0000
0.0000

0
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0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000

0
B =

-0.9952 0.9952
0.9808 -0.9808

-0.9569 0.9569
-0.8944 0.3162
0.9794 -0.7121
0.8265 0.2038

-0.6754 0.8551
1.0000 0.0000
0.6866 -0.5792
0.5191 0.9883

-0.4430 0.4993
-0.8944 -0.3162
-0.2766 0.3039
0.9343 0.9996

-0.9077 -0.8084
A =

1.0000 -1.9616 1.0000
1.0000 -1.8478 1.0000
1.0000 -1.6629 1.0000
1.0000 -1.4142 1.0000
1.0000 -1.1111 1.0000
1.0000 -0.7654 1.0000
1.0000 -0.3902 1.0000
1.0000 0.0000 1.0000
1.0000 0.3902 1.0000
1.0000 0.7654 1.0000
1.0000 1.1111 1.0000
1.0000 1.4142 1.0000
1.0000 1.6629 1.0000
1.0000 1.8478 1.0000
1.0000 1.9616 1.0000
1.0000 -1.0000 0
1.0000 1.0000 0

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Overview of Finite-Precision Numerical Effects 239

Note that only four gain coefficients are nonzero. Hence the frequency-sampling
form is

H (z) =
1 − z−32

32

⎡
⎢⎣

2
−0.9952 + 0.9952z−1

1 − 1.9616z−1 + z−2 + 2
0.9808 − 0.9808z−1

1 − 1.8478z−1 + z−2 +

−0.9569 + 0.9569z−1

1 − 1.6629z−1 + z−2 +
1

1 − z−1

⎤
⎥⎦

To determine the computational complexity, note that since H (0) = 1, the first-
order section requires no multiplication, whereas the three second-order sections
require three multiplications each for a total of nine multiplications per output
sample. The total number of additions is 13. To implement the linear-phase
structure would require 16 multiplications and 31 additions per output sample.
Therefore, the frequency-sampling structure of this FIR filter is more efficient
than the linear-phase structure. �

6.4 OVERVIEW OF FINITE-PRECISION NUMERICAL EFFECTS

Until now, we have considered digital filter designs and implementations
in which both the filter coefficients and the filter operations such as addi-
tions and multiplications were expressed using infinite-precision numbers.
When discrete-time systems are implemented in hardware or in software,
all parameters and arithmetic operations are implemented using finite-
precision numbers, and hence their effect is unavoidable.

Consider a typical digital filter implemented as a direct form II struc-
ture, which is shown in Figure 6.18a. When finite-precision representation
is used in its implementation, there are three possible considerations that
affect the overall quality of its output. We have to

1. quantize the filter coefficients {ak, bk} to obtain their finite word-length
representations {âk, b̂k},

2. quantize the input sequence x(n) to obtain x̂(n), and
3. consider all internal arithmetic that must be converted to their next

best representations.

Thus the output, y(n), is also a quantized value ŷ(n). This gives us a new
filter realization, Ĥ(z), which is shown in Figure 6.18b. We hope that this
new filter Ĥ(z) and its output ŷ(n) are as close as possible to the original
filter H(z) and the original output y(n).

Since the quantization operation is a nonlinear operation, the overall
analysis that takes into account all three effects described above is very
difficult and tedious. Therefore, we will study each of these effects sepa-
rately as though it were the only one acting at the time. This makes the
analysis easier and the results more interpretable.
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x(n) y(n)H(z)x(n) y(n)H(z)

x(n) x(n)y(n) y(n)b0 b0

z−1

z−1

z−1

z−1

z−1

z−1

b1

b2

b3

a1

a2

a3

a1

a2

a3

b1

b2

b3

ˆ ˆ

ˆˆˆ

ˆ

ˆ

ˆ

ˆ ˆ

ˆ

ˆ

(a) (b)

FIGURE 6.18 Direct form II digital filter implementation: (a) infinite precision,
(b) finite precision

We begin by discussing the number representation in a computer—
more accurately, a central processing unit (CPU). This leads to the pro-
cess of number quantization and the resulting error characterization. We
then analyze the effects of filter coefficient quantization on digital filter
frequency responses. The effects of multiplication and addition quantiza-
tion (collectively known as arithmetic round-off errors) on filter output
are discussed in Chapter 10.

6.5 REPRESENTATION OF NUMBERS

In computers, numbers (real-valued or complex-valued, integers or frac-
tions) are represented using binary digits (bits), which take the value of
either a 0 or a 1. The finite word-length arithmetic needed for processing
these numbers is implemented using two different approaches, depending
on the ease of implementation and the accuracy as well as dynamic range
needed in processing. The fixed-point arithmetic is easy to implement but
has only a fixed dynamic range and accuracy (i.e., very large numbers or
very small numbers). The floating-point arithmetic, on the other hand, has
a wide dynamic range and a variable accuracy (relative to the magnitude
of a number) but is more complicated to implement and analyze.

Since a computer can operate only on a binary variable (e.g., a 1 or
a 0), positive numbers can straightforwardly be represented using binary
numbers. The problem arises as to how to represent the negative numbers.
There are three different formats used in each of these arithmetics: sign-
magnitude format, one’s-complement format, and two’s-complement for-
mat. In discussing and analyzing these representations, we will mostly
consider a binary number system containing bits. However, this discussion
and analysis is also valid for any radix numbering system—for example,
the hexadecimal, octal, or decimal system.
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In the following discussion, we will first begin with fixed-point signed
integer arithmetic. A B-bit binary representation of an integer x is given
by1

x ≡ bB−1 bB−2 . . . b0 = bB−1 ×2B−1 + bB−2 ×2B−2 + · · ·+ b0 ×20 (6.16)

where each bit bi represents either a 0 or a 1. This representation will help
us to understand the advantages and disadvantages of each signed format
and to develop simple MATLAB functions. We will then extend these
concepts to fractional real numbers for both fixed-point and floating-point
arithmetic.

6.5.1 FIXED-POINT SIGNED INTEGER ARITHMETIC
In this arithmetic, positive numbers are coded using their binary represen-
tation. For example, using 3 bits, we can represent numbers from 0 to 7 as

0 1 2 3 4 5 6 7
-+----+----+----+----+----+----+----+-
000 001 010 011 100 101 110 111

Thus, with 8 bits the numbers represented can be 0 to 255, with 10 bits
we can represent the numbers from 0 to 1023, and with 16 bits the range
covered is 0 to 65535. For negative numbers, the following three formats
are used: sign-magnitude, one’s-complement, and two’s-complement.

Sign-magnitude format In this format, positive numbers are repre-
sented using bits as before. However, the leftmost bit (also known as the
most-significant bit, or MSB) is used as the sign bit (0 is +, and 1 is −),
and the remaining bits hold the absolute magnitude of the number as
shown here:

Sign Bit
-+ Absolute Magnitude

+---+----------------------+
| | |
+---+----------------------+

This system has thus two different codes for 0, one for the positive 0, the
other one for the negative 0. For example, using 3 bits, we can represent
numbers from −3 to 3 as

-3 -2 -1 -0 0 1 2 3
-+----+----+----+----+----+----+----+-
111 110 101 100 000 001 010 011

Thus, 8 bits cover the interval [−127,+127], while 16 bits cover [−32, 767,
+32, 767]. If we use B bits in the sign-magnitude format, then we can
represent integers from −(2B−1 − 1) to +(2B−1 − 1) only.

1Here the letter b is used to represent a binary bit. It is also used for filter coefficients
{bk}. Its use in the text should be clear from the context.
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This format has two drawbacks. First, there are two representations
for 0. Second, the arithmetic using the sign-magnitude format requires
one rule to compute addition, another rule to compute subtraction, and a
way to compare two magnitudes to determine their relative value before
subtraction.

MATLAB Implementation MATLAB is a 64-bit floating-point com-
putation engine that provides results in decimal numbers. Therefore,
fixed-point binary operations must be simulated in MATLAB. It provides
the function dec2bin to convert a positive decimal integer into a B-bit
representation, which is a symbol (or a code) and not a number. Hence
it cannot be used in computation. Similarly, the function bin2dec con-
verts a B-bit binary character code into a decimal integer. For example,
dec2bin(3,3) gives 011 and bin2dec(’111’) results in 7. To obtain a
sign-magnitude format, a sign bit must be prefixed. Similarly, to convert a
sign-magnitude format, the leading bit must be used to impart a positive
or negative value. These functions are explored in Problem P9.1.

One’s-complement format In this format, the negation (or comple-
mentation) of an integer x is obtained by complementing every bit (i.e., a
0 is replaced by 1 and a 1 by 0) in the binary representation of x. Suppose
the B-bit binary representation of x is bB−1 bB−2 · · · b0; then the B-bit
one’s-complement, x̄, of x is given by

x̄
�
= b̄B−1 b̄B−2 · · · b̄0

where each bit b̄i is a complement of bit bi. Clearly then

x + x̄ ≡ 1 1 . . . 1 = 2B − 1 (6.17)

The MSB of the representation once again represents the sign bit,
because the positive integer has the MSB of 0 so that its negation (or a
negative integer) has the MSB of 1. The remaining bits represent either
the number x (if positive) or its one’s-complement (if negative). Thus,
using (6.17) the one’s-complement format representation2 is given by

x(1)
∆=

{
x, x ≥ 0
|x|, x < 0

=
{

x, x ≥ 0
2B − 1 − |x|, x < 0=

{
x, x ≥ 0
2B − 1 + x, x < 0 (6.18)

Clearly, if B bits are available, then we can represent only integers from
(−2B−1+1) to (+2B−1−1), which is similar to the sign-magnitude format.

2The one’s-complement format refers to the representation of positive and negative
numbers, whereas the one’s-complement of a number refers to the negation of that
number.
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For example, using 3 bits, we can represent numbers from −3 to 3 as

-3 -2 -1 -0 0 1 2 3
-+----+----+----+----+----+----+----+-
100 101 110 111 000 001 010 011

which is a different bit arrangement for negative numbers compared to
the sign-magnitude format.

The advantage of this format is that subtraction can be achieved by
adding the complement, which is very easy to obtain by simply comple-
menting a number’s bits. However, there are many drawbacks. There are
still two different codes for 0, the addition is a bit tricky to implement,
and overflow management requires addition of the overflow bit to the least
significant bit (or 20).

MATLAB Implementation The one’s-complement of a positive in-
teger x using B bits can be obtained by using the built-in function
bitcmp(x,B), which complements the number’s bits. The result is a dec-
imal number between 0 and 2B − 1. As before, the dec2bin can be used
to obtain the binary code. Using (6.18), we can develop the MATLAB
function OnesComplement, which obtains the one’s-complement format
representation. It uses the sign of a number to determine when to use
one’s-complement and can use scalar as well as vector values. The result
is a decimal equivalent of the representation.

function y = OnesComplement(x,B)
% y = OnesComplement(x,B)
% ---------------
% Decimal equivalent of
% sign-magnitude format integer to b-bit ones’-complement format conversion
%
% x: integer between -2ˆ(b-1) < x < 2ˆ(b-1) (sign-magnitude)
% y: integer between 0 <= y <= 2ˆb-1 (1’s-complement)

if any((x <= -2ˆ(B-1) | (x >= 2ˆ(B-1))))
error(’Numbers must satisfy -2ˆ(B-1) < x < 2ˆ(B-1)’)

end
s = sign(x); % sign of x (-1 if x<0, 0 if x=0, 1 if x>0)
sb = (s < 0); % sign-bit (0 if x>=0, 1 if x<0));
y = (1-sb).*x + sb.*bitcmp(abs(x),B);

� EXAMPLE 6.8 Using the function OnesComplement, obtain one’s-complement format represen-
tation of integers from −7 to 7 using 4 bits.
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Solution MATLAB script:

>> x = -7:7
x =

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
>> y = OnesComplement(x,4)
y =

8 9 10 11 12 13 14 0 1 2 3 4 5 6 7

Note that the number 15 is missing since we do not have −0 in our original
array. �

Two’s-complement format The disadvantage of having two codes for
the number 0 is eliminated in this format. Positive numbers are coded as
usual. The B-bit two’s-complement, x̃, of a positive integer x is given by

x̃ = x̄ + 1 = 2B − x or x + x̃ = 2B (6.19)

where the second equality is obtained from (6.18). Once again, the
MSB of the representation provides the sign bit. Thus using (6.19), the
two’s-complement format representation3 is given by

x(2) =
{

x, x ≥ 0
|x̃|, x < 0=

{
x, x ≥ 0
2B − |x|, x < 0=

{
x, x ≥ 0
2B + x, x < 0 (6.20)

Thus in B-bit two’s-complement format negative numbers are obtained by
adding 2B to them. Clearly, if B bits are available, then we can represent
2B integers from (−2B−1) to (+2B−1 − 1). For example, using 3 bits, we
can represent numbers from −4 to 3 as

-4 -3 -2 -1 0 1 2 3
-+----+----+----+----+----+----+----+-
100 101 110 111 000 001 010 011

This format, by shifting to the right (e.g., by incrementing) the code
of the negative numbers, straightforwardly removes the problem of having
two codes for 0 and gives access to an additional negative number at the
left of the line. Thus 4 bits go from −8 to +7, 8 bits cover the interval
[−127,+127], and 16 bits cover [−32768,+32767].

3Again, the two’s-complement format refers to the representation of positive and neg-
ative numbers, whereas the two’s-complement of a number refers to the negation of
that number.
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MATLAB Implementation Using (6.20), we can develop the
MATLAB function TwosComplement, which obtains the two’s-complement
format representation. We can use the bitcmp function and then add 1
to the result to obtain the two’s-complement. However, we will use the
last equality in (6.20) to obtain the two’s-complement since this approach
will also be useful for fractional numbers. The function can use scalar
as well as vector values. The result is a decimal equivalent of the two’s-
complement representation. As before, the dec2bin can be used to obtain
the binary code.

function y = TwosComplement(x,b)
% y = TwosComplement(x,b)
% ---------------
% Decimal equivalent of
% sign-magnitude format integer to b-bit ones’-complement format conversion
%
% x: integer between -2ˆ(b-1) <= x < 2ˆ(b-1) (sign-magnitude)
% y: integer between 0 <= y <= 2ˆb-1 (two’s-complement)
if any((x < -2ˆ(b-1) | (x >= 2ˆ(b-1))))

error(’Numbers must satisfy -2ˆ(b-1) <= x < 2ˆ(b-1)’)
end
s = sign(x); % Sign of x (-1 if x<0, 0 if x=0, 1 if x>0)
sb = (s < 0); % Sign-bit (0 if x>=0, 1 if x<0));
y = (1-sb).*x + sb.*(2ˆb+x); % or y = (1-sb).*x + sb.*(bitcmp(abs(x),b)+1);

� EXAMPLE 6.9 Using the function TwosComplement, obtain the two’s-complement format rep-
resentation of integers from −8 to 7 using 4 bits.

Solution MATLAB script:

>> x = -8:7
x =

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
>> y = TwosComplement(x,4)
y =

8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
>> y = dec2bin(y,4); disp(sprintf(’%s’,[y’;char(ones(1,16)*32)]))
1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111

�

The two’s-complement format has many interesting characteristics
and advantages. These will be given after we discuss the next format—
namely, the ten’s-complement.
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Ten’s-complement format This is a representation for decimal inte-
gers. We will describe it so that we can explore characteristics of two’s-
complement through decimal integers, which is much easier to understand.
Following (6.19), the N -digit ten’s-complement of a positive integer x is
given by

x̃ = 10N − x or x + x̃ = 10N (6.21)

Using (6.21), the N -digit ten’s-complement format representation is given
by

x(10N )
∆=
{

x, x ≥ 0
|x̃|, x < 0=

{
x, x ≥ 0
10N − |x|, x < 0=

{
x, x ≥ 0
10N + x, x < 0 (6.22)

Thus in N -digit ten’s-complement format (which is sometimes re-
ferred to as 10N -complement format), negative numbers are obtained by
adding 10N to them. Clearly, when N digits are available, we can represent
10N integers from (− 10N

2 ) to (+10N

2 − 1). For example, using one digit,
we can represent numbers from −5 to 4 as

-5 -4 -3 -2 -1 0 1 2 3 4
-+----+----+----+----+----+----+----+----+----+
5 6 7 8 9 0 1 2 3 4

� EXAMPLE 6.10 Using the two-digit ten’s-complement, i.e., hundred’s-complement format, per-
form the following operations:
1. 16 − 32, 2. 32 − 16, 3. −30 − 40, 4. 40 + 20 − 30, 5. −40 − 20 + 30.

Solution 1. 16 − 32
First, we note that 16 − 32 = −16. If we use the usual subtraction rule
to proceed from right to left generating carries in the process, we cannot
complete the operation. To use the hundred’s-complement format, we first
note that in the hundred’s-complement format we have

16(100) = 16, −16(100) = 100 − 16 = 84, and − 32(100) = 100 − 32 = 68

Hence 16 − 32 ≡ 16 + 68 = 84 ≡ −16 in the sign-magnitude format, as
expected.

2. 32 − 16
In this case, the hundred’s-complement format gives

32 + 84 = 116 ≡ 16

in the sign-magnitude format by ignoring the generated carry digit. This is
because the sign bits were different; therefore, the operation cannot generate
an overflow. Hence we check for overflow only if the sign bits are same.

3. −30 − 40
In this case, the hundred’s-complement format gives

(100 − 30) + (100 − 40) = 70 + 60 = 130
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Since the sign bits were the same, an overflow is generated and the result is
invalid.

4. 40 + 20 − 30
This is an example of more than one addition or subtraction. Since the final
result is well within the range, the overflow can be ignored—that is,

40 + 20 + (100 − 30) = 40 + 20 + 70 = 130 ≡ 30

which is a correct result.
5. −40 − 20 + 30

In this case, we have

(100 − 40) + (100 − 20) + 30 = 60 + 80 + 30 = 170 ≡ −30

in the sign-magnitude format, which is, again, a correct result. �

MATLAB Implementation Using (6.22), one can develop the
MATLAB function, TensComplement, which obtains ten’s-complement
format representation. It is similar to the TwosComplement function and
is explored in Problem P6.23.

Advantages of two’s-complement format Using the results of the
Example 6.10, we now state the benefits of the two’s-complement format.
These also hold (with obvious modifications) for the ten’s-complement
format.

1. It provides for all 2B+1 distinct representations for a B-bit fractional
representation. There is only one representation for zero.

2. This complement is compatible with our notion of negation: the com-
plement of a complement is the number itself.

3. It unifies the subtraction and addition operations (subtractions are
essentially additions).

4. In a sum of more than two numbers, the internal overflows do not affect
the final result so long as the result is within the range (i.e., adding
two positive numbers gives a positive result, and adding two negative
numbers gives a negative result).

Hence in most A/D converters and processors, negative numbers are rep-
resented using two’s-complement format. Almost all current processors
implement signed arithmetic using this format and provide special func-
tions (e.g., an overflow flag) to support it.

Excess-2B−1 format This format is used in describing the exponent
of floating-point arithmetic; hence it is briefly discussed here. In excess-
2B−1 signed format (also known as a biased format), all positive and
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negative integers between −2B−1 and 2B−1 − 1 are given by

x(e)
∆= 2B−1 + x (6.23)

For example, using 3 bits, we can represent the numbers from −4 to
3 as

-4 -3 -2 -1 0 1 2 3
-+----+----+----+----+----+----+----+-
000 001 010 011 100 101 110 111

Notice that this format is very similar to the two’s-complement format,
but the sign bit is complemented. The arithmetic for this format is similar
to that of the two’s-complement format. It is used in the exponent of
floating-point number representation.

6.5.2 GENERAL FIXED-POINT ARITHMETIC
Using the discussion of integer arithmetic from the last section as a guide,
we can extend the fixed-point representation to arbitrary real (integer
and fractional) numbers. We assume that a given infinite-precision real
number x is approximated by a binary number x̂ with the following bit
arrangement:

x̂ = ±
↑

Sign bit

xx · · · x︸ ︷︷ ︸
“L”

Integer bits

� xx · · · x︸ ︷︷ ︸
“B”

Fraction bits

(6.24)

where the sign bit ± is 0 for positive numbers and 1 for negative numbers,
x represents either a 0 or a 1, and � represents the binary point. This
representation is in fact the sign-magnitude format for real numbers, as we
will see. The total word length of the number x̂ is then equal to L+B + 1
bits.

� EXAMPLE 6.11 Let L = 4 and B = 5, which means x̂ is a 10-bit number. Represent 11010�01110
in decimal.

Solution
x̂ = −(1 × 23 + 0 × 22 + 1 × 21 + 0 × 20 + 0 × 2−1 + 1 × 2−2 + 1 × 2−3 + 1 × 2−4 + 0 × 2−5)

= −10.4375

in decimal. �

In many A/D converters and processors, the real numbers are scaled
so that the fixed-point representation is in the (−1, 1) range. This has
the advantage that the multiplication of two fractions is always a fraction
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and, as such, there is no overflow. Hence we will consider the following
representation:

x̂ = A(± � xxxxxx · · · x︸ ︷︷ ︸
B fraction bits

) (6.25)

where A is a positive scaling factor.

� EXAMPLE 6.12 Represent the number x̂ = −10.4375 in Example 6.11 using a fraction-only
arrangement.

Solution Choose A = 24 = 16 and B = 9. Then

x̂ = −10.4375 = 16 (1�101001110)

Hence by properly choosing A and B, one can obtain any fraction-only repre-
sentation.

Note: The scalar A need not be a power of two. In fact, by choosing any real
number A we can obtain an arbitrary range. The power-of-two choice for A,
however, makes hardware implementation a little easier. �

As discussed in the previous section, there are three main formats for
fixed-point arithmetic, depending on how negative numbers are obtained.
For all these formats, positive numbers have exactly the same represen-
tation. In the following, we assume the fraction-only arrangement.

Sign-magnitude format As the name suggests, the magnitude is
given by the B-bit fraction, and the sign is given by the MSB. Thus

x̂ =
{
0�x1x2 · · · xB if x ≥ 0
1�x1x2 · · · xB if x < 0 (6.26)

For example, when B = 2, x̂ = +1/4 is represented by x̂ = 0�01, and
x̂ = −1/4 is represented by x̂ = 1�01.

One’s-complement format In this format, the positive numbers have
the same representation as the sign-magnitude format. When the number
is negative, then its magnitude is given by its bit-complement arrange-
ment. Thus

x̂ =
{
0�x1x2 · · · xB if x ≥ 0
1� x̄1x̄2 · · · x̄B if x < 0 (6.27)

For example, when B = 2, x̂ = +1/4 is represented by x̂ = 0�01, and
x̂ = −1/4 is represented by x̂ = 1�10.
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Two’s-complement format Once again, the positive numbers have
the same representation. Negative numbers are obtained by first comple-
menting the magnitude and then modulo-2 adding 1 to the last bit or the
least-significant bit (LSB). Stated differently, two’s-complement is formed
by subtracting the magnitude of the number from 2. Thus

x̂ =

⎧
⎨
⎩
0�x1x2 · · · xB if x ≥ 0
2 − |x| = 1� x̄1x̄2 · · · x̄B ⊕ 0�00 · · · 1 = 1�y1y2 · · · yB if x < 0

(6.28)

where ⊕ represents modulo-2 addition and bit y is, in general, different
from bit x̄. For example, when B = 2, x̂ = +1/4 is represented by x̂ =
0�01, and x̂ = −1/4 is represented by x̂ = 1�10 ⊕ 0�01 = 1�11.

� EXAMPLE 6.13 Let B = 3; then x̂ is a 4-bit number (sign plus 3 bits). Provide all possible
values that x̂ can take in each of the three formats.

Solution There are 24 = 16 possible values that x̂ can take for each of the three formats,
as shown in the following table.

Binary Sign-Magnitude one’s two’s

0�111 7/8 7/8 7/8
0�110 6/8 6/8 6/8
0�101 5/8 5/8 5/8
0�100 4/8 4/8 4/8
0�011 3/8 3/8 3/8
0�010 2/8 2/8 2/8
0�001 1/8 1/8 1/8
0�000 0 0 0
1�000 −0 −7/8 −1
1�001 −1/8 −6/8 −7/8
1�010 −2/8 −5/8 −6/8
1�011 −3/8 −4/8 −5/8
1�100 −4/8 −3/8 −4/8
1�101 −5/8 −2/8 −3/8
1�110 −6/8 −1/8 −2/8
1�111 −7/8 −0 −1/8

�

In Example 6.13, observe that the bit arrangement is exactly the same
as in the integer case for 4 bits. The only difference is in the position of
the binary point. Thus the MATLAB programs developed in the previ-
ous section can easily be used with proper modifications. The MATLAB
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function sm2oc converts a decimal sign-magnitude fraction into its one’s-
complement format, while the function oc2sm performs the inverse opera-
tion. These functions are explored in Problem P6.24. Similarly, MATLAB
functions sm2tc and tc2sm convert a decimal sign-magnitude fraction
into its two’s-complement format and vice versa, respectively; they are
explored in Problem P6.25.

6.5.3 FLOATING-POINT ARITHMETIC
In many applications, the range of numbers needed is very large. For
example, in physics one might need, at the same time, the mass of the sun
(e.g., 2.1030kg) and the mass of the electron (e.g., 9.10−31kg). These two
numbers cover a range of over 1060. For fixed-point arithmetic, we would
need 62-digit numbers (or 62-digit precision). However, even the mass of
the sun is not accurately known with a precision of 5 digits, and there is
almost no measurement in physics that could be made with a precision of
62 digits. One could then imagine making all calculations with a precision
of 62 digits and throwing away 50 or 60 of them before printing out the
final results. This would be wasteful of both CPU time and memory space.
So what is needed is a system for representing numbers in which the range
of expressible numbers is independent of the number of significant digits.

Decimal numbers The floating-point representation for a decimal
number x is based on expressing the number in the scientific notation:

x = ±M × 10±E

where M is called the mantissa and E is the exponent. However, there
are different possible representations of the same number, depending on
the actual position of the decimal point—for example,

1234 = 0.1234 × 104 = 1.234 × 103 = 12.34 × 102 = · · ·

To fix this problem, a floating-point number is always stored using
a unique representation, which has only one nonzero digit to the left
of the decimal point. This representation of a floating-point number is
called a normalized form. The normalized form of the preceding number
is 1.234 × 103, because it is the only representation resulting in a unique
nonzero digit to the left of the decimal point. The digit arrangement for
the normalized form is given by

x̂ =

sign of M
↓
± x� xx · · · x︸ ︷︷ ︸

N-bit M

sign of E
↓
± xx · · · x︸ ︷︷ ︸

L-bit E

(6.29)
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For the negative numbers, we have the same formats as the fixed-point
representations, including the ten’s-complement format.

The number of digits used in the exponent determine the range of
representable numbers, whereas the number of digits used in the mantissa
determine the precision of the numbers. For example, if the mantissa is
expressed using two digits plus the sign, and the exponent is expressed
using two digits plus the sign, then the real number line will be covered as

99 -99 -99 99
-9.99x10 -1.0x10 0 1.0x10 9.99x10

----------+-------------+-----------+-----------+-------------+----------->
| accessible | 0 | accessible |

negative | negative | negative | positive | positive | positive
overflow | numbers | underflow | underflow | numbers | overflow

The range of accessible floating-point numbers with a given representa-
tion can be large, but it is still finite. In the preceding example (e.g., with
two digits for the mantissa and two digits for the exponent), there are
only 9 × 10 × 10 × 199 =179,100 positive numbers, and as many negative
numbers, plus the number zero, for a total of 358,201 numbers that can
be represented.

Binary numbers Although the fraction-only fixed-point arithmetic
does not have any overflow problems when two numbers are multiplied, it
does suffer from overflow problems when two numbers are added. Also, the
fixed-point numbers have limited dynamic range. Both of these aspects
are unacceptable for an intensive computational job. These limitations
can be removed by making the binary point � floating rather than fixed.

The floating-point bit arrangement for binary-number representation
is similar to that for the decimal numbers. In practice, however, two ex-
ceptions are made. The exponent is expressed using L-bit excess-2L−1

format, and the B-bit normalized mantissa is a fractional number with
a 1 following the binary point. Note that the sign bit is the MSB of the
bit pattern. Thus the B-bit mantissa and L-bit exponent (for a total of
B + L + 1 word length) bit pattern is given by (note the reversal of the
mantissa and exponent places)

x̂ =

Sign of M
↓
± xx · · · x︸ ︷︷ ︸

L-bit E

� 1x · · · x︸ ︷︷ ︸
B-bit M

(6.30)

where exponent E is adjusted so that we have a normalized mantissa—
that is, 1/2 ≤ M < 1. Hence the first bit after the binary point is always 1.
The decimal equivalent of x̂ is given by

x̂ = ±M × 2E (6.31)

For the negative numbers, we can have the same formats as the fixed-point
representations for the mantissa including two’s-complement format.
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However, the most widely used format for the mantissa is the sign-
magnitude one.

� EXAMPLE 6.14 Consider a 32-bit floating-point word with the following arrangement:

x̂ = ± xx · · · x︸ ︷︷ ︸
8-bit E

� 1x · · · x︸ ︷︷ ︸
23-bit M

Determine the decimal equivalent of

01000001111000000000000000000000

Solution Since the exponent is 8-bit, it is expressed in excess-27 or in excess-128 format.
Then the bit pattern can be partitioned into

x̂ =

Sign
↓
0 10000011︸ ︷︷ ︸

E=131

� 11000000000000000000000︸ ︷︷ ︸
M=2−1+2−2

The sign bit is 0, which means that the number is positive. The exponent code
is 131, which means that its decimal value is 131−128 = 3. Thus the bit pattern
represents the decimal number x̂ = +

(
2−1 + 2−2

)
(23) = 22 + 21 = 6. �

� EXAMPLE 6.15 Let x̂ = −0.1875. Represent x̂ using the format given in (6.30), in which B = 11,
L = 4 (for a total of 16 bits), and sign-magnitude format is used for the mantissa.

Solution We can write

x̂ = −0.1875 = −0.75 × 2−2

Hence the exponent is −2, the mantissa is 0.75, and the sign is negative. The
4-bit exponent, in excess-8 format, is expressed as 8 − 2 = 6 or with bit pattern
0110. The mantissa is expressed as 11000000000. Since x̂ is negative, the bit
pattern is

x̂ ≡ 1011011000000000

�

The advantages of the floating-point representation are that it has
a large dynamic range and that its resolution, defined as the interval
between two consecutive representable levels, is proportional to the mag-
nitude. The disadvantages include no representation for the number 0 and
the fact that the arithmetic operations are more complicated than their
fixed-point representations.
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IEEE 754 standard In the early days of the digital computer revolu-
tion, each processor design had its own internal representation for floating-
point numbers. Since floating-point arithmetic is more complicated to
implement, some of these designs did incorrect arithmetic. Therefore, in
1985 IEEE issued a standard (IEEE standard 754-1985, or IEEE-754 for
short) to allow floating-point data exchange among different computers
and to provide hardware designers with a model known to be correct. Cur-
rently, almost all manufacturers design main processors or a dedicated
coprocessor for floating-point operations using the IEEE-754 standard
representation.

The IEEE-754 standard defines three formats for binary numbers: a
32-bit single-precision format, a 64-bit double-precision format, and an
80-bit temporary format (which is used internally by the processors or
arithmetic coprocessors to minimize rounding errors).

We will briefly describe the 32-bit single-precision standard. This
standard has many similarities with the floating-point representation dis-
cussed above, but there are also differences. Remember, this is another
model advocated by IEEE. The form of this model is

x̂ =

sign of M
↓
± xx · · · x︸ ︷︷ ︸

8-bit E

� xx · · · x︸ ︷︷ ︸
23-bit M

(6.32)

The mantissa’s value is called the significand in this standard. Features
of this model are as follows:

• If the sign bit is 0, the number is positive; if the sign bit is 1, the
number is negative.

• The exponent is coded in 8-bit excess-127 (and not 128) format. Hence
the uncoded exponents are between −127 and 128.

• The mantissa is in 23-bit binary. A normalized mantissa always starts
with a bit 1, followed by the binary point, followed by the rest of the
23-bit mantissa. However, the leading bit 1, which is always present in a
normalized mantissa, is hidden (not stored) and needs to be restored for
computation. Again, note that this is different from the usual definition
of the normalized mantissa. If all the 23 bits representing the mantissa
are set to 0, the significand is 1 (remember the implicit leading 1). If
all 23 bits are set to 1, the significand is almost 2 (in fact 2−2−23). All
IEEE 754 normalized numbers have a significand that is in the interval
1 ≤ M < 2.

• The smallest normalized number is 2−126, and the largest normalized
number is almost 2128. The resulting positive decimal range is roughly
10−38 to 1038 with a similar negative range.

• If E = 0 and M = 0, then the representation is interpreted as a de-
normalized number (i.e., the hidden bit is 0) and is assigned a value

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Process of Quantization and Error Characterizations 255

of ±0, depending on the sign bit (called the soft zero). Thus 0 has two
representations.

• If E = 255 and M �= 0, then the representation is interpreted as a
not-a-number (abbreviated as NaN). MATLAB assigns a variable NaN
when this happens—for example, 0/0.

• If E = 255 and M = 0, then the representation is interpreted as ±∞.
MATLAB assigns a variable inf when this happens—for example, 1/0.

� EXAMPLE 6.16 Consider the bit pattern given in Example 6.14. Assuming IEEE-754 format,
determine its decimal equivalent.

Solution The sign bit is 0 and the exponent code is 131, which means that the exponent
is 131 − 127 = 4. The significand is 1+2−1 +2−2 = 1.75. Hence the bit pattern
represents

x̂ = +(1 + 2−1 + 2−2)(24) = 24 + 23 + 22 = 28

which is different from the number in Example 6.14. �

MATLAB employs the 64-bit double-precision IEEE-754 format for
all its number representations and the 80-bit temporary format for its in-
ternal computations. Hence all calculations that we perform in MATLAB
are in fact floating-point computations. Simulating a different floating-
point format in MATLAB would be much more complicated and would
not add any more insight to our understanding than the native format.
Hence we will not consider a MATLAB simulation of floating-point arith-
metic as we did for fixed-point.

6.6 THE PROCESS OF QUANTIZATION AND ERROR
CHARACTERIZATIONS

From the discussion of number representations in the previous section, it
should be clear that a general infinite-precision real number must be as-
signed to one of the finite representable numbers, given a specific structure
for the finite-length register (i.e., the arithmetic as well as the format).
Usually, in practice, there are two different operations by which this as-
signment is made to the nearest number or level: the truncation operation
and the rounding operation. These operations affect the accuracy as well
as general characteristics of digital filters and DSP operations.

We assume, without loss of generality, that there are B + 1 bits in
the fixed-point (fractional) arithmetic or in the mantissa of floating-point
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arithmetic including the sign bit. Then the resolution (∆) is given by

∆ = 2−B

{
absolute in the case of fixed-point arithmetic
relative in the case of floating-point arithmetic (6.33)

6.6.1 FIXED-POINT ARITHMETIC
The quantizer block diagram in this case is given by

x
Infinite-precision

−→ Quantizer
B, ∆

Q[·] −→ Q[x]
Finite-precision

where B, the number of fractional bits, and ∆, the resolution, are the pa-
rameters of the quantizer. We will denote the finite word-length number,
after quantization, by Q[x] for an input number x. Let the quantization
error be given by

e
�
= Q[x] − x (6.34)

We will analyze this error for both the truncation and the rounding
operations.

Truncation operation In this operation, the number x is truncated
beyond B significant bits (i.e., the rest of the bits are eliminated) to obtain
QT[x]. In MATLAB, to obtain a B-bit truncation, we have to first scale
the number x upward by 2B , then use the fix function on the scaled
number, and finally scale the result down by 2−B . Thus the MATLAB
statement xhat = fix(x*2ˆB)/2ˆB; implements the desired operation.
We will now consider each of the three formats.

Sign-magnitude format If the number x is positive, then after trun-
cation QT[x] ≤ x since some value in x is lost. Hence quantizer error for
truncation denoted by eT is less than or equal to 0 or eT ≤ 0. However,
since there are B bits in the quantizer, the maximum error in terms of
magnitude is

|eT| = 0� 00 · · · 0︸ ︷︷ ︸
B bits

111 · · · = 2−B (decimal) (6.35)

or
−2−B ≤ eT ≤ 0, for x ≥ 0 (6.36)

Similarly, if the x < 0 then after truncation QT[x] ≥ x since QT[x] is less
negative, or eT ≥ 0. The largest magnitude of this error is again 2−B , or

0 ≤ eT ≤ 2−B , for x < 0 (6.37)
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FIGURE 6.19 Truncation error characteristics in the sign-magnitude format

� EXAMPLE 6.17 Let −1 < x < 1, and let B = 2. Using MATLAB, verify the truncation error
characteristics.

Solution The resolution is ∆ = 2−2 = 0.25. Using the following MATLAB script, we can
verify the truncation error eT relations given in (6.36) and (6.37).

x = [-1+2ˆ(-10):2ˆ(-10):1-2ˆ(-10)]; % Sign-Mag numbers between -1 and 1
B = 2; % Number of bits for truncation
xhat = fix(x*2ˆB)/2ˆB % Truncation
plot(x,x,’g’,x,xhat,’r’,’linewidth’,1); % Plot

The resulting plots of x and x̂ are shown in Figure 6.19. Note that the plot of
x̂ has a staircase shape and that it satisfies (6.36) and (6.37). �

One’s-complement format For x ≥ 0, we have the same character-
istics for eT as in sign-magnitude format—that is,

−2−B ≤ eT ≤ 0, for x ≥ 0 (6.38)

For x < 0, the representation is obtained by complementing all bits,
including the sign bit. To compute the maximum error, let

x = 1�b1b2 · · · bB000 · · · = − {� (1 − b1) (1 − b2) · · · (1 − bB) 111 · · ·}

After truncation, we obtain

QT[x] = 1�b1b2 · · · bB = − {� (1 − b1) (1 − b2) · · · (1 − bB)}
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FIGURE 6.20 Truncation error characteristics in the one’s-complement format

Clearly, x is more negative than QT[x] or x ≤ QT[x] or eT ≥ 0. In fact,
the maximum truncation error is

eTmax = 0�00 · · · 0111 · · · = 2−B (decimal)

Hence
0 ≤ eT ≤ 2−B , for x < 0 (6.39)

� EXAMPLE 6.18 Again let −1 < x < 1 and B = 2 with the resolution ∆ = 2−2 = 0.25. Using
MATLAB, verify the truncation error eT relations given in (6.38) and (6.39).

Solution The MATLAB script uses functions sm2oc and oc2sm, which are explored in
Problem P6.24.

x = [-1+2ˆ(-10):2ˆ(-10):1-2ˆ(-10)]; % Sign-Magnitude numbers between -1 and 1
B = 2; % Select bits for truncation
y = sm2oc(x,B); % Sign-mag to one’s complement
yhat = fix(y*2ˆB)/2ˆB; % Truncation
xhat = oc2sm(yhat,B); % One’s-complement to sign-mag
plot(x,x,’g’,x,xhat,’r’,’linewidth’,1); % Plot

The resulting plots of x and x̂ are shown in Figure 6.20. Note that the
plot of x̂ is identical to the plot in Figure 6.19 and that it satisfies (6.38)
and (6.39). �
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Two’s-complement format Once again, for x ≥ 0, we have

−2−B ≤ eT ≤ 0, for x ≥ 0 (6.40)

For x < 0, the representation is given by 2− |x| where |x| is the magnitude.
Hence the magnitude of x is given by

|x| = 2 − x (6.41)

with x = 1�b1b2 · · · bBbB+1 · · ·. After truncation to B bits, we obtain
QT[x] = 1�b1b2 · · · bB , the magnitude of which is

|QT[x]| = 2 − QT[x] (6.42)

From (6.41) and (6.42),

|QT[x]| − |x| = x − QT[x] = 1�b1b2 · · · bBbB+1 · · · − 1�b1b2 · · · bB

= 0�00 · · · 0bB+1 · · · (6.43)

The largest change in magnitude from (6.43) is

0�00 · · · 0111 · · · = 2−B (decimal) (6.44)

Since the change in the magnitude is positive, then after truncation QT[x]
becomes more negative, which means that QT[x] ≤ x. Hence

−2−B ≤ eT ≤ 0, for x < 0 (6.45)

� EXAMPLE 6.19 Again consider −1 < x < 1 and B = 2 with the resolution ∆ = 2−2 = 0.25.
Using MATLAB, verify the truncation error eT relations given in (6.40) and
(6.45).

Solution The MATLAB script uses functions sm2tc and tc2sm, which are explored in
Problem P6.25.

x = [-1+2ˆ(-10):2ˆ(-10):1-2ˆ(-10)]; % Sign-magnitude numbers between -1 and 1
B = 2; % Select bits for truncation
y = sm2tc(x); % Sign-mag to two’s complement
yhat = fix(y*2ˆB)/2ˆB; % Truncation
xq = tc2sm(yq ); % Two’s-complement to sign-mag
plot(x,x,’g’,x,xhat,’r’,’linewidth’,1); % Plot

The resulting plots of x and x̂ are shown in Figure 6.21. Note that the plot of
x̂ is also a staircase graph but is below the x graph and that it satisfies (6.40)
and (6.45). �

Collecting results (6.36)–(6.40) and (6.45) along with those in
Figures 6.19–6.21, we conclude that the truncation characteristics for
fixed-point arithmetic are the same for the sign-magnitude and the one’s-
complement formats but are different for the two’s-complement format.
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FIGURE 6.21 Truncation error characteristics in the two’s-complement format

Rounding operation In this operation, the real number x is rounded
to the nearest representable level, which we will refer to as QR[x]. In
MATLAB, to obtain a B-bit rounding approximation, we have to first
scale the number x up by 2B , then use the round function on the scaled
number, and finally scale the result down by 2−B . Thus the MAT-
LAB statement xhat = round(x*2ˆB)/2ˆB; implements the desired
operation.

Since the quantization step or resolution is ∆ = 2−B , the magnitude
of the maximum error is

|eR|max =
∆
2

=
1
2
2−B (6.46)

Hence for all three formats, the quantizer error due to rounding, denoted
by eR, satisfies

−1
2
2−B ≤ eR ≤ 1

2
2−B (6.47)

� EXAMPLE 6.20 Demonstrate the rounding operations and the corresponding error characteris-
tics on the signal of Examples 6.17–6.19 using the three formats.

Solution Since the rounding operation assigns values that can be larger than the
unquantized values, which can create problems for the two’s- and one’s-
complement formats, we will restrict the signal over the interval [−1, 1 −
2−B−1]. The following MATLAB script shows the two’s-complement format
rounding, but other scripts are similar (readers are encouraged to verify).
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FIGURE 6.22 Rounding error characteristics in the fixed-point representation

B = 2; % Select bits for rounding
x = [-1:2ˆ(-10):1-2ˆ(-B-1)]; % Sign-magnitude numbers between -1 and 1
y = sm2tc(x); % Sign-mag to two’s complement
yq = round(y*2ˆB)/2ˆB; % Rounding
xq = tc2sm(yq); % Two’s-complement to sign-mag

The resulting plots for the sign-magnitude, one’s-, and two’s-complement
formats are shown in Figure 6.22. These plots do satisfy (6.47). �

Comparing the error characteristics of the truncation and rounding
operations given in Figures 6.19 through 6.22, it is clear that the rounding
operation is a superior one for the quantization error. This is because the
error is symmetric with respect to zero (or equal positive and negative
distribution) and because the error is the same across all three formats.
Hence we will mostly consider the rounding operation for the floating-
point arithmetic as well as for further analysis.

6.6.2 FLOATING-POINT ARITHMETIC
In this arithmetic, the quantizer affects only the mantissa M . However,
the number x is represented by M × 2E where E is the exponent. Hence
the quantizer errors are multiplicative and depend on the magnitude of
x. Therefore, the more appropriate measure of error is the relative error
rather than the absolute error, (Q[x] − x). Let us define the relative error,
ε, as

ε
�
=

Q[x] − x

x
(6.48)

Then the quantized value Q[x] can be written as

Q[x] = x + εx = x (1 + ε) (6.49)
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When Q[x] is due to the rounding operation, then the error in the man-
tissa is between [−1

22−B , 1
22−B ]. In this case, we will denote the relative

error by εR. Then from (6.31), the absolute error, QR[x] − x = εRx, is
between (

−1
2
2−B

)
2E ≤ εRx ≤

(
1
2
2−B

)
2E (6.50)

Now for a given E, and since the mantissa is between 1
2 ≤ M < 1 (this is

not the IEEE-754 model), the number x is between

2E−1 ≤ x < 2E (6.51)

Hence from (6.50) and using the smallest value in (6.51), we obtain

−2−B ≤ εR ≤ 2−B (6.52)

This relative error relation, (6.52), will be used in subsequent analysis.

6.7 QUANTIZATION OF FILTER COEFFICIENTS

We now study the finite word-length effects on the filter responses, pole-
zero locations, and stability when the filter coefficients are quantized. We
will separately discuss the issues relating to IIR and FIR filters since we
can obtain simpler results for FIR filters. We begin with the case of IIR
filters.

6.7.1 IIR FILTERS
Consider a general IIR filter described by

H(z) =
∑M

k=0 bkz−k

1 +
∑N

k=1 akz−k
(6.53)

where aks and bks are the filter coefficients. Now assume that these coeffi-
cients are represented by their finite-precision numbers âks and b̂ks. Then
we get a new filter system function

H(z) → Ĥ(z)
�
=

∑M
k=0 b̂kz−k

1 +
∑N

k=1 âkz−k
(6.54)

Since this is a new filter, we want to know how “different” this filter is
from the original one H(z). Various aspects can be compared; for example,
we may want to compare their magnitude responses, or phase responses,
or change in their pole-zero locations, and so on. A general analytical
expression to compute this change in all these aspects is difficult to derive.
This is where MATLAB can be used to investigate this change and its
overall effect on the usability of the filter.
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6.7.2 EFFECT ON POLE-ZERO LOCATIONS
One aspect can be reasonably analyzed, which is the movement of filter
poles when ak is changed to âk. This can be used to check the stabil-
ity of IIR filters. A similar movement of zeros to changes in numerator
coefficients can also be analyzed.

To evaluate this movement, consider the denominator polynomial of
H(z) in (6.53),

D(z)
�
= 1 +

N∑
k=1

akz−k =
N∏

�=1

(
1 − p� z−1) (6.55)

where {p�}s are the poles of H(z). We will regard D(z) as a function
D(p1, . . . , pN ) of poles {p1, . . . , pN} where each pole p� is a function of the
filter coefficients {a1, . . . , aN}—that is, p� = f�(a1, . . . , aN ), � = 1, . . . N .
Then the change in the denominator D(z) due to a change in the kth
coefficient ak is given by
(

∂D(z)
∂ak

)
=
(

∂D(z)
∂p1

)(
∂p1

∂ak

)
+
(

∂D(z)
∂p2

)(
∂p2

∂ak

)
+· · ·+

(
∂D(z)
∂pN

)(
∂pN

∂ak

)

(6.56)
where, from (6.55),

(
∂D(z)
∂pi

)
=

∂

∂pi

[
N∏

�=1

(
1 − p� z−1)

]
= −z−1

∏
��=i

(
1 − p� z−1) (6.57)

From (6.57), note that
(

∂D(z)
∂pi

)∣∣∣
z=p�

= 0 for � �= i. Hence from (6.56) we

obtain

(
∂D(z)
∂ak

)∣∣∣∣
z=p�

=
(

∂D(z)
∂p�

)∣∣∣∣
z=p�

(
∂p�

∂ak

)
or

(
∂p�

∂ak

)
=

(
∂D(z)
∂ak

)∣∣∣
z=p�(

∂D(z)
∂p�

)∣∣∣
z=p�

(6.58)
Now

(
∂D(z)
∂ak

) ∣∣∣∣
z=p�

=
∂

∂ak

(
1 +

N∑
i=1

aiz
−i

)∣∣∣∣∣
z=p�

= z−k
∣∣
z=p�

= p−k
� (6.59)

From (6.57), (6.58), and (6.59), we obtain

(
∂p�

∂ak

)
=

p−k
�

−z−1
∏

i�=� (1 − pi z−1)
∣∣
z=p�

= − pN−k
�∏

i�=� (p� − pi )
(6.60)
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FIGURE 6.23 z-plane plots of tightly clustered poles of a digital filter

Finally, the total perturbation error �p� can be expressed as

�p� =
N∑

k=1

∂p�

∂ak
�ak (6.61)

This formula measures the movement of the �th pole, p�, to changes in
each of the coefficient {ak}; hence it is known as a sensitivity formula.
It shows that if the coefficients {ak} are such that if the poles p� and pi are
very close for some �, i, then (p� − pi) is very small and as a result the filter
is very sensitive to the changes in filter coefficients. A similar result can
be obtained for the sensitivity of zeros to changes in the parameters {bk}.

To investigate this further in the light of various filter realizations,
consider the z-plane plot shown in Figure 6.23(a), where poles are tightly
clustered. This situation arises in wideband frequency selective filters such
as lowpass or highpass filters. Now if we were to realize this filter using the
direct form (either I or II), then the filter has all these tightly clustered
poles, which makes the direct form realization very sensitive to coefficient
changes due to finite word length. Thus the direct form realizations will
suffer severely from coefficient quantization effects.

On the other hand, if we were to use either the cascade or the par-
allel forms, then we would realize the filter using second-order sections
containing widely separated poles, as shown in Figure 6.23(b). Thus each
second-order section will have low sensitivity in that its pole locations
will be perturbed only slightly. Consequently, we expect that the overall
system function H(z) will be perturbed only slightly. Thus the cascade
or the parallel forms, when realized properly, will have low sensitivity to
the changes or errors in filter coefficients.

� EXAMPLE 6.21 Consider a digital resonator that is a second-order IIR filter given by

H(z) =
1

1 − (2r cos θ) z−1 + r2z−2 (6.62)

Analyze its sensitivity to pole locations when a 3-bit sign-magnitude format is
used for the coefficient representation.
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FIGURE 6.24 Digital filter in Example 6.21: (a) pole-zero plot, (b) filter real-
ization

Solution The filter has two complex-conjugate poles at

p1 = rejθ and p2 = re−jθ = p∗
1

For a proper operation as a resonator, the poles must be close to the unit
circle—that is, r � 1 (but r < 1). Then the resonant frequency ωr � θ.
The zero-pole diagram is shown in Figure 6.24 along with the filter realiza-
tion. Let r = 0.9 and θ = π/3. Then from (6.62),

a1 = −2r cos θ = −0.9 and a2 = r2 = 0.81

We now represent a1 and a2, each using 3-bit sign-magnitude format
representation—that is,

ak = ± �b1 b2 b3 = ±
(
b12−1 + b22−2 + b32−3) , k = 1, 2

where bj represents the jth bit and � represents the binary point. Then for the
closest representation, we must have

â1 = 1�1 1 1 = −0.875 and â2 = 0�1 1 0 = +0.75

Hence |�a1| = 0.025 and |�a2| = 0.06. Consider the sensitivity formula (6.61),
in which

∂p1

∂a1
= − p2−1

1

(p1 − p∗
1)

=
−p1

2 Im {p1}
=

−rejθ

2r (sin θ)
=

ejπ/3

√
3

, and

∂p1

∂a2
= − p2−2

1

(p1 − p∗
1)

=
−1

2 Im {p1}
=

1
0.9

√
3

Using (6.61), we obtain

|�p1| ≤
∣∣∣∂p1

∂a1

∣∣∣ |�a1| +
∣∣∣∂p1

∂a2

∣∣∣ |�a2|

=
1√
3

(0.025) +
1

0.9
√

3
(0.06) = 0.0529 (6.63)
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To determine the exact locations of the changed poles, consider the changed
denominator

D̂ (z) = 1−0.875z−1 + 0.75z−2 =
(
1 − 0.866ej0.331πz−1) (1 − 0.866e−j0.331πz−1)

Thus the changed pole locations are p̂1 = 0.866ej0.331π = p̂∗
2. Then |�p1| =∣∣0.9eiπ/3 − 0.866ei0.331π

∣∣ = 0.0344, which agrees with (6.63). �

Analysis using MATLAB To investigate the effect of coefficient
quantization on filter behavior, MATLAB is an ideal vehicle. Using func-
tions developed in previous sections, we can obtain quantized coefficients
and then study such aspects as pole-zero movements, frequency response,
or impulse response. We will have to represent all filter coefficients using
the same number of integer and fraction bits. Hence, instead of quantizing
each coefficient separately, we will develop the function QCoeff for coeffi-
cient quantization. This function implements quantization using rounding
operation on sign-magnitude format. Although similar functions can be
written for truncation as well as for other formats, we will analyze the
effects using the Qcoeff function as explained previously.

function [y,L,B] = QCoeff(x,N)
% [y,L,B] = QCoeff(x,N)
% Coefficient quantization using N=1+L+B bit representation
% with rounding operation
% y: quantized array (same dim as x)
% L: number of integer bits
% B: number of fractional bits
% x: a scalar, vector, or matrix
% N: total number of bits

xm = abs(x);
L = max(max(0,fix(log2(xm(:)+eps)+1))); % Integer bits

if (L > N)
errmsg = [’ *** N must be at least ’,num2str(L),’ ***’]; error(errmsg);

end
B = N-L; % Fractional bits
y = xm./(2ˆL); y = round(y.*(2ˆN)); % Rounding to N bits
y = sign(x).*y*(2ˆ(-B)); % L+B+1 bit representation

The Qcoeff function represents each coefficient in the x array using
N+1-bit (including the sign bit) representation. First, it determines the
number of bits L needed for integer representation for the magnitude-wise
largest coefficient, and then it assigns N-L bits to the fraction part. The
resulting number is returned in B. Thus all coefficients have the same bit
pattern L+B+1. Clearly, N ≥ L.
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� EXAMPLE 6.22 Consider the digital resonator in Example 6.21. Determine the change in the
pole locations using MATLAB.

Solution The filter coefficients, a1 = −0.9 and a2 = 0.81, can be quantized using

>> x = [-0.9,0.81]; [y,L,B] = Qcoeff(x,3)
y = -0.8750 0.7500
L = 0
B = 3

as expected. Now using the following MATLAB script, we can determine the
change in the location of the poles.

% Unquantized parameters
r = 0.9; theta = pi/3; a1 = -2*r*cos(theta); a2 = r*r;
p1 = r*exp(j*theta); p2 = p1’;
% Quantized parameters: N = 3;
[ahat,L,B] = Qcoeff([a1,a2],3); rhat = sqrt(ahat(2));
thetahat = acos(-ahat(1)/(2*rhat)); p1hat = rhat*exp(j*thetahat); p2 = p1’;
% Changes in pole locations
Dp1 = abs(p1-p1hat)
Dp1 = 0.0344

This is the same as before. �

� EXAMPLE 6.23 Consider the following IIR filter with 10 poles closely packed at a radius of
r = 0.9 around angles ±45◦ with a separation of 5◦. Due to large number of
poles, the denominator coefficients have values that require 6 bits for the integer
part. Using 9 bits for the fractional part for a total of 16-bit representation, we
compute and plot the new locations of poles:

r = 0.9; theta = (pi/180)*[-55:5:-35,35:5:55]’;
p = r*exp(j*theta); a = poly(p); b = 1;

% Direct form: quantized coefficients
N = 15; [ahat,L,B] = Qcoeff(a,N);
TITLE = sprintf(’%i-bit (1+%i+%i) Precision’,N+1,L,B);

% Comparison of pole-zero plots
subplot(1,2,1); [HZ,HP,Hl] = zplane(1,a);
set(HZ,’color’,’g’,’linewidth’,1); set(HP,’color’,’g’,’linewidth’,1);
set(Hl,’color’,’w’); axis([-1.1,1.1,-1.1,1.1]);
title(’Infinite Precision’,’fontsize’,10,’fontweight’,’bold’);
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FIGURE 6.25 Pole-zero plots for direct form structure in Example 6.23

subplot(1,2,2); [HZhat,HPhat,Hlhat] = zplane(1,ahat);
set(HZhat,’color’,’r’,’linewidth’,1); set(HPhat,’color’,’r’,’linewidth’,1);
set(Hlhat,’color’,’w’); title(TITLE,’fontsize’,10,’fontweight’,’bold’);
axis([-1.1,1.1,-1.1,1.1]);

Figure 6.25 shows the pole-zero plots for filters with both infinite and 16-
bit precision coefficients. Clearly, with 16-bit word length, the resulting filter is
completely different from the original one and is unstable. To investigate the
effect of finite word length on the cascade form structure, we first converted
the direct form coefficients into the cascade form coefficients using the dir2cas
function, quantized the resulting set of coefficients, and then converted back to
the direct form for pole-zero plotting. We show results for two different word
lengths. In the first case, we used the same 16-bit word length. Since the cascade
coefficients have smaller integer parts that require only one integer bit, the
number of fractional bits is 14. In the second case, we used 9 fractional bits
(same as those in the direct form) for a total word length of 11 bits.

% Cascade form: quantized coefficients: same N
[b0,B0,A0] = dir2cas(b,a); [BAhat1,L1,B1] = Qcoeff([B0,A0],N);
TITLE1 = sprintf(’%i-bit (1+%i+%i) Precision’,N+1,L1,B1);
Bhat1 = BAhat1(:,1:3); Ahat1 = BAhat1(:,4:6);
[bhat1,ahat1] = cas2dir(b0,Bhat1,Ahat1);

subplot(1,2,1); [HZhat1,HPhat1,Hlhat1] = zplane(bhat1,ahat1);
set(HZhat1,’color’,’g’,’linewidth’,1); set(HPhat1,’color’,’g’,’linewidth’,1);
set(Hlhat1,’color’,’w’); axis([-1.1,1.1,-1.1,1.1]);
title(TITLE1,’fontsize’,10,’fontweight’,’bold’);
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FIGURE 6.26 Pole-zero plots for cascade form structure in Example 6.23

% Cascade form: quantized coefficients: same B (N=L1+B)
N1 = L1+B; [BAhat2,L2,B2] = Qcoeff([B0,A0],N1);
TITLE2 = sprintf(’%i-bit (1+%i+%i) Precision’,N1+1,L2,B2);
Bhat2 = BAhat2(:,1:3); Ahat2 = BAhat2(:,4:6);
[bhat2,ahat2] = cas2dir(b0,Bhat2,Ahat2);

subplot(1,2,2); [HZhat2,HPhat2,Hlhat2] = zplane(bhat2,ahat2);
set(HZhat2,’color’,’r’,’linewidth’,1); set(HPhat2,’color’,’r’,’linewidth’,1);
set(Hlhat2,’color’,’w’);title(TITLE2,’fontsize’,10,’fontweight’,’bold’);
axis([-1.1,1.1,-1.1,1.1]);

The results are shown in Figure 6.26. We observe that not only for 16-bit rep-
resentation but also for 11-bit representation, the resulting filter is essentially
the same as the original one and is stable. Clearly, the cascade form structure
has better finite-word-length properties than the direct form structure. �

6.7.3 EFFECTS ON FREQUENCY RESPONSE
The frequency response of the IIR filter in (6.38) is given by

H(ejω) =
∑M

k=0 bk e−jωk

1 +
∑N

k=1 ak e−jωk
(6.64)

When the coefficients {ak} and {bk} are quantized to {âk} and {b̂k},
respectively, the new frequency response is given by

Ĥ(ejω) =
∑M

k=0 b̂k e−jωk

1 +
∑N

k=1 âk e−jωk
(6.65)
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One can perform analysis similar to that for the movement of poles to
obtain maximum change in the magnitude or phase responses due to
changes in filter coefficients. However, such an analysis is very complicated
and may not add any new insight. Hence we will study these effects using
MATLAB. We provide the following two examples.

� EXAMPLE 6.24 Compute and plot magnitude responses of filter structures given for the filter
in Example 6.23.

Solution The filter is a bandpass filter with 10 tightly clustered poles implemented using
the direct and the cascade forms. For the direct form structure, we compute the
magnitude response for infinite precision as well as for 16-bit quantization. For
the cascade form structure, we use 16-bit and 11-bit representations.

r = 0.9; theta = (pi/180)*[-55:5:-35,35:5:55]’;
p = r*exp(j*theta); a = poly(p); b = 1;
w = [0:500]*pi/500; H = freqz(b*1e-4,a,w);
magH = abs(H); magHdb = 20*log10(magH);

% Direct form: quantized coefficients
N = 15; [ahat,L,B] = Qcoeff(a,N);
TITLE = sprintf(’%i-bit (1+%i+%i) Precision (DF)’,N+1,L,B);
Hhat = freqz(b*1e-4,ahat,w); magHhat = abs(Hhat);

% Cascade form: quantized coefficients: Same N
[b0,B0,A0] = dir2cas(b,a);
[BAhat1,L1,B1] = Qcoeff([B0,A0],N);
TITLE1 = sprintf(’%i-bit (1+%i+%i) Precision (CF)’,N+1,L1,B1);
Bhat1 = BAhat1(:,1:3); Ahat1 = BAhat1(:,4:6);
[bhat1,ahat1] = cas2dir(b0,Bhat1,Ahat1);
Hhat1 = freqz(b*1e-4,ahat1,w); magHhat1 = abs(Hhat1);

% Cascade form: quantized coefficients: Same B (N=L1+B)
N1 = L1+B; [BAhat2,L2,B2] = Qcoeff([B0,A0],N1);
TITLE2 = sprintf(’%i-bit (1+%i+%i) Precision (CF)’,N1+1,L2,B2);
Bhat2 = BAhat2(:,1:3); Ahat2 = BAhat2(:,4:6);
[bhat2,ahat2] = cas2dir(b0,Bhat2,Ahat2);
Hhat2 = freqz(b*1e-4,ahat2,w); magHhat2 = abs(Hhat2);

% Comparison of Magnitude Plots
Hf_1 = figure(’paperunits’,’inches’,’paperposition’,[0,0,6,4]);
subplot(2,2,1); plot(w/pi,magH,’g’,’linewidth’,2); axis([0,1,0,0.7]);
%xlabel(’Digital Frequency in \pi units’,’fontsize’,10);
ylabel(’Magnitude Response’,’fontsize’,10);
title(’Infinite Precision (DF)’,’fontsize’,10,’fontweight’,’bold’);
subplot(2,2,2); plot(w/pi,magHhat,’r’,’linewidth’,2); axis([0,1,0,0.7]);
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%xlabel(’Digital Frequency in \pi units’,’fontsize’,10);
ylabel(’Magnitude Response’,’fontsize’,10);
title(TITLE,’fontsize’,10,’fontweight’,’bold’);
subplot(2,2,3); plot(w/pi,magHhat1,’r’,’linewidth’,2); axis([0,1,0,0.7]);
xlabel(’Digital Frequency in \pi units’,’fontsize’,10);
ylabel(’Magnitude Response’,’fontsize’,10);
title(TITLE1,’fontsize’,10,’fontweight’,’bold’);
subplot(2,2,4); plot(w/pi,magHhat2,’r’,’linewidth’,2); axis([0,1,0,0.7]);
xlabel(’Digital Frequency in \pi units’,’fontsize’,10);
ylabel(’Magnitude Response’,’fontsize’,10);
title(TITLE2,’fontsize’,10,’fontweight’,’bold’);

The plots are shown in Figure 6.27. The top row shows plots for the direct
form, and the bottom row shows those for the cascade form. As expected,
the magnitude plot of the direct form is severely distorted for 16-bit repre-
sentation, while those for the cascade form are preserved even for 11-bit word
length. �

� EXAMPLE 6.25 An eighth-order bandpass filter was obtained using the elliptic filter design
approach. This and other design methods will be discussed in Chapter 8. The
MATLAB functions needed for this design are shown in the script below.
This design produces direct form filter coefficients bk and ak, using 64-bit
floating-point arithmetic, which gives the precision of 15 decimals and hence
can be considered as unquantized coefficients. Table 6.1 shows these filter
coefficients.

Represent the unquantized filter coefficients using 16-bit and 8-bit word
lengths. Plot the filter log-magnitude responses and pole-zero locations for both
the infinite and finite word-length coefficients.

TABLE 6.1 Unquantized IIR filter coefficients used in Example 6.25

k bk ak

0 0.021985541264351 1.000000000000000
1 0.000000000000000 −0.000000000000004
2 −0.032498273955222 2.344233276056572
3 0.000000000000000 −0.000000000000003
4 0.046424673058794 2.689868616770005
5 0.000000000000000 0.000000000000001
6 −0.032498273955221 1.584557559015230
7 0.000000000000000 0.000000000000001
8 0.021985541264351 0.413275250482975
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FIGURE 6.27 Magnitude plots for direct and cascade form structures in
Example 6.24

Solution Unlike the previous example, some of the filter coefficient values (specifically
those of the autoregressive part) are greater than 1 and hence require bits for
the integer part. This assignment is done for all coefficients since, in practice,
the same bit-pattern is used for the filter representation. These and other steps
are given in the following MATLAB script.

% The following 3 lines produce filter coefficients shown in Table 6.1.
wp = [0.35,0.65]; ws = [0.25,0.75]; Rp = 1; As = 50;
[N, wn] = ellipord(wp, ws, Rp, As);
[b,a] = ellip(N,Rp,As,wn);
w = [0:500]*pi/500; H = freqz(b,a,w); magH = abs(H);
magHdb = 20*log10(magH);

% 16-bit word-length quantization
N1 = 15; [bahat,L1,B1] = QCoeff([b;a],N1);
TITLE1 = sprintf(’%i-bits (1+%i+%i)’,N1+1,L1,B1);
bhat1 = bahat(1,:); ahat1 = bahat(2,:);
Hhat1 = freqz(bhat1,ahat1,w); magHhat1 = abs(Hhat1);
magHhat1db = 20*log10(magHhat1); zhat1 = roots(bhat1);
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% 8-bit word-length quantization
N2 = 7; [bahat,L2,B2] = QCoeff([b;a],N2);
TITLE2 = sprintf(’%i-bits (1+%i+%i)’,N2+1,L2,B2);
bhat2 = bahat(1,:); ahat2 = bahat(2,:);
Hhat2 = freqz(bhat2,ahat2,w); magHhat2 = abs(Hhat2);
magHhat2db = 20*log10(magHhat2); zhat2 = roots(bhat2);

% Plots
Hf_1 = figure(’paperunits’,’inches’,’paperposition’,[0,0,6,5]);

% Comparison of log-magnitude responses: 16 bits
subplot(2,2,1); plot(w/pi,magHdb,’g’,’linewidth’,1.5); axis([0,1,-80,5]);
hold on; plot(w/pi,magHhat1db,’r’,’linewidth’,1); hold off;
xlabel(’Digital Frequency in \pi units’,’fontsize’,10);
ylabel(’Decibels’,’fontsize’,10);
title([’Log-Mag plot: ’,TITLE1],’fontsize’,10,’fontweight’,’bold’);

% Comparison of pole-zero plots: 16 bits
subplot(2,2,3); [HZ,HP,Hl] = zplane([b],[a]); axis([-2,2,-2,2]); hold on;
set(HZ,’color’,’g’,’linewidth’,1,’markersize’,4);
set(HP,’color’,’g’,’linewidth’,1,’markersize’,4);
plot(real(zhat1),imag(zhat1),’r+’,’linewidth’,1);
title([’PZ Plot: ’,TITLE1],’fontsize’,10,’fontweight’,’bold’);
hold off;

% Comparison of log-magnitude responses: 8 bits
subplot(2,2,2); plot(w/pi,magHdb,’g’,’linewidth’,1.5); axis([0,1,-80,5]);
hold on; plot(w/pi,magHhat2db,’r’,’linewidth’,1); hold off;
xlabel(’Digital Frequency in \pi units’,’fontsize’,10);
ylabel(’Decibels’,’fontsize’,10);
title([’Log-Mag plot: ’,TITLE2],’fontsize’,10,’fontweight’,’bold’);

% Comparison of pole-zero plots: 8 bits
subplot(2,2,4); [HZ,HP,Hl] = zplane([b],[a]); axis([-2,2,-2,2]); hold on;
set(HZ,’color’,’g’,’linewidth’,1,’markersize’,4);
set(HP,’color’,’g’,’linewidth’,1,’markersize’,4);
plot(real(zhat2),imag(zhat2),’r+’,’linewidth’,1);
title([’PZ Plot: ’,TITLE2],’fontsize’,10,’fontweight’,’bold’);
hold off;

The log-magnitude responses and zero-pole locations of the resulting filters are
plotted in Figure 6.28 along with those of the original filter. When 16 bits
are used, the resulting filter is virtually indistinguishable from the original one.
However, when 8 bits are used, the filter behavior is severely distorted. The filter
is still stable, but it does not satisfy the design specifications. �
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FIGURE 6.28 Plots for the IIR filter in Example 6.25

6.7.4 FIR FILTERS
A similar analysis can be done for FIR filters. Let the impulse response
of an FIR filter be h(n) with system response

H(z) =
M−1∑
n=0

h(n)z−n (6.66)

Then

∆H(z) =
M−1∑
n=0

∆h(n)z−n (6.67)

where ∆H(z) is the change due to change in the impulse response h(n).
Hence

∆H (e jω) =
M−1∑
n=0

∆h(n) e−jωn or |∆H(e jω)| ≤
M−1∑
n=0

|∆h(n)| (6.68)
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Now, if each coefficient is quantized to B fraction bits (i.e., total register
length is B + 1), then

|∆h(n)| ≤ 1
2
2−B

Therefore,

|∆H(ejω)| ≤ 1
2
2−BM =

M

2
2−B (6.69)

Thus the change in frequency response depends not only on the number
of bits used but also on the length M of the filter. For large M and small
b, this difference can be significant and can destroy the desirable behavior
of the filter, as we see in the following example.

� EXAMPLE 6.26 An order-30 lowpass FIR filter is designed using the firpm function. This and
other FIR filter design functions will be discussed in Chapter 7. The resulting
filter coefficients are symmetric and are shown in Table 6.2. We will consider
these coefficients as essentially unquantized. The coefficients are quantized to
16 bits (15 fractional plus 1 sign bit) and to 8 bits (7 fractional and 1 sign bit).
The resulting filter frequency responses and pole-zero plots are determined and
compared. These and other relevant steps are shown in the following MATLAB
script.

TABLE 6.2 Unquantized FIR filter coefficients used in
Example 6.26

k bk k

0 0.000199512328641 30
1 −0.002708453461401 29
2 −0.002400461099957 28
3 0.003546543555809 27
4 0.008266607456720 26
5 0.000012109690648 25
6 −0.015608300819736 24
7 −0.012905580320708 23
8 0.017047710292001 22
9 0.036435951059014 21
10 0.000019292305776 20
11 −0.065652005307521 19
12 −0.057621325403582 18
13 0.090301607282890 17
14 0.300096964940136 16
15 0.400022084144842 15

% Filter coefficients given in Table 6.2 are computed using the firpm function
b = firpm(30,[0,0.3,0.5,1],[1,1,0,0]);
w = [0:500]*pi/500; H = freqz(b,1,w); magH = abs(H);
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magHdb = 20*log10(magH);
N1 = 15; [bhat1,L1,B1] = Qcoeff(b,N1);
TITLE1 = sprintf(’%i-bits (1+%i+%i)’,N1+1,L1,B1);
Hhat1 = freqz(bhat1,1,w); magHhat1 = abs(Hhat1);
magHhat1db = 20*log10(magHhat1);
zhat1 = roots(bhat1);

N2 = 7; [bhat2,L2,B2] = Qcoeff(b,N2);
TITLE2 = sprintf(’%i-bits (1+%i+%i)’,N2+1,L2,B2);
Hhat2 = freqz(bhat2,1,w); magHhat2 = abs(Hhat2);
magHhat2db = 20*log10(magHhat2);
zhat2 = roots(bhat2);

% Plots
Hf_1 = figure(’paperunits’,’inches’,’paperposition’,[0,0,6,5]);

% Comparison of log-magnitude responses: 16 bits
subplot(2,2,1); plot(w/pi,magHdb,’g’,’linewidth’,1.5); axis([0,1,-80,5]);
hold on; plot(w/pi,magHhat1db,’r’,’linewidth’,1); hold off;
xlabel(’Digital Frequency in \pi units’,’fontsize’,10);
ylabel(’Decibels’,’fontsize’,10);
title([’Log-Mag plot: ’,TITLE1],’fontsize’,10,’fontweight’,’bold’);

% Comparison of pole-zero plots: 16 bits
subplot(2,2,3); [HZ,HP,Hl] = zplane([b],[1]); axis([-2,2,-2,2]); hold on;
set(HZ,’color’,’g’,’linewidth’,1,’markersize’,4);
set(HP,’color’,’g’,’linewidth’,1,’markersize’,4);
plot(real(zhat1),imag(zhat1),’r+’,’linewidth’,1);
title([’PZ Plot: ’,TITLE1],’fontsize’,10,’fontweight’,’bold’);
hold off;

% Comparison of log-magnitude responses: 8 bits
subplot(2,2,2); plot(w/pi,magHdb,’g’,’linewidth’,1.5); axis([0,1,-80,5]);
hold on; plot(w/pi,magHhat2db,’r’,’linewidth’,1); hold off;
xlabel(’Digital Frequency in \pi units’,’fontsize’,10);
ylabel(’Decibels’,’fontsize’,10);
title([’Log-Mag plot: ’,TITLE2],’fontsize’,10,’fontweight’,’bold’);

% Comparison of pole-zero plots: 8 bits
subplot(2,2,4); [HZ,HP,Hl] = zplane([b],[1]); axis([-2,2,-2,2]); hold on;
set(HZ,’color’,’g’,’linewidth’,1,’markersize’,4);
set(HP,’color’,’g’,’linewidth’,1,’markersize’,4);
plot(real(zhat2),imag(zhat2),’r+’,’linewidth’,1);
title([’PZ Plot: ’,TITLE2],’fontsize’,10,’fontweight’,’bold’);
hold off;

The log-magnitude responses and zero-pole locations of the resulting filters are
computed and plotted in Figure 6.29 along with those of the original filter.
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FIGURE 6.29 Plots for the FIR filter in Example 6.26

When 16 bits are used, the resulting filter is virtually indistinguishable from
the original one. However, when 8 bits are used, the filter behavior is severely
distorted and the filter does not satisfy the design specifications. �

6.8 PROBLEMS

P6.1 Draw direct form I block diagram structures for each of the following LTI systems with
input node x(n) and output node y(n).

1. y(n) = x(n) + 2 x(n − 1) + 3x(n − 2)

2. H(z) =
1

1 − 1.7z−1 + 1.53z−2 − 0.648z−3

3. y(n) = 1.7 y(n − 1) − 1.36 y(n − 2) + 0.576 y(n − 3) + x(n)
4. y(n) = 1.6 y(n − 1) + 0.64 y(n − 2) + x(n) + 2 x(n − 1) + x(n − 2)

5. H(z) =
1 − 3z−1 + 3z−2 + z−3

1 + 0.2z−1 − 0.14z−2 + 0.44z−3
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K

z −1

z −1 z −1 z −1

z −1 z −1
2

0.5

(i)

2 0.5
K

−0.9

(ii)

x(n) x(n)y(n) y(n)

1.8

FIGURE P6.1 Block diagrams for Problem 6.2

P6.2 Two block diagrams are shown in Figure P6.1. Answer the following for each structure.

1. Determine the system function H(z) = Y (z)/X(z).
2. Is the structure canonical (i.e., with the least number of delays)? If not, draw a

canonical structure.
3. Determine the value of K so that H(ej 0) = 1.

P6.3 Consider the LTI system described by

y(n) = a y(n − 1) + b x(n) (6.70)

1. Draw a block diagram of this system with input node x(n) and output node y(n).
2. Now perform the following two operations on the structure drawn in part 1: (i) reverse

all arrow directions and (ii) interchange the input node with the output node. Notice
that the branch node becomes the adder node and vice versa. Redraw the block diagram
so that input node is on the left side and the output node is on the right side. This is the
transposed block diagram.

3. Determine the difference equation representation of your transposed structure in part 2,
and verify that it is the same equation as (6.70).

P6.4 Consider the LTI system given by

H(z) =
1 − 2.818z−1 + 3.97z−2 − 2.8180z−3 + z−4

1 − 2.536z−1 + 3.215z−2 − 2.054z−3 + 0.6560z−4 (6.71)

1. Draw the normal direct form I structure block diagram.
2. Draw the transposed direct form I structure block diagram.
3. Draw the normal direct form II structure block diagram. Observe that it looks very

similar to that in part 2.
4. Draw the transposed direct form II structure block diagram. Observe that it looks very

similar to that in part 1.

P6.5 Consider the LTI system given in Problem P6.4.

1. Draw a cascade structure containing second-order normal direct form II sections.
2. Draw a cascade structure containing second-order transposed direct form II sections.
3. Draw a parallel structure containing second-order normal direct form II sections.
4. Draw a parallel structure containing second-order transposed direct form II sections.

P6.6 A causal linear time-invariant system is described by

y(n) =
4∑

k=0

cos(0.1πk)x(n − k) −
5∑

k=1

(0.8)k sin(0.1πk)y(n − k)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Problems 279

Determine and draw the block diagrams of the following structures. Compute the response
of the system to

x(n) = [1 + 2(−1)n] , 0 ≤ n ≤ 50

in each case, using the following structures.

1. Normal direct form I
2. Transposed direct form II
3. Cascade form containing second-order normal direct form II sections
4. Parallel form containing second-order transposed direct form II sections

P6.7 An IIR filter is described by system function

H(z) = 2

(
1 + 0z−1 + z−2

1 − 0.8z−1 + 0.64z−2

)
+

(
2 − z−1

1 − 0.75z−1

)
+

(
1 + 2z−1 + z−2

1 + 0.81z−2

)

Determine and draw the following structures.

1. Transposed direct form I
2. Normal direct form II
3. Cascade form containing transposed second-order direct form II sections
4. Parallel form containing normal second-order direct form II sections

P6.8 An IIR filter is described by the system function

H(z) =

(
−14.75 − 12.9z−1

1 − 7
8z−1 + 3

32z−2

)
+

(
24.5 + 26.82z−1

1 − z−1 + 1
2z−2

)(
1 + 2z−1 + z−2

1 + 0.81z−2

)

Determine and draw the following structures.

1. Normal direct form I
2. Normal direct form II
3. Cascade form containing transposed second-order direct form II sections
4. Parallel form containing transposed second-order direct form II sections

P6.9 A linear time-invariant system with system function

H(z) =
0.05 − 0.01z−1 − 0.13z−2 + 0.13z−4 + 0.01z−5 − 0.05z−6

1 − 0.77z−1 + 1.59z−2 − 0.88z−3 + 1.2z−4 − 0.35z−5 + 0.31z−6

is to be implemented using a flow graph of the form shown in Figure P6.2.

1. Fill in all the coefficients in the diagram.
2. Is your solution unique? Explain.

z −1

z −1

z −1

z −1

z −1

z −1

z −1

z −1

y (n)x(n)

FIGURE P6.2 Structure for Problem 6.9
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P6.10 A linear time-invariant system with system function

H(z) =
0.051 + 0.088z−1 + 0.06z−2 − 0.029z−3 − 0.069z−4 − 0.046z−5

1 − 1.34z−1 + 1.478z−2 − 0.789z−3 + 0.232z−4

is to be implemented using a flow graph of the form shown in Figure P6.3. Fill in all the
coefficients in the diagram.

z−1

z−1

z−1

z−1

z−1

x(n) y (n)

FIGURE P6.3 Structure for Problem 6.10
P6.11 Consider the linear time-invariant system given in Problem P6.9.

H(z) =
0.05 − 0.01z−1 − 0.13z−2 + 0.13z−4 + 0.01z−5 − 0.05z−6

1 − 0.77z−1 + 1.59z−2 − 0.88z−3 + 1.2z−4 − 0.35z−5 + 0.31z−6

It is to be implemented using a flow graph of the form shown in Figure P6.4.

1. Fill in all the coefficients in the diagram.
2. Is your solution unique? Explain.

y(n)x(n)
z −1 z −1

z −1z −1

z −1

z −1

FIGURE P6.4 Structure for Problem 6.11
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P6.12 The filter structure shown in Figure P6.5 contains a parallel connection of cascade sections.
Determine and draw the overall

1. direct form (normal) structure,
2. direct form (transposed) structure,
3. cascade form structure containing second-order sections,
4. parallel form structure containing second-order sections.

2

0.5

1.5

−1

−0.9

−0.5

2

3

−0.4

−0.4

3

1

1

−0.8

2

1

1

−0.5

−0.5

0.4

z−1

z−1

z−1

z−1

z−1

z−1

z−1

z−1

z−1

x(n) y(n)

FIGURE P6.5 Structure for Problem 6.12

P6.13 In the filter structure shown in Figure P6.6, systems H1(z) and H2(z) are subcomponents
of a larger system H(z). The system function H1(z) is given in the parallel form

H1(z) = 2 +
0.2 − 0.3z−1

1 + 0.9z−1 + 0.9z−2 +
0.4 + 0.5z−1

1 − 0.8z−1 + 0.8z−2

and the system function H2(z) is given in the cascade form

H2(z) =

(
2 + z−1 − z−2

1 + 1.7z−1 + 0.72z−2

)(
3 + 4z−1 + 5z−2

1 − 1.5z−1 + 0.56z−2

)

1. Express H(z) as a rational function.
2. Draw the block diagram of H(z) as a cascade form structure.
3. Draw the block diagram of H(z) as a parallel form structure.

H(z)

x(n)

H2(z)

H1(z)

y(n)

FIGURE P6.6 Structure for Problem 6.13
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P6.14 The digital filter structure shown in Figure P6.7 is a cascade of two parallel sections and
corresponds to a tenth-order IIR digital filter system function

H(z) =
1 − 2.2z−2 + 1.6368z−4 − 0.48928z−6 + 5395456 × 10−8z−8 − 147456 × 10−8z−10

1 − 1.65z−2 + 0.8778z−4 − 0.17281z−6 + 1057221 × 10−8z−8 − 893025 × 10−10z−10

x(n) y(n)

4.0635 4.0635

−0.0793

−0.0815−1.6

−0.63

−2.8255

0.4

−0.03

0.7747

−0.2076

0.1319

−0.0304

−0.9

−0.35

1.2

−0.5502

−0.2245

−2.4609

−0.8

−0.15

−0.1

z−1

z −1

z−1z −1

z −1

z −1

z −1 z −1

z −1

z −1

FIGURE P6.7 Structure for Problem 6.14

1. Due to an error in labeling, two of the multiplier coefficients (rounded to four decimals)
in this structure have incorrect values. Locate these two multipliers and determine their
correct values.

2. Determine and draw an overall cascade structure containing second-order sections and
which contains the least number of multipliers.

P6.15 As described in this chapter, a linear-phase FIR filter is obtained by requiring certain
symmetry conditions on its impulse responses.

1. In the case of symmetrical impulse response, we have h(n) = h(M − 1 − n),
0 ≤ n ≤ M − 1. Show that the resulting phase response is linear in ω and is given by

� H
(
ejω
)

= −
(

M − 1
2

)
ω, −π < ω ≤ π

2. Draw the linear-phase structures for this form when M = 5 and M = 6.
3. In the case of antisymmetrical impulse response, we have h(n) = −h(M − 1 − n),

0 ≤ n ≤ M − 1. Show that the resulting phase response is given by

� H
(
ejω
)

= ±π

2
−
(

M − 1
2

)
ω, −π < ω ≤ π

4. Draw the linear-phase structures for this form when M = 5 and M = 6.
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P6.16 An FIR filter is described by the difference equation

y(n) =
6∑

k=0

e−0.9|k−3|x(n − k)

Determine and draw the block diagrams of the following structures.

1. Direct form
2. Linear-phase form
3. Cascade form
4. Frequency-sampling form

P6.17 A linear time-invariant system is given by the system function

H(z) = 2 + 3z−1 + 5z−2 − 3z−3 + 4z−5 + 8z−7 − 7z−8 + 4z−9

Determine and draw the block diagrams of the following structures.

1. Direct form
2. Cascade form
3. Frequency-sampling form

P6.18 Using the conjugate symmetry property of the DFT

H (k) =

{
H (0) , k = 0
H∗ (M − k) , k = 1, . . . , M − 1

and the conjugate symmetry property of the W −k
M factor, show that (6.12) can be put in

the form (6.13) and (6.14) for real FIR filters.

P6.19 To avoid poles on the unit circle in the frequency-sampling structure, one samples H(z) at
zk = rej2πk/M , k = 0, . . . , M − 1 where r ≈ 1(but < 1), as discussed in Section 6.3.

1. Using

H
(
rej2πk/M

)
≈ H (k)

show that the frequency-sampling structure is given by

H (z) =
1 − (rz)−M

M

{
L∑

k=1

2 |H (k)| Hk (z) +
H (0)

1 − rz−1 +
H (M/2)
1 + rz−1

}

where

Hk (z) =
cos [ � H (k)] − rz−1 cos

[
� H (k) − 2πk

M

]

1 − 2rz−1 cos
(

2πk
M

)
+ r2z−2

, k = 1, . . . , L

and M is even.
2. Modify the MATLAB function dir2fs (which was developed in Section 6.3) to

implement this frequency-sampling form. The format of this function should be
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[C,B,A,rM] = dir2fs(h,r)
% Direct form to frequency-sampling form conversion
% -------------------------------------------------
% [C,B,A,rM] = dir2fs(h,r)
% C = Row vector containing gains for parallel sections
% B = Matrix containing numerator coefficients arranged in rows
% A = Matrix containing denominator coefficients arranged in rows
% rM = rˆM factor needed in the feedforward loop
% h = impulse response vector of an FIR filter
% r = radius of the circle over which samples are taken (r<1)
%

3. Determine the frequency sampling structure for the impulse response given in Example
6.6 using this function.

P6.20 Consider the following system function of an FIR filter:

H(z) = 1 − 4z−1 + 6.4z−2 − 5.12z−3 + 2.048z−4 − 0.32768z−5

1. Provide block diagram structures in the following forms.

(a) Normal and transposed direct forms
(b) Cascade of five first-order sections
(c) Cascade of one first-order section and two second-order sections
(d) Cascade of one second-order section and one third-order section
(e) Frequency-sampling structure with real coefficients

2. The computational complexity of a digital filter structure can be given by the total
number of multiplications and the total number of 2-input additions that are required
per output point. Assume that x(n) is real and that multiplication by 1 is not counted
as a multiplication. Compare the computational complexity of each of these structures.

P6.21 A causal digital filter is described by the following zeros:

z1 = 0.5 ej60◦
, z2 = 0.5 e−j60◦

, z3 = 2 ej60◦
, z4 = 2 e−j60◦

,

z5 = 0.25 ej30◦
, z6 = 0.25 e−j30◦

, z7 = 4 ej30◦
, z8 = 4 e−j30◦

and poles: {pi}8
i=1 = 0.

1. Determine the phase response of this filter, and show that it is a linear-phase FIR filter.
2. Determine the impulse response of the filter.
3. Draw a block diagram of the filter structure in the direct form.
4. Draw a block diagram of the filter structure in the linear-phase form.

P6.22 MATLAB provides the built-in functions dec2bin and bin2dec to convert nonnegative
decimal integers into binary codes and vice versa, respectively.

1. Develop a function B = sm2bin(D) to convert a sign-magnitude format decimal integer D
into its binary representation B. Verify your function on the following numbers:

(a) D = 1001 (b) D = −63 (c) D = −449 (d) D = 978 (e) D = −205
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2. Develop a function D = bin2sm(B) to convert a binary representation B into its sign-
magnitude format decimal integer D. Verify your function on the following
representations:

(a) B = 1010 (b) B = 011011011 (c) B = 11001
(d) B = 1010101 (e) B = 011011

P6.23 Using the function TwosComplement as a model, develop a function y = TensComplement
(x,N) that converts a sign-magnitude format integer x into the N -digit ten’s-complement
integer y.

1. Verify your function using the following integers:

(a) x = 1234, N = 6 (b) x = −603, N = 4 (c) x = −843, N = 5
(d) x = −1978, N = 6 (e) x = 50, N = 3

2. Using the ten’s-complement format, perform the following arithmetic operations. In each
case, choose an appropriate value on N for the meaningful result.

(a) 123 + 456 − 789 (b) 648 + 836 − 452 (c) 2001 + 3756
(d) −968 + 4539 (e) 888 − 666 + 777

Verify your results using decimal operations.

P6.24 The function OnesComplement developed in this chapter converts signed integers into one’s-
complement-format decimal representations. In this problem, we will develop functions that
will operate on fractional numbers.

1. Develop a MATLAB function y = sm2oc(x, B) that converts the sign-magnitude format
fraction x into the B-bit one’s-complement-format decimal equivalent number y. Verify
your function on the following numbers. In each case, the numbers to be considered are
both positive and negative. Also, in each case select the appropriate number of bits B.

(a) x = ±0.5625 (b) x = ±0.40625 (c) x = ±0.953125
(d) x = ±0.1328125 (e) x = ±0.7314453125

2. Develop a MATLAB function x = oc2sm(y, B) that converts the B-bit one’s-
complement-format decimal equivalent number y into the sign-magnitude-format
fraction x. Verify your function on the following fractional binary representations:

(a) y = 1�10110 (b) y = 0.�011001 (c) y = 1�00110011
(d) y = 1�11101110 (e) y = 0�00010001

P6.25 The function TwosComplement developed in this chapter converts signed integers into two’s-
complement-format decimal representations. In this problem, we will develop functions that
will operate on fractional numbers.

1. Develop a MATLAB function y = sm2tc(x, B) that converts the sign-magnitude-format
fraction x into the B-bit two’s-complement-format decimal equivalent number y. Verify
your function on the following numbers. In each case, the numbers to be considered are
both positive and negative. Also, in each case select the appropriate number of bits B.

(a) x = ±0.5625 (b) x = ±0.40625 (c) x = ±0.953125
(d) x = ±0.1328125 (f) x = ±0.7314453125

Compare your representations with those in Problem P6.24, part 1.
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2. Develop a MATLAB function x = tc2sm(y, B) that converts the B-bit
two’s-complement-format decimal equivalent number y into the sign-magnitude-format
fraction x. Verify your function on the following fractional binary representations:

(a) y = 1�10110 (b) y = 0.�011001 (c) y = 1�00110011
(d) y = 1�11101110 (e) y = 0�00010001

Compare your representations with those in Problem P6.24, part 2.

P6.26 Determine the 10-bit sign-magnitude, one’s-complement, and two’s-complement
representation of the following decimal numbers:

(a) 0.12345 (b) −0.56789 (c) 0.38452386 (d) −0.762349 (e) −0.90625

P6.27 Consider a 32-bit floating-point number representation with a 6-bit exponent and a 25-bit
mantissa.

1. Determine the value of the smallest number that can be represented.
2. Determine the value of the largest number that can be represented.
3. Determine the dynamic range of this floating-point representation and compare it with

the dynamic range of a 32-bit fixed-point signed integer representation.

P6.28 Show that the magnitudes of floating-point numbers in a 32-bit IEEE standard range from
1.18 × 10−38 to 3.4 × 1038.

P6.29 Compute and plot the truncation error characteristics when B = 4 for the sign-magnitude,
one’s-complement, and two’s-complement formats.

P6.30 Consider the third-order elliptic lowpass filter.

H(z) =
0.1214

(
1 − 1.4211z−1 + z−2

) (
1 + z−1

)
(1 − 1.4928z−1 + 0.8612z−2) (1 − 0.6183z−1)

1. If the filter is realized using a direct form structure, determine its pole sensitivity.
2. If the filter is realized using a cascade form structure, determine its pole sensitivity.

P6.31 Consider the filter described by the difference equation

y(n) =
1√
2
y(n − 1) − x(n) +

√
2x(n − 1) (6.72)

1. Show that this filter is an allpass filter, that is, |H(ejω)| is a constant over the entire
frequency range −π ≤ ω ≤ π. Verify your answer by plotting the magnitude response
|H(ejω)| over the normalized frequency range 0 ≤ ω/π ≤ 1. Use subplot(3,1,1).

2. Round the coefficients of the difference equation in (6.72) to three decimals. Is the filter
still allpass? Verify your answer by plotting the resulting magnitude response, |Ĥ1(ejω)|,
over the normalized frequency range 0 ≤ ω/π ≤ 1. Use subplot(3,1,2).

3. Round the coefficients of the difference equation in (6.72) to two decimals. Is the filter
still allpass? Verify your answer by plotting the resulting magnitude response, |Ĥ2(ejω)|,
over the normalized frequency range 0 ≤ ω/π ≤ 1. Use subplot(3,1,3).

4. Explain why the magnitude |Ĥ1(ejω)| is “different” from the magnitude |Ĥ2(ejω)|.

P6.32 An IIR lowpass filter designed to meet the specifications of 0.5 dB ripple in the passband,
60 dB ripple in the stopband, a passband edge frequency ωp = 0.25π, and a stopband edge
frequency ωs = 0.3π is obtained using the following MATLAB script.
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wp = 0.25*pi; ws = 0.3*pi; Rp = 0.5; As = 60;
[N, Wn] = ellipord(wp/pi, ws/pi, Rp, As);
[b,a] = ellip(N,Rp,As,Wn);

The filter coefficients bk and ak are in the arrays b and a, respectively, and can be
considered to have infinite precision.

1. Using infinite precision, plot the log-magnitude and phase responses of the designed
filter. Use two rows and one column of subplots.

2. Quantize the direct form coefficients to four decimals (by rounding). Now plot the
log-magnitude and phase responses of the resulting filter. Use two rows and one column
of subplots.

3. Quantize the direct form coefficients to three decimals (by rounding). Now plot the
log-magnitude and phase responses of the resulting filter. Use two rows and one column
of subplots.

4. Comment on the plots in parts 1, 2, and 3.

P6.33 Consider the digital lowpass filter used in Problem P6.32.

1. Using infinite precision and cascade form realization, plot the log-magnitude and phase
responses of the designed filter. Use two rows and one column of subplots.

2. Quantize the cascade form coefficients to four decimals (by rounding). Now plot the
log-magnitude and phase responses of the resulting filter. Use two rows and one column
of subplots.

3. Quantize the cascade form coefficients to three decimals (by rounding). Now plot the
log-magnitude and phase responses of the resulting filter. Use two rows and one column
of subplots.

4. Comment on the plots in the above three parts and compare them with the similar plots
in Problem P6.32.

P6.34 A length-32 linear-phase FIR bandpass filter that satisfies the requirements of 60 dB
stopband attenuation, lower stopband edge frequency ωs1 = 0.2π, and upper stopband edge
frequency ωs2 = 0.8π is obtained using the following MATLAB script.

ws1 = 0.2*pi; ws2 = 0.8*pi; As = 60;
M = 32; Df = 0.2115;
fp1 = ws1/pi+Df; fp2 = ws2/pi-Df;
h = firpm(M-1,[0,ws1/pi,fp1,fp2,ws2/pi,1],[0,0,1,1,0,0]);

The filter impulse response h(n) is in the array h and can be considered to have infinite
precision.

1. Using infinite precision, plot the log-magnitude and amplitude responses of the designed
filter. Use two rows and one column of subplots.

2. Quantize the direct form coefficients to four decimals (by rounding). Now plot the
log-magnitude and amplitude responses of the resulting filter. Use two rows and one
column of subplots.
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3. Quantize the direct form coefficients to three decimals (by rounding). Now plot the
log-magnitude and amplitude responses of the resulting filter. Use two rows and one
column of subplots.

4. Comment on the plots in parts 1, 2, and 3.
5. Based on the results of this problem, determine how many significant bits (and not

decimals) are needed in practice to represent FIR direct form realizations.

P6.35 The digital filter structure shown in Figure P6.8 is a cascade of two parallel sections and
corresponds to a tenth-order IIR digital filter system function

H(z) =
1 − 2.2z−2 + 1.6368z−4 − 0.48928z−6 + 5395456 × 10−8z−8 − 147456 × 10−8z−10

1 − 1.65z−2 + 0.8778z−4 − 0.17281z−6 + 1057221 × 10−8z−8 − 893025 × 10−10z−10

x(n) y(n)

4.06354.0635

−0.0793

−1.6

−0.63

−2.8255

0.4

−0.03

0.7747

−0.2076

0.1319

−0.0304

−0.9

−0.35

1.2

−0.5502

−0.2245

−2.4609

−0.8

−0.15

−0.1

−0.0815
z −1

z −1

z −1

z −1

z −1

z −1

z −1

z −1

z −1

z −1

FIGURE P6.8 Structure for Problem P6.35

1. Due to an error in labeling, two of the multiplier coefficients (rounded to four decimals)
in this structure have incorrect values. Locate these two multipliers and determine their
correct values.

2. By inspecting the pole locations of the system function H(z), you should realize that
this structure is sensitive to the coefficient quantization. Suggest, with justification, an
alternative structure that in your opinion is least sensitive to coefficient quantization.

P6.36 An IIR bandstop digital filter that satisfies the requirements:

0.95 ≤ |H(ejω)| ≤ 1.05,
0 ≤ |H(ejω)| ≤ 0.01,

0.95 ≤ |H(ejω)| ≤ 1.05,

0 ≤ |ω| ≤ 0.25π
0.35π ≤ |ω| ≤ 0.65π
0.75π ≤ |ω| ≤ π
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can be obtained using the following MATLAB script:

wp = [0.25,0.75]; ws = [0.35,0.65]; delta1 = 0.05; delta2 = 0.01;
[Rp,As] = delta2db(delta1,delta2);
[N, wn] = cheb2ord(wp, ws, Rp, As);
[b,a] = cheby2(N,As,wn,’stop’);

The filter coefficients bk and ak are in the arrays b and a, respectively, and can be
considered to have infinite precision.

1. Using infinite precision, provide the log-magnitude response plot and the pole-zero plot
of the designed filter.

2. Assuming direct-form structure and a 12-bit representation for filter coefficients, provide
the log-magnitude response plot and the pole-zero plot of the designed filter. Use the
Qcoeff function.

3. Assuming cascade-form structure and a 12-bit representation for filter coefficients,
provide the log-magnitude response plot and the pole-zero plot of the designed filter. Use
the Qcoeff function.

P6.37 An IIR lowpass digital filter that satisfies the specifications:

passband edge: 0.4π, Rp = 0.5 dB
stopband edge: 0.6π, As = 50 dB

can be obtained using the following MATLAB script:

wp = 0.4; ws = 0.6; Rp = 0.5; As = 50;
[N, wn] = buttord(wp, ws, Rp, As);
[b,a] = butter(N,wn);

The filter coefficients bk and ak are in the arrays b and a, respectively, and can be
considered to have infinite precision.

1. Using infinite precision, provide the magnitude response plot and the pole-zero plot of
the designed filter.

2. Assuming direct-form structure and a 10-bit representation for filter coefficients, provide
the magnitude response plot and the pole-zero plot of the designed filter. Use the Qcoeff
function.

3. Assuming cascade-form structure and a 10-bit representation for filter coefficients,
provide the magnitude response plot and the pole-zero plot of the designed filter. Use
the Qcoeff function.

P6.38 An IIR highpass digital filter that satisfies the specifications:

stopband edge: 0.4π, As = 60 dB
passband edge: 0.6π, Rp = 0.5 dB
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can be obtained using the following MATLAB script:

wp = 0.6; ws = 0.4; Rp = 0.5; As = 60;
[N,wn] = ellipord(wp, ws, Rp, As);
[b,a] = ellip(N,Rp,As,wn,’high’);

The filter coefficients bk and ak are in the arrays b and a, respectively, and can be
considered to have infinite precision.

1. Using infinite precision, provide the magnitude response plot and the pole-zero plot of
the designed filter.

2. Assuming direct-form structure and a 10-bit representation for filter coefficients, provide
the magnitude response plot and the pole-zero plot of the designed filter. Use the Qcoeff
function.

3. Assuming parallel-form structure and a 10-bit representation for filter coefficients,
provide the magnitude response plot and the pole-zero plot of the designed filter. Use
the Qcoeff function.

P6.39 A bandstop linear-phase FIR filter that satisfies the specifications:

lower stopband edge: 0.4π
upper stopband edge: 0.6π

As = 50 dB

lower passband edge: 0.3π
upper passband edge: 0.7π

Rp = 0.2 dB

can be obtained using the following MATLAB script:

wp1 = 0.3; ws1 = 0.4; ws2 = 0.6; wp2 = 0.7; Rp = 0.2; As = 50;
[delta1,delta2] = db2delta(Rp,As);
b = firpm(44,[0,wp1,ws1,ws2,wp2,1],[1,1,0,0,1,1],...

[delta2/delta1,1,delta2/delta1]);

The filter impulse response h(n) is in the array b and can be considered to have infinite
precision.

P6.40 A bandpass linear-phase FIR filter that satisfies the specifications:

0 ≤ |H(ejω)| ≤ 0.01,
0.95 ≤ |H(ejω)| ≤ 1.05,

0 ≤ |H(ejω)| ≤ 0.01,

0 ≤ ω ≤ 0.25π
0.35π ≤ ω ≤ 0.65π
0.75π ≤ ω ≤ π

can be obtained using the following MATLAB script:

ws1 = 0.25; wp1 = 0.35; wp2 = 0.65; ws2 = 0.75;
delta1 = 0.05; delta2 = 0.01;
b = firpm(40,[0,ws1,wp1,wp2,ws2,1],[0,0,1,1,0,0],...

[1,delta2/delta1,1]);

The filter impulse response h(n) is in the array b and can be considered to have infinite
precision.
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C H A P T E R 7
FIR Filter
Design

We now turn our attention to the inverse problem of designing sys-
tems from the given specifications. It is an important as well as difficult
problem. In digital signal processing, there are two important types of
systems. The first type of systems perform signal filtering in the time
domain and hence are called digital filters. The second type of systems
provide signal representation in the frequency domain and are called
spectrum analyzers. In Chapter 5, we described signal representations
using the DFT. In this and the next chapter, we will study several basic
design algorithms for both FIR and IIR filters. These designs are mostly
of the frequency selective type; that is, we will design primarily multiband
lowpass, highpass, bandpass, and bandstop filters. In FIR filter design,
we will also consider systems like differentiators or Hilbert transformers,
which, although not frequency-selective filters, nevertheless follow the
design techniques being considered. More sophisticated filter designs are
based on arbitrary frequency-domain specifications and require tools that
are beyond the scope of this book.

We first begin with some preliminary issues related to design philos-
ophy and design specifications. These issues are applicable to both FIR
and IIR filter designs. We will then study FIR filter design algorithms in
the rest of this chapter. In Chapter 8, we will provide a similar treatment
for IIR filters.
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7.1 PRELIMINARIES

The design of a digital filter is carried out in three steps:

• Specifications: Before we can design a filter, we must have some spec-
ifications. These specifications are determined by the applications.

• Approximations: Once the specifications are defined, we use various
concepts and mathematics that we studied so far to come up with a
filter description that approximates the given set of specifications. This
step is the topic of filter design.

• Implementation: The product of the above step is a filter description
in the form of a difference equation, a system function H(z), or an
impulse response h(n). From this description, we implement the filter
in hardware or through software on a computer as we discussed in
Chapter 6.

In this and the next chapter, we will discuss in detail only the second
step, which is the conversion of specifications into a filter description.

In many applications like speech or audio signal processing, digital
filters are used to implement frequency-selective operations. Therefore,
specifications are required in the frequency domain in terms of the desired
magnitude and phase response of the filter. Generally, a linear phase re-
sponse in the passband is desirable. In the case of FIR filters, it is possible
to have exact linear phase, as we have seen in Chapter 6. In the case of
IIR filters, a linear phase in the passband is not achievable. Hence we will
consider magnitude-only specifications.

The magnitude specifications are given in one of two ways. The first
approach is called absolute specifications, which provide a set of require-
ments on the magnitude response function |H(ejω)|. These specifications
are generally used for FIR filters. IIR filters are specified in a somewhat
different way, which we will discuss in Chapter 8. The second approach is
called relative specifications, which provide requirements in decibels (dB),
given by

dB scale = −20 log10
|H(ejω)|

|H(ejω)|max
≥ 0

This approach is the most popular one in practice and is used for both
FIR and IIR filters. To illustrate these specifications, we will consider a
lowpass filter design as an example.

7.1.1 ABSOLUTE SPECIFICATIONS
A typical absolute specification of a lowpass filter is shown in Figure 7.1a,
in which

• band [0, ωp] is called the passband and δ1 is the tolerance (or ripple)
that we are willing to accept in the ideal passband response,
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FIGURE 7.1 FIR filter specifications: (a) absolute (b) relative

• band [ωs, π] is called the stopband and δ2 is the corresponding tolerance
(or ripple), and

• band [ωp, ωs] is called the transition band that imposes no restrictions
on the magnitude response.

7.1.2 RELATIVE (DB) SPECIFICATIONS
A typical relative specification of a lowpass filter is shown in Figure 7.1b,
in which

• Rp is the passband ripple in dB, and
• As is the stopband attenuation in dB.

The parameters given in these two specifications are obviously related.
Since |H(ejω)|max in absolute specifications is equal to (1 + δ1), we have

Rp = −20 log10
1 − δ1

1 + δ1
> 0 (≈ 0) (7.1)

and
As = −20 log10

δ2

1 + δ1
> 0 (� 1) (7.2)

� EXAMPLE 7.1 In a certain filter’s specifications, the passband ripple is 0.25 dB and the stop-
band attenuation is 50 dB. Determine δ1 and δ2.

Solution Using (7.1), we obtain

Rp = 0.25 = −20 log10
1 − δ1

1 + δ1
⇒ δ1 = 0.0144

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



294 Chapter 7 FIR FILTER DESIGN

Using (7.2), we obtain

As = 50 = −20 log10
δ2

1 + δ1
= −20 log10

δ2

1 + 0.0144
⇒ δ2 = 0.0032 �

� EXAMPLE 7.2 Given the passband tolerance δ1 = 0.01 and the stopband tolerance δ2 = 0.001,
determine the passband ripple Rp and the stopband attenuation As.

Solution From (7.1), the passband ripple is

Rp = −20 log10
1 − δ1

1 + δ1
= 0.1737 dB

and from (7.2), the stopband attenuation is

As = −20 log10
δ2

1 + δ1
= 60 dB �

Problem P7.1 develops MATLAB functions to convert one set of spec-
ifications into another.

These specifications were given for a lowpass filter. Similar specifica-
tions can also be given for other types of frequency-selective filters, such
as highpass or bandpass. However, the most important design parame-
ters are frequency-band tolerances (or ripples) and band-edge frequencies.
Whether the given band is a passband or a stopband is a relatively minor
issue. Therefore, in describing design techniques, we will concentrate on
a lowpass filter. In the next chapter, we will discuss how to transform
a lowpass filter into other types of frequency-selective filters. Hence it
makes more sense to develop techniques for a lowpass filter so that we
can compare these techniques. However, we will also provide examples of
other types of filters. In light of this discussion, our design goal is the
following.

Problem statement Design a lowpass filter (i.e., obtain its system
function H(z) or its difference equation) that has a passband [0, ωp] with
tolerance δ1 (or Rp in dB) and a stopband [ωs, π] with tolerance δ2 (or
As in dB).

In this chapter, we turn our attention to the design and approximation
of FIR digital filters. These filters have several design and implementa-
tional advantages:

• The phase response can be exactly linear.
• They are relatively easy to design since there are no stability problems.
• They are efficient to implement.
• The DFT can be used in their implementation.
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As we discussed in Chapter 6, we are generally interested in linear-
phase frequency-selective FIR filters. Linear-phase response filters have
several advantages:

• The design problem contains only real arithmetic and not complex
arithmetic

• Linear-phase filters provide no delay distortion and only a fixed amount
of delay

• For the filter of length M (or order M − 1), the number of opera-
tions are of the order of M/2, as we discussed in the linear-phase filter
implementation

We first begin with a discussion of the properties of the linear-phase
FIR filters, which are required in design algorithms. Then we will dis-
cuss three design techniques—namely, the window design, the frequency-
sampling design, and the optimal equiripple design techniques for linear-
phase FIR filters.

7.2 PROPERTIES OF LINEAR-PHASE FIR FILTERS

In this section, we discuss shapes of impulse and frequency responses and
locations of system function zeros of linear-phase FIR filters. Let h(n),
0 ≤ n ≤ M − 1, be the impulse response of length (or duration) M . Then
the system function is

H(z) =
M−1∑
n=0

h(n)z−n = z−(M−1)
M−1∑
n=0

h(n)zM−1−n

which has (M − 1) poles at the origin z = 0 (trivial poles) and (M − 1)
zeros located anywhere in the z-plane. The frequency response function
is

H(ejω) =
M−1∑
n=0

h(n)e−jωn, −π < ω ≤ π

Now we will discuss specific requirements on the forms of h(n) and H(ejω)
as well as requirements on the specific locations of (M − 1) zeros that the
linear-phase constraint imposes.

7.2.1 IMPULSE RESPONSE h(n)
We impose a linear-phase constraint

� H(ejω) = −αω, −π < ω ≤ π
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   0   (M−1)/2  (M−1) 

0

Symmetric Impulse Response: M Odd

n

h(
n)

where α is a constant phase delay. Then we know from Chapter 6 that
h(n) must be symmetric, that is,

h (n) = h(M − 1 − n), 0 ≤ n ≤ (M − 1) with α =
M − 1

2
(7.3)

Hence h(n) is symmetric about α, which is the index of symmetry. There
are two possible types of symmetry:

• M odd. In this case, α = (M −1)/2 is an integer. The impulse response
is as shown above.

• M even. In this case, α = (M − 1)/2 is not an integer. The impulse
response is as shown here.

  0  M/2+1  M/2  M−1 

0

Symmetric Impulse Response: M Even

n

h(
n)

We also have a second type of “linear-phase” FIR filter if we require
that the phase response � H(ejω) satisfy the condition

� H(ejω) = β − αω

which is a straight line, but not through the origin. In this case, α is not
a constant phase delay, but

d � H(ejω)
dω

= −α
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is constant, which is the group delay. Therefore, α is called a constant
group delay. In this case, as a group, frequencies are delayed at a constant
rate. But some frequencies may get delayed more and others delayed less.
For this type of linear phase, one can show that

h (n) = −h(M−1−n), 0 ≤ n ≤ (M−1); α =
M − 1

2
, β = ±π

2
(7.4)

This means that the impulse response h(n) is antisymmetric. The index
of symmetry is still α = (M − 1)/2. Once again, we have two possible
types, one for M odd and one for M even.

• M odd. In this case, α = (M − 1)/2 is an integer and the impulse
response is as shown.

   0   (M−1)/2   M−1  

0

Antisymmetric Impulse Response: M Odd

n

h(
n)

Note that the sample h(α) at α = (M −1)/2 must necessarily be equal
to zero, that is, h((M − 1)/2) = 0.

• M even. In this case, α = (M − 1)/2 is not an integer and the impulse
response is as shown.

  0  M/2+1  M/2  M−1 

0

Antisymmetric Impulse Response: M Even

n

h(
n)
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7.2.2 FREQUENCY RESPONSE H(ejω)
When the cases of symmetry and antisymmetry are combined with odd
and even M , we obtain four types of linear-phase FIR filters. Frequency
response functions for each of these types have some peculiar expressions
and shapes. To study these responses, we write H(ejω) as

H(ejω) = Hr(ω)ej(β−αω); β = ±π

2
, α =

M − 1
2

(7.5)

where Hr(ω) is an amplitude response function and not a magnitude re-
sponse function. The amplitude response is a real function, but unlike
the magnitude response, which is always positive, the amplitude response
may be both positive and negative. The phase response associated with
the magnitude response is a discontinuous function, while that associated
with the amplitude response is a continuous linear function. To illustrate
the difference between these two types of responses, consider the following
example.

� EXAMPLE 7.3 Let the impulse response be h(n) = {1
↑
, 1, 1}. Determine and draw frequency

responses.

Solution The frequency response function is

H(ejω) =
2∑
0

h(n)ejωn = 1 + 1e−jω + e−j2ω =
{
ejω + 1 + e−jω

}
e−jω

= {1 + 2 cos ω} e−jω

From this, the magnitude and the phase responses are

|H(ejω)| = |1 + 2 cos ω| , 0 < ω ≤ π

� H(ejω) =

{
−ω, 0 < ω < 2π/3

π − ω, 2π/3 < ω < π

since cos ω can be both positive and negative. In this case, the phase response
is piecewise linear. On the other hand, the amplitude and the corresponding
phase responses are

Hr(ω) = 1 + 2 cos ω,

� H(ejω) = −ω,
− π < ω ≤ π
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FIGURE 7.2 Frequency responses in Example 7.3

In this case, the phase response is truly linear. These responses are shown in
Figure 7.2. From this example, the difference between the magnitude and the
amplitude (or between the piecewise linear and the linear-phase) responses
should be clear. �

Type-1 linear-phase FIR filter: Symmetrical impulse response,
M odd In this case, β = 0, α = (M − 1)/2 is an integer and h(n) =
h(M − 1 − n), 0 ≤ n ≤ M − 1. Then we can show (see Problem P7.2)
that

H(ejω) =

⎡
⎣

(M−1)/2∑
n=0

a(n) cos ωn

⎤
⎦ e−jω(M−1)/2 (7.6)

where sequence a(n) is obtained from h(n) as

a(0) = h

(
M − 1

2

)
(the middle sample)

a(n) = 2h

(
M − 1

2
− n

)
, 1 ≤ n ≤ M − 3

2

(7.7)
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Comparing (7.5) with (7.6), we have

Hr(ω) =
(M−1)/2∑

n=0

a(n) cos ωn (7.8)

Type-2 linear-phase FIR filter: Symmetrical impulse response,
M even In this case, again β = 0, h(n) = h(M − 1 − n), 0 ≤ n ≤
M − 1, but α = (M − 1)/2 is not an integer. Then we can show (see
Problem P7.3) that

H(ejω) =

⎡
⎣

M/2∑
n=1

b(n) cos
{

ω

(
n − 1

2

)}⎤
⎦ e−jω(M−1)/2 (7.9)

where

b(n) = 2h

(
M

2
− n

)
, n = 1, 2, . . . ,

M

2
(7.10)

Hence

Hr(ω) =
M/2∑
n=1

b(n) cos
{

ω

(
n − 1

2

)}
(7.11)

Note: At ω = π, we get

Hr(π) =
M/2∑
n=1

b(n) cos
{

π

(
n − 1

2

)}
= 0

regardless of b(n) or h(n). Hence we cannot use this type (i.e., symmetric
h(n), M even) for highpass or bandstop filters.

Type-3 linear-phase FIR filter: Antisymmetric impulse response,
M odd In this case, β = π/2, α = (M − 1)/2 is an integer, h(n) =
−h(M − 1 − n), 0 ≤ n ≤ M − 1, and h((M − 1)/2) = 0. Then we can
show (see Problem P7.4) that

H(ejω) =

⎡
⎣

(M−1)/2∑
n=1

c(n) sinωn

⎤
⎦ ej[π

2 −(M−1
2 )ω] (7.12)
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where

c(n) = 2h

(
M − 1

2
− n

)
, n = 1, 2, . . . ,

M − 1
2

(7.13)

and

Hr(ω) =
(M−1)/2∑

n=1

c(n) sinωn (7.14)

Note: At ω = 0 and ω = π, we have Hr(ω) = 0, regardless of c(n) or
h(n). Furthermore, ejπ/2 = j, which means that jHr(ω) is purely imagi-
nary. Hence this type of filter is not suitable for designing a lowpass filter
or a highpass filter. However, this behavior is suitable for approximat-
ing ideal digital Hilbert transformers and differentiators. An ideal Hilbert
transformer [79] is an allpass filter that imparts a 90◦ phase shift on the
input signal. It is frequently used in communication systems for modula-
tion purposes. Differentiators are used in many analog and digital systems
to take the derivative of a signal.

Type-4 linear-phase FIR filter: Antisymmetric impulse response,
M even This case is similar to Type-2. We have (see Problem P7.5)

H(ejω) =

⎡
⎣

M/2∑
n=1

d(n) sin
{

ω

(
n − 1

2

)}⎤
⎦ ej[ π

2 −ω(M−1)/2] (7.15)

where

d(n) = 2h

(
M

2
− n

)
, n = 1, 2, . . . ,

M

2
(7.16)

and

Hr(ω) =
M/2∑
n=1

d(n) sin
{

ω

(
n − 1

2

)}
(7.17)

Note: At ω = 0, Hr(0) = 0 and ejπ/2 = j. Hence this type is also suitable
for designing digital Hilbert transformers and differentiators.

7.2.3 MATLAB IMPLEMENTATION
The MATLAB function freqz computes the frequency response from
which we can determine the magnitude response but not the amplitude
response. The SP toolbox now provides the function zerophase that can
compute the amplitude response. However, it is easy to write simple func-
tions to compute amplitude responses for each of the four types. We pro-
vide four functions to do this.
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1. Hr type1:

function [Hr,w,a,L] = Hr_Type1(h);
% Computes amplitude response Hr(w) of a Type-1 LP FIR filter
% -----------------------------------------------------------
% [Hr,w,a,L] = Hr_Type1(h)
% Hr = amplitude response
% w = 500 frequencies between [0 pi] over which Hr is computed
% a = type-1 LP filter coefficients
% L = order of Hr
% h = type-1 LP filter impulse response
%
M = length(h); L = (M-1)/2;
a = [h(L+1) 2*h(L:-1:1)]; % 1x(L+1) row vector
n = [0:1:L]; % (L+1)x1 column vector
w = [0:1:500]’*pi/500; Hr = cos(w*n)*a’;

2. Hr type2:

function [Hr,w,b,L] = Hr_Type2(h);
% Computes amplitude response of a Type-2 LP FIR filter
% -----------------------------------------------------
% [Hr,w,b,L] = Hr_Type2(h)
% Hr = amplitude response
% w = frequencies between [0 pi] over which Hr is computed
% b = type-2 LP filter coefficients
% L = order of Hr
% h = type-2 LP impulse response
%
M = length(h); L = M/2;
b = 2*[h(L:-1:1)]; n = [1:1:L]; n = n-0.5;
w = [0:1:500]’*pi/500; Hr = cos(w*n)*b’;

3. Hr type3:

function [Hr,w,c,L] = Hr_Type3(h);
% Computes amplitude response Hr(w) of a Type-3 LP FIR filter
% -----------------------------------------------------------
% [Hr,w,c,L] = Hr_Type3(h)
% Hr = amplitude response
% w = frequencies between [0 pi] over which Hr is computed
% c = type-3 LP filter coefficients
% L = order of Hr
% h = type-3 LP impulse response
%
M = length(h); L = (M-1)/2;
c = [2*h(L+1:-1:1)]; n = [0:1:L];
w = [0:1:500]’*pi/500; Hr = sin(w*n)*c’;
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4. Hr type4:

function [Hr,w,d,L] = Hr_Type4(h);
% Computes amplitude response of a Type-4 LP FIR filter
% -----------------------------------------------------
% [Hr,w,d,L] = Hr_Type4(h)
% Hr = amplitude response
% w = frequencies between [0 pi] over which Hr is computed
% d = type-4 LP filter coefficients
% L = order of d
% h = type-4 LP impulse response
%
M = length(h); L = M/2;
d = 2*[h(L:-1:1)]; n = [1:1:L]; n = n-0.5;
w = [0:1:500]’*pi/500; Hr = sin(w*n)*d’;

These four functions can be combined into one function, called
ampl res, that can be written to determine the type of the linear-phase
filter and to implement the appropriate amplitude response expression.
This is explored in Problem P7.6. The use of these functions is described
in Examples 7.4 through 7.7.

The zerophase function from the SP toolbox is similar in use to the
freqz function. The invocation [Hr,w, phi] = zerophase(b,a) returns
the amplitude response in Hr, evaluated at 512 values around the top half
of the unit circle in the array w and the continuous phase response in
phi. Thus this function can be used for both FIR and IIR filters. Other
invocations are also available.

7.2.4 ZERO LOCATIONS
Recall that for an FIR filter there are (M −1) (trivial) poles at the origin
and (M − 1) zeros located somewhere in the z-plane. For linear-phase
FIR filters, these zeros possess certain symmetries that are due to the
symmetry constraints on h(n). It can be shown (see reference [79] and
Problem P7.7) that if H(z) has a zero at

z = z1 = rejθ

then for the linear-phase constraint, there must be a zero at

z =
1
z1

=
1
r
e−jθ

For a real-valued filter, we also know that if z1 is complex, then there must
be a conjugate zero at z∗

1 = re−jθ, which implies that there must be a
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FIGURE 7.3 A general zero constellation

zero at 1/z∗
1 = (1/r) ejθ. Thus a general zero constellation is a quadruplet

rejθ,
1
r
ejθ, re−jθ, and

1
r
e−jθ

as shown in Figure 7.3. Clearly, if r = 1, then 1/r = 1, and hence the
zeros are on the unit circle and occur in pairs

ejθ and e−jθ

If θ = 0 or θ = π, then the zeros are on the real line and occur in pairs

r and
1
r

Finally, if r = 1 and θ = 0 or θ = π, the zeros are either at z = 1 or
z = −1. These symmetries can be used to implement cascade forms with
linear-phase sections.

In the following examples, we illustrate the preceding properties of
linear-phase FIR filters.

� EXAMPLE 7.4 Let h(n) = {−4
↑

, 1, −1, −2, 5, 6, 5, −2, −1, 1, −4}. Determine the amplitude re-

sponse Hr (ω) and the locations of the zeros of H (z).
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Solution Since M = 11, which is odd, and since h(n) is symmetric about α = (11−1)/2 =
5, this is a Type-1 linear-phase FIR filter. From (7.7), we have

a(0) = h (α) = h(5) = 6, a(1) = 2h(5 − 1) = 10, a(2) = 2h(5 − 2) = −4

a (3) = 2h (5 − 3) = −2, a (4) = 2h (5 − 4) = 2, a (5) = 2h (5 − 5) = −8

From (7.8), we obtain

Hr(ω) = a(0)+ a(1) cos ω + a(2) cos 2ω + a(3) cos 3ω + a(4) cos 4ω + a(5) cos 5ω

= 6 + 10 cos ω − 4 cos 2ω − 2 cos 3ω + 2 cos 4ω − 8 cos 5ω

MATLAB script:

>> h = [-4,1,-1,-2,5,6,5,-2,-1,1,-4];
>> M = length(h); n = 0:M-1;
>> [Hr,w,a,L] = Hr_Type1(h);
>> a,L
a = 6 10 -4 -2 2 -8
L = 5
>> % plotting commands follow

The plots and the zero locations are shown in Figure 7.4. From these plots, we
observe that there are no restrictions on Hr (ω) either at ω = 0 or at ω = π.
There is one zero-quadruplet constellation and three zero pairs. �

� EXAMPLE 7.5 Let h(n) = {−4
↑

, 1, −1, −2, 5, 6, 6, 5, −2, −1, 1, −4}. Determine the amplitude

response Hr (ω) and the locations of the zeros of H (z).

Solution This is a Type-2 linear-phase FIR filter since M = 12 and since h (n) is sym-
metric with respect to α = (12 − 1) /2 = 5.5. From (7.10), we have

b(1) = 2h
(

12
2 − 1

)
= 12, b(2) = 2h

(
12
2 − 2

)
= 10, b(3) = 2h

(
12
2 − 3

)
= −4

b(4) = 2h
(

12
2 − 4

)
= −2, b(5) = 2h

(
12
2 − 5

)
= 2, b(6) = 2h

(
12
2 − 6

)
= −8

Hence from (7.11) we obtain

Hr(ω) = b(1) cos
[
ω
(
1 − 1

2

)]
+ b(2) cos

[
ω
(
2 − 1

2

)]
+ b(3) cos

[
ω
(
3 − 1

2

)]

+ b(4) cos
[
ω
(
4 − 1

2

)]
+ b(5) cos

[
ω
(
5 − 1

2

)]
+ b(6) cos

[
ω
(
6 − 1

2

)]

= 12 cos
(

ω

2

)
+ 10 cos

(3ω

2

)
− 4 cos

(5ω

2

)
− 2 cos

(7ω

2

)

+ 2 cos
(9ω

2

)
− 8 cos

(11ω

2

)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



306 Chapter 7 FIR FILTER DESIGN

0 5 10

−5

0

5

10

n

h(
n)

Impulse Response

0 5 10

−5

0

5

10

n

a(
n)

a(n) Coefficients

0 0.5 1
−20

−10

0

10

20

Frequency in π Units

H
r(

ω
)

Type-1 Amplitude Response

−1 0 1

−1

−0.5

0

0.5

1

10

Real Part
Im

ag
in

ar
y 

P
ar

t

Pole-Zero Plot

FIGURE 7.4 Plots in Example 7.4

MATLAB script:

>> h = [-4,1,-1,-2,5,6,6,5,-2,-1,1,-4];
>> M = length(h); n = 0:M-1; [Hr,w,b,L] = Hr_Type2(h);
>> b,L
b = 12 10 -4 -2 2 -8
L = 6
>> % plotting commands follow

The plots and the zero locations are shown in Figure 7.5. From these plots, we
observe that Hr (ω) is zero at ω = π. There is one zero-quadruplet constellation,
three zero pairs, and one zero at ω = π, as expected. �

� EXAMPLE 7.6 Let h(n) = {−4
↑

, 1, −1, −2, 5, 0, −5, 2, 1, −1, 4}. Determine the amplitude re-

sponse Hr (ω) and the locations of the zeros of H (z).

Solution Since M =11, which is odd, and since h(n) is antisymmetric about α =
(11 − 1)/2 = 5, this is a Type-3 linear-phase FIR filter. From (7.13), we have

c(0) = h (α) = h(5) = 0, c(1) = 2h(5 − 1) = 10, c(2) = 2h(2 − 2) = −4

c (3) = 2h (5 − 3) = −2, c (4) = 2h (5 − 4) = 2, c (5) = 2h (5 − 5) = −8
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FIGURE 7.5 Plots in Example 7.5

From (7.14), we obtain

Hr(ω) = c(0) + c(1) sin ω + c(2) sin 2ω + c(3) sin 3ω + c(4) sin 4ω + c(5) sin 5ω

= 0 + 10 sin ω − 4 sin 2ω − 2 sin 3ω + 2 sin 4ω − 8 sin 5ω

MATLAB script:

>> h = [-4,1,-1,-2,5,0,-5,2,1,-1,4];
>> M = length(h); n = 0:M-1; [Hr,w,c,L] = Hr_Type3(h);
>> c,L
a = 0 10 -4 -2 2 -8
L = 5
>> % plotting commands follow

The plots and the zero locations are shown in Figure 7.6. From these plots, we
observe that Hr (ω) = 0 at ω = 0 and at ω = π. There is one zero-quadruplet
constellation, two zero pairs, and zeros at ω = 0 and ω = π, as expected. �

� EXAMPLE 7.7 Let h(n) = {−4
↑

, 1, −1, −2, 5, 6, −6, −5, 2, 1, −1, 4}. Determine the amplitude

response Hr (ω) and the locations of the zeros of H (z).
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FIGURE 7.6 Plots in Example 7.6

Solution This is a Type-4 linear-phase FIR filter since M = 12 and since h (n) is anti-
symmetric with respect to α = (12 − 1) /2 = 5.5. From (7.16), we have

d(1) = 2h
(

12
2 − 1

)
= 12, d(2) = 2h

(
12
2 − 2

)
= 10, d(3) = 2h

(
12
2 − 3

)
= −4

d(4) = 2h
(

12
2 − 4

)
= −2, d(5) = 2h

(
12
2 − 5

)
= 2, d(6) = 2h

(
12
2 − 6

)
= −8

Hence from (7.17), we obtain

Hr(ω) = d(1) sin
[
ω
(
1 − 1

2

)]
+ d(2) sin

[
ω
(
2 − 1

2

)]
+ d(3) sin

[
ω
(
3 − 1

2

)]

+ d(4) sin
[
ω
(
4 − 1

2

)]
+ d(5) sin

[
ω
(
5 − 1

2

)]
+ d(6) sin

[
ω
(
6 − 1

2

)]

= 12 sin
(

ω

2

)
+ 10 sin

(3ω

2

)
− 4 sin

(5ω

2

)
− 2 sin

(7ω

2

)

+2 sin
(9ω

2

)
− 8 sin

(11ω

2

)

MATLAB script:

>> h = [-4,1,-1,-2,5,6,-6,-5,2,1,-1,4];
>> M = length(h); n = 0:M-1; [Hr,w,d,L] = Hr_Type4(h);
>> d,L
d = 12 10 -4 -2 2 -8
L = 6
>> % plotting commands follow
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FIGURE 7.7 Plots in Example 7.7

The plots and the zero locations are shown in Figure 7.7. From these plots, we
observe that Hr (ω) is zero at ω = 0. There is one zero-quadruplet constellation,
three zero pairs, and one zero at ω = 0, as expected. �

7.3 WINDOW DESIGN TECHNIQUE

The basic idea behind the window design is to choose a proper ideal
frequency-selective filter (which always has a noncausal, infinite-duration
impulse response) and then to truncate (or window) its impulse response
to obtain a linear-phase and causal FIR filter. Therefore, the emphasis
in this method is on selecting an appropriate windowing function and
an appropriate ideal filter. We will denote an ideal frequency-selective
filter by Hd(ejω), which has a unity magnitude gain and linear-phase
characteristics over its passband, and zero response over its stopband. An
ideal LPF of bandwidth ωc < π is given by

Hd(ejω) =

{
1 · e−jαω, |ω| ≤ ωc

0, ωc < |ω| ≤ π
(7.18)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



310 Chapter 7 FIR FILTER DESIGN

where ωc is also called the cutoff frequency and α is called the sample
delay. (Note that from the DTFT properties, e−jαω implies shift in the
positive n direction or delay.) The impulse response of this filter is of
infinite duration and is given by

hd(n) = F−1 [Hd(ejω)
]

=
1
2π

π∫

−π

Hd(ejω)ejωndω (7.19)

=
1
2π

ωc∫

−ωc

1 · e−jαωejωndω

=
sin [ωc(n − α)]

π(n − α)

Note that hd(n) is symmetric with respect to α, a fact useful for linear-
phase FIR filters.

To obtain an FIR filter from hd(n), one has to truncate hd(n) on both
sides. To obtain a causal and linear-phase FIR filter h(n) of length M , we
must have

h(n) =

{
hd(n), 0 ≤ n ≤ M − 1

0, elsewhere
and α =

M − 1
2

(7.20)

This operation is called “windowing.” In general, h(n) can be thought of
as being formed by the product of hd(n) and a window function w(n) as
follows:

h(n) = hd(n)w(n) (7.21)

where

w(n) =

⎧
⎪⎨
⎪⎩

some symmetric function with respect to
α over 0 ≤ n ≤ M − 1

0, otherwise

Depending on how we define w(n), we obtain different window designs.
For example, in (7.20)

w(n) =

{
1, 0 ≤ n ≤ M − 1
0, otherwise

= RM (n)

which is the rectangular window defined earlier.
In the frequency domain, the causal FIR filter response H(ejω) is

given by the periodic convolution of Hd(ejω) and the window response
W (ejω); that is,

H(ejω) = Hd(ejω) ∗© W (ejω) =
1
2π

π∫

−π

W
(
ejλ
)
Hd

(
ej(ω−λ)

)
dλ

(7.22)
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FIGURE 7.8 Windowing operation in the frequency domain

This is shown pictorially in Figure 7.8 for a typical window response, from
which we have the following observations.

1. Since the window w(n) has a finite length equal to M , its response
has a peaky main-lobe whose width is proportional to 1/M and has
side-lobes of smaller heights.

2. The periodic convolution (7.22) produces a smeared version of the ideal
response Hd(ejω).

3. The main lobe produces a transition band in H(ejω) whose width is
responsible for the transition width. This width is then proportional
to 1/M . The wider the main lobe, the wider will be the transition
width.

4. The side lobes produce ripples that have similar shapes in both the
passband and stopband.

Basic window design idea For the given filter specifications, choose
the filter length M and a window function w(n) for the narrowest main-
lobe width and the smallest side-lobe attenuation possible.

From observation 4, we note that the passband tolerance δ1 and
the stopband tolerance δ2 cannot be specified independently. We gen-
erally take care of δ2 alone, which results in δ2 = δ1. We now briefly
describe various well-known window functions. We will use the rectangu-
lar window as an example to study their performances in the frequency
domain.
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7.3.1 RECTANGULAR WINDOW
This is the simplest window function but provides the worst performance
from the viewpoint of stopband attenuation. It was defined earlier by

w(n) =

{
1, 0 ≤ n ≤ M − 1
0, otherwise

(7.23)

Its frequency response function is

W (ejω) =

[
sin
(

ωM
2

)

sin
(

ω
2

)
]

e−jω M−1
2 ⇒ Wr(ω) =

sin
(

ωM
2

)

sin
(

ω
2

)

which is the amplitude response. From (7.22), the actual amplitude re-
sponse Hr (ω) is given by

Hr (ω) � 1
2π

ω+ωc∫

−π

Wr (λ) dλ =
1
2π

ω+ωc∫

−π

sin
(

ωM
2

)

sin
(

ω
2

) dλ, M � 1 (7.24)

This implies that the running integral of the window amplitude response
(or integrated amplitude response) is necessary in the accurate analysis of
the transition bandwidth and the stopband attenuation. Figure 7.9 shows
the rectangular window function w (n), its amplitude response W (ω), the
amplitude response in dB, and the integrated amplitude response (7.24)
in dB. From the observation of plots in Figure 7.9, we can make several
observations.

1. The amplitude response Wr (ω) has the first zero at ω = ω1, where

ω1M

2
= π or ω1 =

2π

M

Hence the width of the main lobe is 2ω1 = 4π/M . Therefore, the
approximate transition bandwidth is 4π/M .

2. The magnitude of the first side lobe (which is also the peak side-lobe
magnitude) is approximately at ω = 3π/M and is given by

∣∣∣∣Wr

(
ω =

3π

M

)∣∣∣∣ =
∣∣∣∣∣
sin
( 3π

2

)

sin
( 3π

2M

)
∣∣∣∣∣ �

2M

3π
for M � 1

Comparing this with the main-lobe amplitude, which is equal to M ,
the peak side-lobe magnitude is

2
3π

= 21.22% ≡ 13 dB

below the main-lobe magnitude of 0 dB.
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FIGURE 7.9 Rectangular window: M = 45

3. The integrated amplitude response has the first side-lobe magnitude
at 21 dB. This results in the minimum stopband attenuation of 21 dB
irrespective of the window length M .

4. Using the minimum stopband attenuation, the transition bandwidth
can be accurately computed. It is shown in the accumulated amplitude
response plot in Figure 7.9. This computed exact transition bandwidth is

ωs − ωp =
1.8π

M

which is less than half the approximate bandwidth of 4π/M .

Clearly, this is a simple window operation in the time domain and
an easy function to analyze in the frequency domain. However, there are
two main problems. First, the minimum stopband attenuation of 21 dB is
insufficient in practical applications. Second, the rectangular windowing
being a direct truncation of the infinite length hd (n), it suffers from the
Gibbs phenomenon. If we increase M , the width of each side lobe will
decrease, but the area under each lobe will remain constant. Therefore, the
relative amplitudes of side lobes will remain constant, and the minimum
stopband attenuation will remain at 21 dB. This implies that all ripples
will bunch up near the band edges. This is shown in Figure 7.10.
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FIGURE 7.10 Gibbs phenomenon

Since the rectangular window is impractical in many applications,
we consider other fixed window functions that provide a fixed amount
of attenuation. These window functions bear the names of the people
who first proposed them. Although these window functions can also be
analyzed similar to the rectangular window, we present their results using
MATLAB simulations.

7.3.2 BARTLETT WINDOW
Since the Gibbs phenomenon results from the fact that the rectangular
window has a sudden transition from 0 to 1 (or 1 to 0), Bartlett suggested
a more gradual transition in the form of a triangular window, which is
given by

w(n) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2n

M − 1
, 0 ≤ n ≤ M − 1

2

2 − 2n

M − 1
,

M − 1
2

≤ n ≤ M − 1

0, otherwise

(7.25)

This window and its frequency-domain responses are shown in Figure 7.11.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Window Design Technique 315

−22 0 22

0

1

Bartlett Window: M=45

n

w
(n

)

−1 0 1
0

22

Amplitude Response

Frequency in π Units

−1 0 1
60

27

 0

Amplitude Response in dB

Frequency in π Units

D
ec

ib
el

s
−1  1

60

26

 0

Integrated Ampl Resp

Frequency in π Units
D

ec
ib

el
s

 Width=6.1π/M

W
r(

ω
)

FIGURE 7.11 Bartlett window: M = 45

7.3.3 HANN WINDOW
This is a raised cosine window function given by

w(n) =

⎧
⎪⎨
⎪⎩

0.5
[
1 − cos

(
2πn

M−1

)]
, 0 ≤ n ≤ M − 1

0, otherwise

(7.26)

This window and its frequency-domain responses are shown in Figure 7.12.

7.3.4 HAMMING WINDOW
This window is similar to the Hann window except that it has a small
amount of discontinuity and is given by

w(n) =

⎧
⎨
⎩

0.54 − 0.46 cos
(

2πn
M−1

)
, 0 ≤ n ≤ M − 1

0, otherwise
(7.27)

This window and its frequency-domain responses are shown in Figure 7.13.
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FIGURE 7.12 Hann window: M = 45
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FIGURE 7.13 Hamming window: M = 45
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7.3.5 BLACKMAN WINDOW
This window is also similar to the previous two but contains a second
harmonic term and is given by

w(n) =

⎧
⎨
⎩

0.42 − 0.5 cos
(

2πn
M−1

)
+ 0.08 cos

(
4πn

M−1

)
, 0 ≤ n ≤ M − 1

0, otherwise

(7.28)

This window and its frequency-domain responses are shown in Figure 7.14.
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FIGURE 7.14 Blackman window: M = 45

In Table 7.1, we provide a summary of fixed window function charac-
teristics in terms of their transition widths (as a function of M) and their
minimum stopband attenuations in dB. Both the approximate as well as
the exact transition bandwidths are given. Note that the transition widths
and the stopband attenuations increase as we go down the table. The
Hamming window appears to be the best choice for many applications.

7.3.6 KAISER WINDOW
This is an adjustable window function that is widely used in practice. The
window function is due to J.F. Kaiser and is given by

w(n) =
I0

[
β
√

1 − (1 − 2n
M−1 )2

]

I0 [β]
, 0 ≤ n ≤ M − 1 (7.29)
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TABLE 7.1 Summary of commonly used window function characteristics

Window Transition Width ∆ω Min. Stopband
Name Approximate Exact Values Attenuation

Rectangular
4π

M

1.8π

M
21 dB

Bartlett
8π

M

6.1π

M
25 dB

Hann
8π

M

6.2π

M
44 dB

Hamming
8π

M

6.6π

M
53 dB

Blackman
12π

M

11π

M
74 dB

where I0[ · ] is the modified zero-order Bessel function given by

I0(x) = 1 +
∞∑

k=0

[
(x/2)k

k!

]2

which is positive for all real values of x. The parameter β controls the
minimum stopband attenuation As and can be chosen to yield different
transition widths for near-optimum As. This window can provide different
transition widths for the same M , which is something other fixed windows
lack. For example:

• If β = 5.658, then the transition width is equal to 7.8π/M , and the
minimum stopband attenuation is equal to 60 dB. This is shown in
Figure 7.15.

• If β = 4.538, then the transition width is equal to 5.8π/M , and the
minimum stopband attenuation is equal to 50 dB.

Hence the performance of this window is comparable to that of the
Hamming window. In addition, the Kaiser window provides flexible tran-
sition bandwidths. Due to the complexity involved in the Bessel functions,
the design equations for this window are not easy to derive. Fortunately,
Kaiser has developed empirical design equations, which we provide here
without proof. Given ωp, ωs, Rp, and As, the parameters M and β are
given by

Transition width = ∆ω = ωs − ωp (7.30a)

Filter length M � As − 7.95
2.285∆ω

+ 1 (7.30b)
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FIGURE 7.15 Kaiser window: M = 45, β = 5.658

Parameter β =

⎧
⎪⎨
⎪⎩

0.1102(As − 8.7), As ≥ 50

0.5842 (As − 21)0.4

+ 0.07886(As − 21), 21 < As < 50

(7.30c)

7.3.7 MATLAB IMPLEMENTATION
MATLAB provides several functions to implement window functions dis-
cussed in this section. A brief description of these functions follow.

• w=boxcar(M) returns the M-point rectangular window function in
array w.

• w=bartlett(M) returns the M-point Bartlett window function in
array w.

• w=hann(M) returns the M-point Hann window function in array w.
• w=hamming(M) returns the M-point Hamming window function in

array w.
• w=blackman(M) returns the M-point Blackman window function in

array w.
• w=kaiser(M,beta) returns the beta-valued M-point rectangular

window function in array w.
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Using these functions, we can use MATLAB to design FIR filters based
on the window technique, which also requires an ideal lowpass impulse
response hd(n). Therefore, it is convenient to have a simple routine that
creates hd(n) as shown here.

function hd = ideal_lp(wc,M);
% Ideal lowpass filter computation
% --------------------------------
% [hd] = ideal_lp(wc,M)
% hd = ideal impulse response between 0 to M-1
% wc = cutoff frequency in radians
% M = length of the ideal filter
%
alpha = (M-1)/2; n = [0:1:(M-1)];
m = n - alpha; fc = wc/pi; hd = fc*sinc(fc*m);

To display the frequency-domain plots of digital filters, MATLAB
provides the freqz function, which we used in earlier chapters. Using this
function, we have developed a modified version, called freqz m, which
returns the magnitude response in absolute as well as in relative dB scale,
the phase response, and the group delay response. We will need the group
delay response in the next chapter.

function [db,mag,pha,grd,w] = freqz_m(b,a);
% Modified version of freqz subroutine
% ------------------------------------
% [db,mag,pha,grd,w] = freqz_m(b,a);
% db = relative magnitude in dB computed over 0 to pi radians
% mag = absolute magnitude computed over 0 to pi radians
% pha = phase response in radians over 0 to pi radians
% grd = group delay over 0 to pi radians
% w = 501 frequency samples between 0 to pi radians
% b = numerator polynomial of H(z) (for FIR: b=h)
% a = denominator polynomial of H(z) (for FIR: a=[1])
%
[H,w] = freqz(b,a,1000,’whole’);

H = (H(1:1:501))’; w = (w(1:1:501))’;
mag = abs(H); db = 20*log10((mag+eps)/max(mag));
pha = angle(H); grd = grpdelay(b,a,w);

7.3.8 DESIGN EXAMPLES
We now provide several examples of FIR filter design using window tech-
niques and MATLAB functions.
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� EXAMPLE 7.8 Design a digital FIR lowpass filter with the following specifications:
ωp = 0.2π,

ωs = 0.3π,

Rp = 0.25 dB

As = 50 dB
Choose an appropriate window function from Table 7.1. Determine the impulse
response and provide a plot of the frequency response of the designed filter.

Solution Both the Hamming and Blackman windows can provide attenuation of more
than 50 dB. Let us choose the Hamming window, which provides the smaller
transition band and hence has the smaller order. Although we do not use the
passband ripple value of Rp = 0.25 dB in the design, we will have to check
the actual ripple from the design and verify that it is indeed within the given
tolerance. The design steps are given in the following MATLAB script.

>> wp = 0.2*pi; ws = 0.3*pi; tr_width = ws - wp;
>> M = ceil(6.6*pi/tr_width) + 1
M = 67
>> n=[0:1:M-1];
>> wc = (ws+wp)/2, % Ideal LPF cutoff frequency
>> hd = ideal_lp(wc,M); w_ham = (hamming(M))’; h = hd .* w_ham;
>> [db,mag,pha,grd,w] = freqz_m(h,[1]); delta_w = 2*pi/1000;
>> Rp = -(min(db(1:1:wp/delta_w+1))); % Actual passband ripple
Rp = 0.0394
>> As = -round(max(db(ws/delta_w+1:1:501))) % Min stopband attenuation
As = 52
% plotting commands follow

Note that the filter length is M = 67, the actual stopband attenuation is
52 dB, and the actual passband ripple is 0.0394 dB. Clearly, the passband
ripple is satisfied by this design. This practice of verifying the passband ripple
is strongly recommended. The time- and the frequency-domain plots are shown
in Figure 7.16. �

� EXAMPLE 7.9 For the design specifications given in Example 7.8, choose the Kaiser window
to design the necessary lowpass filter.

Solution The design steps are given in the following MATLAB script.

>> wp = 0.2*pi; ws = 0.3*pi; As = 50; tr_width = ws - wp;
>> M = ceil((As-7.95)/(2.285*tr_width)+1) + 1
M = 61
>> n=[0:1:M-1]; beta = 0.1102*(As-8.7)
beta = 4.5513
>> wc = (ws+wp)/2; hd = ideal_lp(wc,M);
>> w_kai = (kaiser(M,beta))’; h = hd .* w_kai;
>> [db,mag,pha,grd,w] = freqz_m(h,[1]); delta_w = 2*pi/1000;
>> As = -round(max(db(ws/delta_w+1:1:501))) % Min stopband attenuation
As = 52
% plotting commands follow
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FIGURE 7.16 Lowpass filter plots for Example 7.8

Note that the Kaiser window parameters are M = 61 and β = 4.5513 and that
the actual stopband attenuation is 52 dB. The time- and the frequency-domain
plots are shown in Figure 7.17. �

� EXAMPLE 7.10 Let us design the following digital bandpass filter.

lower stopband edge: ω1s = 0.2π, As = 60 dB

lower passband edge: ω1p = 0.35π, Rp = 1 dB

upper passband edge: ω2p = 0.65π Rp = 1 dB

upper stopband edge: ω2s = 0.8π As = 60 dB

These quantities are shown in Figure 7.18.

Solution There are two transition bands, namely, ∆ω1
�
= ω1p −ω1s and ∆ω2

�
= ω2s −ω2p.

These two bandwidths must be the same in the window design; that is, there is
no independent control over ∆ω1 and ∆ω2. Hence ∆ω1 = ∆ω2 = ∆ω. For this
design, we can use either the Kaiser window or the Blackman window. Let us
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FIGURE 7.17 Lowpass filter plots for Example 7.9

use the Blackman Window. We will also need the ideal bandpass filter impulse
response hd (n). Note that this impulse response can be obtained from two ideal
lowpass magnitude responses, provided they have the same phase response. This
is shown in Figure 7.19. Therefore, the MATLAB routine ideal lp(wc,M) is
sufficient to determine the impulse response of an ideal bandpass filter. The
design steps are given in the following MATLAB script.
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FIGURE 7.18 Bandpass filter specifications in Example 7.10
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>> ws1 = 0.2*pi; wp1 = 0.35*pi; wp2 = 0.65*pi; ws2 = 0.8*pi; As = 60;
>> tr_width = min((wp1-ws1),(ws2-wp2)); M = ceil(11*pi/tr_width) + 1
M = 75
>> n=[0:1:M-1]; wc1 = (ws1+wp1)/2; wc2 = (wp2+ws2)/2;
>> hd = ideal_lp(wc2,M) - ideal_lp(wc1,M);
>> w_bla = (blackman(M))’; h = hd .* w_bla;
>> [db,mag,pha,grd,w] = freqz_m(h,[1]); delta_w = 2*pi/1000;
>> Rp = -min(db(wp1/delta_w+1:1:wp2/delta_w)) % Actual passband ripple
Rp = 0.0030
>> As = -round(max(db(ws2/delta_w+1:1:501))) % Min stopband attenuation
As = 75
% plotting commands follow

Note that the Blackman window length is M = 75 and that the actual stopband
attenuation is 75 dB. The time- and the frequency-domain plots are shown in
Figure 7.20. �

� EXAMPLE 7.11 The frequency response of an ideal bandstop filter is given by

He(ejω) =

⎧
⎨
⎩

1, 0 ≤ |ω| < π/3

0, π/3 ≤ |ω| ≤ 2π/3

1, 2π/3 < |ω| ≤ π

Using a Kaiser window, design a bandstop filter of length 45 with stopband
attenuation of 60 dB.

Solution Note that in these design specifications, the transition bandwidth is not given.
It will be determined by the length M = 45 and the parameter β of the Kaiser
window. From the design equations (7.30b), we can determine β from As; that is,

β = 0.1102 × (As − 8.7)

The ideal bandstop impulse response can also be determined from the ideal
lowpass impulse response using a method similar to Figure 7.19. We can now
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FIGURE 7.20 Bandpass filter plots in Example 7.10

implement the Kaiser window design and check for the minimum stopband
attenuation. This is shown in the following MATLAB script.

>> M = 45; As = 60; n=[0:1:M-1];
>> beta = 0.1102*(As-8.7)
beta = 5.6533
>> w_kai = (kaiser(M,beta))’; wc1 = pi/3; wc2 = 2*pi/3;
>> hd = ideal_lp(wc1,M) + ideal_lp(pi,M) - ideal_lp(wc2,M);
>> h = hd .* w_kai; [db,mag,pha,grd,w] = freqz_m(h,[1]);

The β parameter is equal to 5.6533, and, from the magnitude plot in Figure 7.21,
we observe that the minimum stopband attenuation is smaller than 60 dB.
Clearly, we have to increase β to increase the attenuation to 60 dB. The required
value was found to be β = 5.9533.

>> M = 45; As = 60; n=[0:1:M-1];
>> beta = 0.1102*(As-8.7)+0.3
beta = 5.9533
>> w_kai = (kaiser(M,beta))’; wc1 = pi/3; wc2 = 2*pi/3;
>> hd = ideal_lp(wc1,M) + ideal_lp(pi,M) - ideal_lp(wc2,M);
>> h = hd .* w_kai; [db,mag,pha,grd,w] = freqz_m(h,[1]);
>> plotting commands follow
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FIGURE 7.21 Bandstop filter magnitude response in Example 7.11 for β =
5.6533

The time- and the frequency-domain plots are shown in Figure 7.22, in which
the designed filter satisfies the necessary requirements. �
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FIGURE 7.22 Bandstop filter plots in Example 7.11: β = 5.9533

� EXAMPLE 7.12 The frequency response of an ideal digital differentiator is given by

Hd(ejω) =

{
jω, 0 < ω ≤ π

−jω, −π < ω < 0
(7.31)
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Using a Hamming window of length 21, design a digital FIR differentiator. Plot
the time- and the frequency-domain responses.

Solution The ideal impulse response of a digital differentiator with linear phase is given by

hd (n) = F
[
Hd(ejω)e−jαω

]
=

1
2π

π∫

−π

Hd(ejω)e−jαωejωndω

=
1
2π

0∫

−π

(−jω) e−jαωejωndω +
1
2π

π∫

0

(jω) e−jαωejωndω

=

⎧
⎨
⎩

cos π (n − α)
(n − α)

, n �= α

0, n = α

This impulse response can be implemented in MATLAB, along with the
Hamming window to design the required differentiator. Note that if M is an
even number, then α = (M − 1)/2 is not an integer and hd (n) will be zero for
all n. Hence M must be an odd number, and this will be a Type-3 linear-
phase FIR filter. However, the filter will not be a full-band differentiator, since
Hr (π) = 0 for Type-3 filters.

>> M = 21; alpha = (M-1)/2; n = 0:M-1;
>> hd = (cos(pi*(n-alpha)))./(n-alpha); hd(alpha+1)=0;
>> w_ham = (hamming(M))’; h = hd .* w_ham; [Hr,w,P,L] = Hr_Type3(h);
% plotting commands follow

The plots are shown in Figure 7.23. �

� EXAMPLE 7.13 Design a length-25 digital Hilbert transformer using a Hann window.

Solution The ideal frequency response of a linear-phase Hilbert transformer is given by

Hd(ejω) =

{
−je−jαω, 0 < ω < π

+je−jαω, −π < ω < 0
(7.32)

After inverse transformation, the ideal impulse response is given by

hd (n) =

⎧
⎨
⎩

2
π

sin2 π (n − α) /2
n − α

, n �= α

0, n = α

which can be easily implemented in MATLAB. Note that since M = 25, the
designed filter is of Type-3.
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FIGURE 7.23 FIR differentiator design in Example 7.12

MATLAB script:

>> M = 25; alpha = (M-1)/2; n = 0:M-1;
>> hd = (2/pi)*((sin((pi/2)*(n-alpha)).ˆ2)./(n-alpha)); hd(alpha+1)=0;
>> w_han = (hann(M))’; h = hd .* w_han; [Hr,w,P,L] = Hr_Type3(h);
>> plotting commands follow

The plots are shown in Figure 7.24. Observe that the amplitude response is
plotted over −π ≤ ω ≤ π. �

The SP toolbox provides a function called fir1, which designs con-
ventional lowpass, highpass, and other multiband FIR filters using the
window technique. This function’s syntax has several forms, including:

• h = fir1(N,wc) designs an Nth-order (N = M − 1) lowpass FIR
filter and returns the impulse response in vector h. By default this
is a Hamming-window based, linear-phase design with a normalized
cutoff frequency in wc that is a number between 0 and 1, where 1
corresponds to π rad/sample. If wc is a two-element vector, that is,
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FIGURE 7.24 FIR Hilbert transformer design in Example 7.13

wc = [wc1 wc2], then fir1 returns a bandpass filter with passband
cutoffs wc1 and wc2. If wc is a multi-element (more than two) vector,
then fir1 returns a multiband filter with cutoffs given in wc.

• h = fir1(N,wc,’ftype’) specifies a filter type, where ’ftype’ is:

a. ’high’ for a highpass filter with cutoff frequency Wn.
b. ’stop’ for a bandstop filter, if Wc = [wc1 wc2]. The stopband fre-

quency range is specified by this interval.
c. ’DC-1’ to make the first band of a multiband filter a passband.
d. ’DC-0’ to make the first band of a multiband filter a stopband.

• h = fir1(N,wc,’ftype’,window) or h = fir1(N,wc,window) uses
the vector window of length N+1 obtained from one of the specified
MATLAB window functions. The default window function used is the
Hamming window.

To design FIR filters using the Kaiser window, the SP toolbox pro-
vides the function kaiserord, which estimates window parameters that
can be used in the fir1 function. The basic syntax is

[N,wc,beta,ftype] = kaiserord(f,m,ripple);
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The function computes the window order N, the cutoff frequency vector
wc, parameter β in beta, and the filter type ftype as discussed. The vector
f is a vector of normalized band edges and m is a vector specifying the
desired amplitude on the bands defined by f. The length of f is twice the
length of m, minus 2; that is, f does not contain 0 or 1. The vector ripple
specifies tolerances in each band (not in decibels). Using the estimated
parameters, the Kaiser window array can be computed and used in the
fir1 function.

To design FIR filters using window technique with arbitrary-shaped
magnitude response, the SP toolbox provides the function fir2, which
also incorporates the frequency-sampling technique. It is explained in the
following section.

7.4 FREQUENCY-SAMPLING DESIGN TECHNIQUE

In this design approach, we use the fact that the system function H (z)
can be obtained from the samples H(k) of the frequency response H(ejω).
Furthermore, this design technique fits nicely with the frequency-sampling
structure that we discussed in Chapter 6. Let h(n) be the impulse response
of an M -point FIR filter, let H(k) be its M -point DFT, and let H(z) be
its system function. Then from (6.12), we have

H (z) =
M−1∑
n=0

h (n) z−n =
1 − z−M

M

M−1∑
k=0

H(k)
1 − z−1ej2πk/M

(7.33)

and

H(ejω) =
1 − e−jωM

M

M−1∑
k=0

H(k)
1 − e−jωej2πk/M

(7.34)

with

H (k) = H
(
ej2πk/M

)
=

{
H (0) , k = 0
H∗ (M − k) , k = 1, . . . , M − 1

For a linear-phase FIR filter, we have

h(n) = ±h(M − 1 − n), n = 0, 1, . . . , M − 1

where the positive sign is for the Type-1 and Type-2 linear-phase filters,
while the negative sign is for the Type-3 and Type-4 linear-phase filters.
Then H (k) is given by

H (k) = Hr

(
2πk

M

)
ej � H(k) (7.35)
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where

Hr

(
2πk

M

)
=

⎧
⎨
⎩

Hr (0) , k = 0

Hr

(
2π(M−k)

M

)
, k = 1, . . . , M − 1

(7.36)

and

� H (k) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−
(

M − 1
2

)(
2πk

M

)
, k = 0, . . . ,

⌊
M − 1

2

⌋

+
(

M − 1
2

)
2π

M
(M − k) , k =

⌊
M − 1

2

⌋
+ 1, . . . , M − 1

(Type-1 & -2) (7.37)

or

� H (k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
±π

2

)
−
(

M − 1
2

)(
2πk

M

)
, k = 0, . . . ,

⌊
M − 1

2

⌋

−
(
±π

2

)
+
(

M − 1
2

)
2π

M
(M − k) ,

k =
⌊

M − 1
2

⌋
+ 1, . . . , M − 1

(Type-3 & -4)

(7.38)

Finally, we have
h(n) = IDFT [H(k)] (7.39)

Note that several textbooks (e.g., [71, 79, 83]) provide explicit formu-
las to compute h(n), given H(k). We will use MATLAB’s ifft function
to compute h(n) from (7.39).

Basic idea Given an ideal filter Hd(ejω), choose the filter length M
and then sample Hd(ejω) at M equispaced frequencies between 0 and
2π. The actual response H(ejω) is the interpolation of the samples H(k)
given by (7.34). This is shown in Figure 7.25. The impulse response is
given by (7.39). Similar steps apply to other frequency-selective filters.
Furthermore, this idea can also be extended for approximating arbitrary
frequency-domain specifications.

From Figure 7.25, we observe the following:

1. The approximation error—that is, the difference between the ideal and
the actual response—is zero at the sampled frequencies.

2. The approximation error at all other frequencies depends on the shape
of the ideal response; that is, the sharper the ideal response, the larger
the approximation error.

3. The error is larger near the band edges and smaller within the band.

There are two design approaches. In the first approach, we use the
basic idea literally and provide no constraints on the approximation error;
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FIGURE 7.25 Pictorial description of frequency-sampling technique

that is, we accept whatever error we get from the design. This approach is
called a naive design method. In the second approach, we try to minimize
error in the stopband by varying values of the transition band samples.
It results in a much better design called an optimum design method.

7.4.1 NAIVE DESIGN METHOD
In this method, we set H(k) = Hd(ej2πk/M ), k = 0, . . . , M − 1, and use
(7.35) through (7.39) to obtain the impulse response h(n).

� EXAMPLE 7.14 Consider the lowpass filter specifications from Example 7.8:

ωp = 0.2π,

ωs = 0.3π,

Rp = 0.25 dB

As = 50 dB

Design an FIR filter using the frequency-sampling approach.

Solution Let us choose M = 20 so that we have a frequency sample at ωp, that is, at
k = 2,

ωp = 0.2π =
2π

20
2

and the next sample at ωs, that is, at k = 3,

ωs = 0.3π =
2π

20
3

Thus we have three samples in the passband [0 ≤ ω ≤ ωp] and seven samples in
the stopband [ωs ≤ ω ≤ π]. From (7.36), we have

Hr (k) = [1, 1, 1, 0, . . . , 0︸ ︷︷ ︸
15 zeros

, 1, 1]
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Since M = 20, α = 20−1
2 = 9.5 and since this is a Type-2 linear-phase filter,

from (7.37) we have

� H (k) =

⎧
⎨
⎩

−9.5
2π

20
k = −0.95πk, 0 ≤ k ≤ 9

+0.95π (20 − k) , 10 ≤ k ≤ 19

Now, from (7.35), we assemble H (k) and from (7.39) determine the impulse
response h (n). The MATLAB script follows.

>> M = 20; alpha = (M-1)/2; l = 0:M-1; wl = (2*pi/M)*l;
>> Hrs = [1,1,1,zeros(1,15),1,1]; %Ideal amp res sampled
>> Hdr = [1,1,0,0]; wdl = [0,0.25,0.25,1]; %Ideal amp res for plotting
>> k1 = 0:floor((M-1)/2); k2 = floor((M-1)/2)+1:M-1;
>> angH = [-alpha*(2*pi)/M*k1, alpha*(2*pi)/M*(M-k2)];
>> H = Hrs.*exp(j*angH); h = real(ifft(H,M));
>> [db,mag,pha,grd,w] = freqz_m(h,1); [Hr,ww,a,L] = Hr_Type2(h);
>> plotting commands follow

The time- and the frequency-domain plots are shown in Figure 7.26. Observe
that the minimum stopband attenuation is about 16 dB, which is clearly unac-
ceptable. If we increase M , then there will be samples in the transition band,
for which we do not precisely know the frequency response. Therefore, the naive
design method is seldom used in practice. �

7.4.2 OPTIMUM DESIGN METHOD
To obtain more attenuation, we will have to increase M and make
the transition band samples free samples—that is, we vary their values
to obtain the largest attenuation for the given M and the transition
width. This problem is known as an optimization problem, and it is
solved using linear programming techniques. We demonstrate the effect
of transition band sample variation on the design using the following
example.

� EXAMPLE 7.15 Using the optimum design method, design a better lowpass filter of Exam-
ple 7.14.

Solution Let us choose M = 40 so that we have one sample in the transition band
0.2π < ω < 0.3π. Since ω1

�
= 2π/40, the transition band samples are at k = 5

and at k = 40 − 5 = 35. Let us denote the value of these samples by T1,
0 < T1 < 1; then the sampled amplitude response is

Hr (k) = [1, 1, 1, 1, 1, T1, 0, . . . , 0︸ ︷︷ ︸
29 zeros

, T1, 1, 1, 1, 1]
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FIGURE 7.26 Naive frequency sampling design method in Example 7.14

Since α = 40−1
2 = 19.5, the samples of the phase response are

� H (k) =

⎧
⎨
⎩

−19.5
2π

40
k = −0.975πk, 0 ≤ k ≤ 19

+0.975π (40 − k) , 20 ≤ k ≤ 39

Now we can vary T1 to get the best minimum stopband attenuation. This will
result in the widening of the transition width. We first see what happens when
T1 = 0.5 using the following MATLAB script.

% T1 = 0.5
>> M = 40; alpha = (M-1)/2;
>> Hrs = [ones(1,5),0.5,zeros(1,29),0.5,ones(1,4)];
>> k1 = 0:floor((M-1)/2); k2 = floor((M-1)/2)+1:M-1;
>> angH = [-alpha*(2*pi)/M*k1, alpha*(2*pi)/M*(M-k2)];
>> H = Hrs.*exp(j*angH);
>> h = real(ifft(H,M));

From the plots of this design in Figure 7.27, we observe that the minimum
stopband attenuation is now 30 dB, which is better than the naive design at-
tenuation but is still not at the acceptable level of 50 dB. The best value for T1
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FIGURE 7.27 Optimum frequency design method: T1 = 0.5 in Example 7.15

was obtained by varying it manually (although more efficient linear program-
ming techniques are available, these were not used in this case), and the near
optimum solution was found at T1 = 0.39. The resulting filter is obtained using
the following MATLAB script.

% T1 = 0.39
>> M = 40; alpha = (M-1)/2;
>> Hrs = [ones(1,5),0.39,zeros(1,29),0.39,ones(1,4)];
>> k1 = 0:floor((M-1)/2); k2 = floor((M-1)/2)+1:M-1;
>> angH = [-alpha*(2*pi)/M*k1, alpha*(2*pi)/M*(M-k2)];
>> H = Hrs.*exp(j*angH); h = real(ifft(H,M));

From the plots in Figure 7.28, we observe that the optimum stopband atten-
uation is 43 dB. It is obvious that to further increase the attenuation, we will
have to vary more than one sample in the transition band. �

Clearly, this method is superior in that by varying one sample we
can get a much better design. In practice, the transition bandwidth is
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FIGURE 7.28 Optimum frequency design method: T1 = 0.39 in Example 7.15

generally small, containing either one or two samples. Hence we need to
optimize at most two samples to obtain the largest minimum stopband
attenuation. This is also equivalent to minimizing the maximum side-lobe
magnitudes in the absolute sense. Hence this optimization problem is also
called a minimax problem. This problem is solved by Rabiner et al. [83],
and the solution is available in the form of tables of transition values.
A selected number of tables are also available in [79, Appendix B]. This
problem can also be solved in MATLAB, but it would require the use of
the Optimization toolbox. We will consider a more general version of this
problem in the next section. We now illustrate the use of these tables in
the following examples.

� EXAMPLE 7.16 Let us revisit our lowpass filter design in Example 7.14. We will solve it using two
samples in the transition band so that we can get a better stopband attenuation.

Solution Let us choose M = 60 so that there are two samples in the transition band. Let
the values of these transition band samples be T1 and T2. Then Hr (ω) is given by

H (ω) = [1, . . . , 1︸ ︷︷ ︸
7 ones

, T1, T2, 0, . . . , 0︸ ︷︷ ︸
43 zeros

, T2, T1, 1, . . . , 1︸ ︷︷ ︸
6 ones

]
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From tables in [79, Appendix B], T1 = 0.5925 and T2 = 0.1099. Using these
values, we use MATLAB to compute h (n).

>> M = 60; alpha = (M-1)/2; l = 0:M-1; wl = (2*pi/M)*l;
>> Hrs = [ones(1,7),0.5925,0.1099,zeros(1,43),0.1099,0.5925,ones(1,6)];
>> Hdr = [1,1,0,0]; wdl = [0,0.2,0.3,1];
>> k1 = 0:floor((M-1)/2); k2 = floor((M-1)/2)+1:M-1;
>> angH = [-alpha*(2*pi)/M*k1, alpha*(2*pi)/M*(M-k2)];
>> H = Hrs.*exp(j*angH); h = real(ifft(H,M));
>> [db,mag,pha,grd,w] = freqz_m(h,1); [Hr,ww,a,L] = Hr_Type2(h);

The time- and the frequency-domain plots are shown in Figure 7.29. The
minimum stopband attenuation is now at 63 dB, which is acceptable. �

� EXAMPLE 7.17 Design the bandpass filter of Example 7.10 using the frequency sampling tech-
nique. The design specifications are as follows.

lower stopband edge: ω1s = 0.2π, As = 60 dB

lower passband edge: ω1p = 0.35π, Rp = 1 dB
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FIGURE 7.29 Lowpass filter design plots in Example 7.16

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



338 Chapter 7 FIR FILTER DESIGN

upper passband edge: ω2p = 0.65π Rp = 1 dB

upper stopband edge: ω2s = 0.8π As = 60 dB

Solution Let us choose M = 40 so that we have two samples in the transition band.
Let the frequency samples in the lower transition band be T1 and T2. Then the
samples of the amplitude response are

Hr (ω) = [0, . . . , 0︸ ︷︷ ︸
5

, T1, T2, 1, . . . , 1︸ ︷︷ ︸
7

, T2, T1, 0, . . . , 0︸ ︷︷ ︸
9

, T1, T2, 1, . . . , 1︸ ︷︷ ︸
7

, T2, T1, 0, . . . , 0︸ ︷︷ ︸
4

]

The optimum values of T1 and T2 for M = 40 and seven samples in the passband
[79, Appendix B] are

T1 = 0.109021, T2 = 0.59417456

MATLAB script:

>> M = 40; alpha = (M-1)/2; l = 0:M-1; wl = (2*pi/M)*l;
>> T1 = 0.109021; T2 = 0.59417456;
>> Hrs=[zeros(1,5),T1,T2,ones(1,7),T2,T1,zeros(1,9),T1,T2,ones(1,7),T2,T1,zeros(1,4)];
>> Hdr = [0,0,1,1,0,0]; wdl = [0,0.2,0.35,0.65,0.8,1];
>> k1 = 0:floor((M-1)/2); k2 = floor((M-1)/2)+1:M-1;
>> angH = [-alpha*(2*pi)/M*k1, alpha*(2*pi)/M*(M-k2)];
>> H = Hrs.*exp(j*angH); h = real(ifft(H,M));
>> [db,mag,pha,grd,w] = freqz_m(h,1); [Hr,ww,a,L] = Hr_Type2(h);

The plots in Figure 7.30 show an acceptable bandpass filter design. �

� EXAMPLE 7.18 Design the following highpass filter.

Stopband edge: ωs = 0.6π As = 50 dB

Passband edge: ωp = 0.8π Rp = 1 dB

Solution Recall that for a highpass filter M must be odd (or Type-1 filter). Hence we
will choose M = 33 to get two samples in the transition band. With this choice
of M it is not possible to have frequency samples at ωs and ωp. The samples of
the amplitude response are

Hr (k) = [0, . . . , 0︸ ︷︷ ︸
11

, T1, T2, 1, . . . , 1︸ ︷︷ ︸
8

, T2, T1, 0, . . . , 0︸ ︷︷ ︸
10

]

while the phase response samples are

� H (k) =

⎧
⎪⎨
⎪⎩

−33 − 1
2

2π

33
k = −32

33
πk, 0 ≤ k ≤ 16

+
32
33

π (33 − k) , 17 ≤ k ≤ 32

The optimum values of transition samples are T1 = 0.1095 and T2 = 0.598.
Using these values, the MATLAB design is given in the following script.
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FIGURE 7.30 Bandpass filter design plots in Example 7.17

>> M = 33; alpha = (M-1)/2; l = 0:M-1; wl = (2*pi/M)*l;
>> T1 = 0.1095; T2 = 0.598;
>> Hrs = [zeros(1,11),T1,T2,ones(1,8),T2,T1,zeros(1,10)];
>> Hdr = [0,0,1,1]; wdl = [0,0.6,0.8,1];
>> k1 = 0:floor((M-1)/2); k2 = floor((M-1)/2)+1:M-1;
>> angH = [-alpha*(2*pi)/M*k1, alpha*(2*pi)/M*(M-k2)];
>> H = Hrs.*exp(j*angH); h = real(ifft(H,M));
>> [db,mag,pha,grd,w] = freqz_m(h,1); [Hr,ww,a,L] = Hr_Type1(h);

The time- and the frequency-domain plots of the design are shown in
Figure 7.31. �

� EXAMPLE 7.19 Design a 33-point digital differentiator based on the ideal differentiator of (7.31)
given in Example 7.12.

Solution From (7.31), the samples of the (imaginary-valued) amplitude response are
given by

jHr (k) =

⎧
⎪⎨
⎪⎩

+j
2π

M
k, k = 0, . . . ,

⌊
M − 1

2

⌋

−j
2π

M
(M − k) , k =

⌊
M − 1

2

⌋
+ 1, . . . , M − 1
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FIGURE 7.31 Highpass filter design plots in Example 7.18

and for linear phase the phase samples are

� H (k) =

⎧
⎪⎨
⎪⎩

−M − 1
2

2π

M
k = −M − 1

M
πk, k = 0, . . . ,

⌊
M − 1

2

⌋

+
M − 1

M
π (M − k) , k =

⌊
M − 1

2

⌋
+ 1, . . . , M − 1

Therefore,

H (k) = jHr (k) ej � H(k), 0 ≤ k ≤ M − 1 and h (n) = IDFT [H (k)]

MATLAB script:

>> M = 33; alpha = (M-1)/2; Dw = 2*pi/M; l = 0:M-1; wl = Dw*l;
>> k1 = 0:floor((M-1)/2); k2 = floor((M-1)/2)+1:M-1;
>> Hrs = [j*Dw*k1,-j*Dw*(M-k2)];
>> angH = [-alpha*Dw*k1, alpha*Dw*(M-k2)];
>> H = Hrs.*exp(j*angH); h = real(ifft(H,M)); [Hr,ww,a,P]=Hr_Type3(h);

The time- and the frequency-domain plots are shown in Figure 7.32. We observe
that the differentiator is not a full-band differentiator. �
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FIGURE 7.32 Differentiator design plots in Example 7.19

� EXAMPLE 7.20 Design a 51-point digital Hilbert transformer based on the ideal Hilbert trans-
former of (7.32).

Solution From (7.32), the samples of the (imaginary-valued) amplitude response are
given by

jHr (k) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−j, k = 1, . . . ,
⌊

M − 1
2

⌋

0, k = 0

+j, k =
⌊

M − 1
2

⌋
+ 1, . . . , M − 1

Since this is a Type-3 linear-phase filter, the amplitude response will be zero
at ω = π. Hence to reduce the ripples, we should choose the two samples (in
transition bands) near ω = π, optimally between 0 and j. Using our previous
experience, we could select this value as 0.39j. The samples of the phase response
are selected similar to those in Example 7.19.
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MATLAB script:

>> M = 51; alpha = (M-1)/2; Dw = 2*pi/M; l = 0:M-1; wl = Dw*l;
>> k1 = 0:floor((M-1)/2); k2 = floor((M-1)/2)+1:M-1;
>> Hrs = [0,-j*ones(1,(M-3)/2),-0.39j,0.39j,j*ones(1,(M-3)/2)];
>> angH = [-alpha*Dw*k1, alpha*Dw*(M-k2)];
>> H = Hrs.*exp(j*angH); h = real(ifft(H,M)); [Hr,ww,a,P]=Hr_Type3(h);

The plots in Figure 7.33 show the effect of the transition band samples. �

The SP toolbox provides a function called fir2, which combines
the frequency-sampling technique with the window technique to design
arbitrary-shaped magnitude response FIR filters. After computing the fil-
ter impulse response using the naive design method, fir2 then applies a
selected window to minimize ripples near the band-edge frequencies. This
function’s syntax also has several forms, including:

• h = fir2(N,f,m) designs an Nth-order (N = M−1) lowpass FIR filter
and returns the impulse response in vector h. The desired magnitude
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response of the filter is supplied in vectors f and m, which must be
of the same length. The vector f contains normalized frequencies in
the range from 0 to 1, where 1 corresponds to π rad/sample. The first
value of f must be 0 and the last value 1. The vector m, contains the
samples of the desired magnitude response at the values specified in f.
The desired frequency response is then interpolated onto a dense, evenly
spaced grid of length 512. Thus this syntax corresponds to the naive
design method.

• h = fir2(N,f,m,window) uses the vector window of length N+1 ob-
tained from one of the specified MATLAB window functions. The de-
fault window function used is the Hamming window.

• h = fir2(N,f,m,npt) or h = fir2(N,f,m,npt,window) specifies the
number of points npt for the grid onto which fir2 interpolates the
frequency response. The default npt value is 512.

Note that the fir2 does not implement the classic optimum frequency-
sampling method. By incorporating window design, fir2 has found an
alternative (and somewhat clever) approach to do away with the optimum
transition band values and the associated tables. By densely sampling
values in the entire band, interpolation errors are reduced (but not min-
imized), and stopband attenuation is increased to an acceptable level.
However, the basic design is contaminated by the window operation;
hence, the frequency response does not go through the original sampled
values. It is more suitable for designing FIR filters with arbitrary-shaped
frequency responses.

The type of frequency-sampling filter that we considered is called a
Type-A filter, in which the sampled frequencies are

ωk =
2π

M
k, 0 ≤ k ≤ M − 1

There is a second set of uniformly spaced samples given by

ωk =
2π
(
k + 1

2

)
M

, 0 ≤ k ≤ M − 1

This is called a Type-B filter, for which a frequency-sampling structure is
also available. The expressions for the magnitude response H(ejω) and the
impulse response h(n) are somewhat more complicated and are available
in Proakis and Manolakis [79]. Their design can also be done in MATLAB
using the approach discussed in this section.
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7.5 OPTIMAL EQUIRIPPLE DESIGN TECHNIQUE

The last two techniques—namely, the window design and the frequency-
sampling design—were easy to understand and implement. However, they
have some disadvantages. First, we cannot specify the band frequencies
ωp and ωs precisely in the design; that is, we have to accept whatever
values we obtain after the design. Second, we cannot specify both δ1 and
δ2 ripple factors simultaneously. Either we have δ1 = δ2 in the window
design method, or we can optimize only δ2 in the frequency-sampling
method. Finally, the approximation error—that is, the difference between
the ideal response and the actual response—is not uniformly distributed
over the band intervals. It is higher near the band edges and smaller in
the regions away from band edges. By distributing the error uniformly,
we can obtain a lower-order filter satisfying the same specifications. For-
tunately, a technique exists that can eliminate these three problems. This
technique is somewhat difficult to understand and requires a computer
for its implementation.

For linear-phase FIR filters, it is possible to derive a set of conditions
for which it can be proved that the design solution is optimal in the sense
of minimizing the maximum approximation error (sometimes called the
minimax or the Chebyshev error). Filters that have this property are called
equiripple filters because the approximation error is uniformly distributed
in both the passband and the stopband. This results in lower-order filters.

In the following, we first formulate a minimax optimal FIR design
problem and discuss the total number of maxima and minima (collec-
tively called extrema) that one can obtain in the amplitude response of
a linear-phase FIR filter. Using this, we then discuss a general equiripple
FIR filter design algorithm, which uses polynomial interpolation for its so-
lution. This algorithm is known as the Parks–McClellan algorithm, and it
incorporates the Remez exchange algorithm for polynomial solution. This
algorithm is available as a subroutine on many computing platforms. In
this section, we will use MATLAB to design equiripple FIR filters.

7.5.1 DEVELOPMENT OF THE MINIMAX PROBLEM
Earlier in this chapter, we showed that the frequency response of the four
cases of linear-phase FIR filters can be written in the form

H(ejω) = ejβe−j M−1
2 ωHr(w)

where the values for β and the expressions for Hr(ω) are given in
Table 7.2.
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TABLE 7.2 Amplitude response and β-values for linear-phase FIR filters

Linear-phase FIR Filter Type β Hr(ejω)

Type-1: M odd, symmetric h(n) 0
(M−1)/2∑

0
a(n) cos ωn

Type-2: M even, symmetric h(n) 0
M/2∑

1
b(n) cos [ω(n − 1/2)]

Type-3: M odd, antisymmetric h(n)
π

2

(M−1)/2∑
1

c(n) sin ωn

Type-4: M even, antisymmetric h(n)
π

2

M/2∑
1

d(n) sin [ω(n − 1/2)]

Using simple trigonometric identities, each expression for Hr(ω) can
be written as a product of a fixed function of ω (call this Q(ω)) and a
function that is a sum of cosines (call this P (ω)). For details, see Proakis
and Manolakis [79] and Problems P7.2–P7.5. Thus

Hr(ω) = Q(ω)P (ω) (7.40)

where P (ω) is of the form

P (ω) =
L∑

n=0

α(n) cos ωn (7.41)

and Q(ω), L, P (ω) for the four cases are given in Table 7.3.

TABLE 7.3 Q(ω), L, and P (ω) for linear-phase FIR filters

LP FIR Filter Type Q(ω) L P (ω)

Type-1 1
M − 1

2

L∑
0

a(n) cos ωn

Type-2 cos
ω

2
M

2
− 1

L∑
0

b̃(n) cos ωn

Type-3 sin ω
M − 3

2

L∑
0

c̃(n) cos ωn

Type-4 sin
ω

2
M

2
− 1

L∑
0

d̃(n) cos ωn
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The purpose of the previous analysis was to have a common form
for Hr(ω) across all four cases. It makes the problem formulation much
easier. To formulate our problem as a Chebyshev approximation problem,
we have to define the desired amplitude response Hdr(ω) and a weighting
function W (ω), both defined over passbands and stopbands. The weight-
ing function is necessary so that we can have an independent control over
δ1 and δ2. The weighted error is defined as

E (ω)
�
= W (ω) [Hdr(ω) − Hr(ω)] , ω ∈ S �

= [0, ωp] ∪ [ωs, π] (7.42)

These concepts are made clear in the following set of figures. It shows a
typical equiripple filter response along with its ideal response.
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Now if we choose

W (ω) =

⎧
⎨
⎩

δ2

δ1
, in the passband

1, in the stopband
(7.43)

then the weighted error E(ω) response is
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Thus the maximum error in both the passband and stopband is δ2. There-
fore, if we succeed in minimizing the maximum weighted error to δ2, we
automatically also satisfy the specification in the passband to δ1. Substi-
tuting Hr(ω) from (7.40) into (7.42), we obtain

E (ω) = W (ω) [Hdr (ω) − Q (ω)P (ω)]

= W (ω)Q (ω)
[
Hdr (ω)
Q (ω)

− P (ω)
]

, ω ∈ S

If we define

Ŵ (ω)
�
= W (ω)Q(w) and Ĥdr (ω)

�
=

Hdr (ω)
Q (ω)

then we obtain

E(ω) = Ŵ (ω)
[
Ĥdr(ω) − P (ω)

]
, ω ∈ S (7.44)

Thus we have a common form of E(ω) for all four cases.

Problem statement The Chebyshev approximation problem can now
be defined as follows:

Determine the set of coefficients a(n) or b̃(n) or c̃(n) or d̃(n) [or equiva-
lently a(n) or b(n) or c(n) or d(n)] to minimize the maximum absolute
value of E (ω) over the passband and stopband, that is,

min
over coeff.

[
max
ω∈S

|E (ω)|
]

(7.45)
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Now we have succeeded in specifying the exact ωp, ωs, δ1, and δ2. In
addition, the error can now be distributed uniformly in both the passband
and stopband.

7.5.2 CONSTRAINT ON THE NUMBER OF EXTREMA
Before we give the solution to this above problem, we will first discuss the
following issue: How many local maxima and minima exist in the error
function E(ω) for a given M -point filter? This information is used by the
Parks–McClellan algorithm to obtain the polynomial interpolation. The
answer is in the expression P (ω). From (7.41), P (ω) is a trigonometric
function in ω. Using trigonometric identities of the form

cos (2ω) = 2 cos2 (ω) − 1
cos (3ω) = 4 cos3 (ω) − 3 cos (ω)

... =
...

P (ω), given in (7.41) can be converted to a trigonometric polynomial in
cos (ω), as follows

P (ω) =
L∑

n=0

β(n) cosn ω (7.46)

� EXAMPLE 7.21 Let h(n) = 1
15 [1, 2, 3, 4, 3, 2, 1]. Then M = 7 and h(n) is symmetric, which

means that we have a Type-1 linear-phase filter. Hence L = (M − 1)/2 = 3.
Now from (7.7),

α(n) = a(n) = 2h(3 − n), 1 ≤ n ≤ 2; and α(0) = a(0) = h(3)

or α(n) = 1
15 [4, 6, 4, 2]. Hence

P (ω) =
3∑
0

α(n) cos ωn = 1
15 (4 + 6 cos ω + 4 cos 2ω + 2 cos 3ω)

= 1
15

{
4 + 6 cos ω + 4(2 cos2 ω − 1) + 2(4 cos3 ω − 3 cos ω)

}

= 0 + 0 + 8
15 cos2 ω + 8

15 cos3 ω =
3∑
0

β(n) cosn ω

or β(n) =
[
0, 0,

8
15

,
8
15

]
. �

From (7.46), we note that P (ω) is an Lth-order polynomial in cos(ω).
Since cos(ω) is a monotone function in the open interval 0 < ω < π, then
it follows that the Lth-order polynomial P (ω) in cos(ω) should behave
like an ordinary Lth-order polynomial P (x) in x. Therefore, P (ω) has
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at most (i.e., no more than) (L − 1) local extrema in the open interval
0 < ω < π. For example,

cos2(ω) =
1 + cos 2ω

2
has only one minimum at ω = π/2. However, it has three extrema in the
closed interval 0 ≤ ω ≤ π (i.e., a maximum at ω = 0, a minimum at ω =
π/2, and a maximum at ω = π). Thus if we include the end points ω = 0
and ω = π, then P (ω) has at most (L + 1) local extrema in the closed
interval 0 ≤ ω ≤ π. Finally, we would like the filter specifications to be
met exactly at band edges ωp and ωs. Then the specifications can be met
at no more than (L + 3) extremal frequencies in the 0 ≤ ω ≤ π interval.
Conclusion The error function E(ω) has at most (L + 3) extrema in S.

� EXAMPLE 7.22 Let us plot the amplitude response of the filter given in Example 7.21 and count
the total number of extrema in the corresponding error function.

Solution The impulse response is

h(n) =
1
15

[1, 2, 3, 4, 3, 2, 1], M = 7 or L = 3

and α(n) = 1
15 [4, 6, 4, 2] and β(n) =

[
0, 0, 8

15 , 8
15

]
from Example 7.21.

Hence

P (ω) =
8
15

cos2 ω +
8
15

cos3 ω

which is shown in Figure 7.34. Clearly, P (ω) has (L − 1) = 2 extrema in the
open interval 0 < ω < π. Also shown in Figure 7.34 is the error function, which
has (L + 3) = 6 extrema. �

Let us now turn our attention to the problem statement and equa-
tion (7.45). It is a well-known problem in approximation theory, and the
solution is given by the following important theorem.

THEOREM 1 Alternation Theorem
Let S be any closed subset of the closed interval [0, π]. In order that
P (ω) be the unique minimax approximation to Hdr(ω) on S, it is neces-
sary and sufficient that the error function E(ω) exhibit at least (L + 2)
‘‘alternations’’ or extremal frequencies in S; that is, there must exist
(L + 2) frequencies ωi in S such that

E (ωi) = −E (ωi−1) = ±max
S

|E (ω)| (7.47)

�
= ±δ, ∀ ω0 < ω1 < · · · < ωL+1 ∈ S
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FIGURE 7.34 Amplitude response and the error function in Example 7.22

Combining this theorem with our earlier conclusion, we infer that
the optimal equiripple filter has either (L + 2) or (L + 3) alternations
in its error function over S. Most of the equiripple filters have (L + 2)
alternations. However, for some combinations of ωp and ωs, we can get
filters with (L+3) alternations. These filters have one extra ripple in their
response and hence are called extraripple filters.

7.5.3 PARKS–McCLELLAN ALGORITHM
The alternation theorem ensures that the solution to our minimax ap-
proximation problem exists and is unique, but it does not tell us how
to obtain this solution. We know neither the order M (or equivalently,
L), nor the extremal frequencies ωi, nor the parameters {α(n)}, nor the
maximum error δ. Parks and McClellan [74] provided an iterative solution
using the Remez exchange algorithm. It assumes that the filter length M
(or L) and the ratio δ2/δ1 are known. If we choose the weighting function
as in (7.43), and if we choose the order M correctly, then δ = δ2 when
the solution is obtained. Clearly, δ and M are related; the larger the M ,
the smaller the δ. In the filter specifications, δ1, δ2, ωp, and ωs are given.
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Therefore, M has to be assumed. Fortunately, a simple formula, due to
Kaiser, exists for approximating M . It is given by

M̂ =
−20 log10

√
δ1δ2 − 13

2.285∆ω
+ 1; ∆ω = ωs − ωp (7.48)

The Parks–McClellan algorithm begins by guessing (L + 2) extremal
frequencies {ωi} and estimating the maximum error δ at these frequencies.
It then fits an Lth-order polynomial (7.46) through points given in (7.47).
Local maximum errors are determined over a finer grid, and the extremal
frequencies {ωi} are adjusted at these new extremal values. A new Lth-
order polynomial is fit through these new frequencies, and the procedure
is repeated. This iteration continues until the optimum set {ωi} and the
global maximum error δ are found. The iterative procedure is guaranteed
to converge, yielding the polynomial P (ω). From (7.46), coefficients β(n)
are determined. Finally, the coefficients a(n) as well as the impulse re-
sponse h(n) are computed. This algorithm is available in MATLAB as
the firpm function, which is described shortly.

Since we approximated M , the maximum error δ may not be equal to
δ2. If this is the case, then we have to increase M (if δ > δ2) or decrease
M (if δ < δ2) and use the firpm algorithm again to determine a new
δ. We repeat this procedure until δ ≤ δ2. The optimal equiripple FIR
filter, which satisfies all the three requirements discussed earlier, is now
determined.

7.5.4 MATLAB IMPLEMENTATION
The Parks–McClellan algorithm is available in MATLAB as a function
called firpm, the most general syntax of which is

[h] = firpm(N,f,m,weights,ftype)

There are several versions of this syntax:

• [h] = firpm(N,f,m) designs an Nth-order (note that the length of the
filter is M = N + 1) FIR digital filter whose frequency response is
specified by the arrays f and m. The filter coefficients (or the impulse
response) are returned in array h of length M . The array f contains
band-edge frequencies in units of π, that is, 0.0 ≤ f ≤ 1.0. These fre-
quencies must be in increasing order, starting with 0.0 and ending with
1.0. The array m contains the desired magnitude response at frequen-
cies specified in f. The lengths of f and m arrays must be the same and
must be an even number. The weighting function used in each band
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is equal to unity, which means that the tolerances (δi’s) in every band
are the same.

• [h] = firpm(N,f,m,weights) is similar to the preceding case except
that the array weights specifies the weighting function in each band.

• [h] = firpm(N,f,m,ftype) is similar to the first case except that
when ftype is the string ‘differentiator’ or ‘hilbert’, it designs
digital differentiators or digital Hilbert transformers, respectively. For
the digital Hilbert transformer, the lowest frequency in the f array
should not be 0, and the highest frequency should not be 1. For the
digital differentiator, the m vector does not specify the desired slope in
each band but the desired magnitude.

• [h] = firpm(N,f,m,weights,ftype) is similar to the above case ex-
cept that the array weights specifies the weighting function in each
band.

To estimate the filter order N , the SP toolbox provides the function
firpmord, which also estimates other parameters that can be used in the
firpm function. The basic syntax is

[N,f0,m0,weights] = firpmord(f,m,delta);

The function computes the window order N, the normalized frequency
band edges in f0, amplitude response in a0, and the band weights in
weights. The vector f is a vector of normalized band edges and m is a
vector specifying the desired amplitude on the bands defined by f. The
length of f is 2 less than twice the length of m; that is, f does not contain 0
or 1. The vector delta specifies tolerances in each band (not in decibels).
The estimated parameters can now be used in the firpm function.

As explained during the description of the Parks–McClellan algo-
rithm, we have to first guess the order of the filter using (7.48) to use
the function firpm. After we obtain the filter coefficients in array h, we
have to check the minimum stopband attenuation and compare it with the
given As and then increase (or decrease) the filter order. We have to repeat
this procedure until we obtain the desired As. We illustrate this procedure
in the following several MATLAB examples. These examples also use the
ripple conversion function db2delta, which is developed in Problem P7.1.

� EXAMPLE 7.23 Let us design the lowpass filter described in Example 7.8 using the Parks–
McClellan algorithm. The design parameters are

ωp = 0.2π ,

ωs = 0.3π ,

Rp = 0.25 dB

As = 50 dB

We provide a MATLAB script to design this filter.
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>> wp = 0.2*pi; ws = 0.3*pi; Rp = 0.25; As = 50;
>> [delta1,delta2] = db2delta(Rp,As);
>> [N,f,m,weights] = firpmord([wp,ws]/pi,[1,0],[delta1,delta2]);
>> h = firpm(N,f,m,weights);
>> [db,mag,pha,grd,w] = freqz_m(h,[1]);
>> delta_w = 2*pi/1000; wsi=ws/delta_w+1; wpi = wp/delta_w;
>> Asd = -max(db(wsi:1:501))
Asd = 47.8404
>> N = N+1
N = 43
>> h = firpm(N,f,m,weights); [db,mag,pha,grd,w] = freqz_m(h,[1]);
>> Asd = -max(db(wsi:1:501))
Asd = 48.2131
>> N = N+1
N = 44
>> h = firpm(N,f,m,weights); [db,mag,pha,grd,w] = freqz_m(h,[1]);
>> Asd = -max(db(wsi:1:501))
Asd = 48.8689
>> N = N+1
N = 45
>> h = firpm(N,f,m,weights); [db,mag,pha,grd,w] = freqz_m(h,[1]);
>> Asd = -max(db(wsi:1:501))
Asd = 49.8241
>> N = N+1
N = 46
>> h = firpm(N,f,m,weights); [db,mag,pha,grd,w] = freqz_m(h,[1]);
>> Asd = -max(db(wsi:1:501))
Asd = 51.0857
>> M = N+1
M = 47

Note that we stopped this iterative procedure when the computed stopband
attenuation exceeded the given stopband attenuation As and the optimal
value of M was found to be 47. This value is considerably lower than the
window design techniques (M = 61 for a Kaiser window) or the frequency-
sampling technique (M = 60). In Figure 7.35, we show the time- and the
frequency-domain plots of the designed filter along with the error function in
both the passband and the stopband to illustrate the equiripple behavior.

� EXAMPLE 7.24 Let us design the bandpass filter described in Example 7.10 using the Parks–
McClellan algorithm. The design parameters are

ω1s = 0.2π

ω1p = 0.35π

ω2p = 0.65π

ω2s = 0.8π

; Rp = 1 dB

; As = 60 db
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FIGURE 7.35 Plots for equiripple lowpass FIR filter in Example 7.23

Solution The following MATLAB script shows how to design this filter.

>> ws1 = 0.2*pi; wp1 = 0.35*pi; wp2 = 0.65*pi; ws2 = 0.8*pi;
>> Rp = 1.0; As = 60;
>> [delta1,delta2] = db2delta(Rp,As);
>> f = [ws1,wp1,wp2,ws2]/pi; m = [0,1,0]; delta = [delta2,delta1,delta2];
>> [N,f,m,weights] = firpmord(f,m,delta); N
N = 26
>> h = firpm(N,f,m,weights);
>> [db,mag,pha,grd,w] = freqz_m(h,[1]);
>> delta_w=2*pi/1000;
>> ws1i=floor(ws1/delta_w)+1; wp1i = floor(wp1/delta_w)+1;
>> ws2i=floor(ws2/delta_w)+1; wp2i = floor(wp2/delta_w)+1;
>> Asd = -max(db(1:1:ws1i))
Asd = 54.7756
>> N = N+1;
>> h = firpm(N,f,m,weights);
>> [db,mag,pha,grd,w] = freqz_m(h,[1]);
>> Asd = -max(db(1:1:ws1i))
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FIGURE 7.36 Plots for equiripple bandpass FIR filter in Example 7.24

Asd = 56.5910
>> N = N+1;
>> h = firpm(N,f,m,weights);
>> [db,mag,pha,grd,w] = freqz_m(h,[1]);
Asd = -max(db(1:1:ws1i))
>> Asd = 61.2843
>> M = N+1
M = 29

The optimal value of M was found to be 29. The time- and the frequency-domain
plots of the designed filter are shown in Figure 7.36. �

� EXAMPLE 7.25 Design a highpass filter that has the following specifications:

ωs = 0.6π,

ωp = 0.75π,

As = 50 dB

Rp = 0.5 dB

Solution Since this is a highpass filter, we must ensure that the length M is an odd
number. This is shown in the following MATLAB script.
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>> ws = 0.6*pi; wp = 0.75*pi; Rp = 0.5; As = 50;
>> [delta1,delta2] = db2delta(Rp,As);
>> [N,f,m,weights] = firpmord([ws,wp]/pi,[0,1],[delta2,delta1]); N
N = 26
>> h = firpm(N,f,m,weights);
>> [db,mag,pha,grd,w] = freqz_m(h,[1]);
>> delta_w = 2*pi/1000; wsi=ws/delta_w; wpi = wp/delta_w;
>> Asd = -max(db(1:1:wsi))
Asd = 49.5918
>> N = N+2;
>> h = firpm(N,f,m,weights);
>> [db,mag,pha,grd,w] = freqz_m(h,[1]);
>> Asd = -max(db(1:1:wsi))
>> Asd = 50.2253
>> M = N+1
M = 29

Note also that we increased the value of N by two to maintain its even value.
The optimum M was found to be 29. The time- and the frequency-domain plots
of the designed filter are shown in Figure 7.37. �
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FIGURE 7.37 Plots for equiripple highpass FIR filter in Example 7.25
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� EXAMPLE 7.26 In this example, we will design a “staircase” filter, which has 3 bands with
different ideal responses and different tolerances in each band. The design spec-
ifications are as follows.

Band-1: 0 ≤ ω ≤ 0.3π, Ideal gain = 1, Tolerance δ1 = 0.01

Band-2: 0.4π ≤ ω ≤ 0.7π, Ideal gain = 0.5, Tolerance δ2 = 0.005

Band-3: 0.8π ≤ ω ≤ π, Ideal gain = 0, Tolerance δ3 = 0.001

Solution The following MATLAB script describes the design procedure.

>> w1 = 0; w2 = 0.3*pi; delta1 = 0.01;
>> w3 = 0.4*pi; w4 = 0.7*pi; delta2 = 0.005;
>> w5 = 0.8*pi; w6 = pi; delta3 = 0.001;
>> weights = [delta3/delta1 delta3/delta2 1];
>> Dw = min((w3-w2), (w5-w3));
>> M = ceil((-20*log10((delta1*delta2*delta3)ˆ(1/3))-13)/(2.285*Dw)+1)
>> M = 51
>> f = [0 w2/pi w3/pi w4/pi w5/pi 1];
>> m = [1 1 0.5 0.5 0 0];
>> h = firpm(M-1,f,m,weights);
>> [db,mag,pha,grd,w] = freqz_m(h,[1]);
>> delta_w = 2*pi/1000;
>> w1i=floor(w1/delta_w)+1; w2i = floor(w2/delta_w)+1;
>> w3i=floor(w3/delta_w)+1; w4i = floor(w4/delta_w)+1;
>> w5i=floor(w5/delta_w)+1; w6i = floor(w6/delta_w)+1;
>> Asd = -max(db(w5i:w6i))
Asd = 62.0745
>> M = M-1; h = firpm(M-1,f,m,weights);
>> [db,mag,pha,grd,w] = freqz_m(h,[1]);
>> Asd = -max(db(w5i:w6i))
Asd = 60.0299
>> M = M-1; h = firpm(M-1,f,m,weights);
>> [db,mag,pha,grd,w] = freqz_m(h,[1]);
>> Asd = -max(db(w5i:w6i))
Asd = 60.6068
>> M
M = 49

The time- and the frequency-domain plots of the designed filter are shown in
Figure 7.38. �
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FIGURE 7.38 Plots for equiripple staircase FIR filter in Example 7.26

� EXAMPLE 7.27 In this example, we will design a digital differentiator with different slopes in
each band. The specifications are as follows.

Band-1: 0 ≤ ω ≤ 0.2π, Slope = 1 sam/cycle

Band-2: 0.4π ≤ ω ≤ 0.6π, Slope = 2 sam/cycle

Band-3: 0.8π ≤ ω ≤ π, Slope = 3 sam/cycle

Solution We need desired magnitude response values in each band. These can be ob-
tained by multiplying band-edge frequencies in cycles/sam by the slope values
in sam/cycle.

Band-1: 0 ≤ f ≤ 0.1, Slope = 1 sam/cycle ⇒ 0.0 ≤ |H| ≤ 0.1

Band-2: 0.2 ≤ f ≤ 0.3, Slope = 2 sam/cycle ⇒ 0.4 ≤ |H| ≤ 0.6

Band-3: 0.4 ≤ f ≤ 0.5, Slope = 3 sam/cycle ⇒ 1.2 ≤ |H| ≤ 1.5
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FIGURE 7.39 Plots of the differentiator in Example 7.27

Let the weights be equal in all bands. MATLAB script:

>> f = [0 0.2 0.4 0.6 0.8 1]; % In w/pi units
>> m = [0,0.1,0.4,0.6,1.2,1.5]; % Magnitude values
>> h = firpm(25,f,m,’differentiator’);
>> [db,mag,pha,grd,w] = freqz_m(h,[1]);
% Plot commands follow

The frequency-domain response is shown in Figure 7.39. �

� EXAMPLE 7.28 Finally, we design a Hilbert transformer over the band 0.05π ≤ ω ≤ 0.95π.

Solution Since this is a wideband Hilbert transformer, we will choose an odd length for
our filter (i.e., a Type-3 filter). Let us choose M = 51. MATLAB script:

>> f = [0.05,0.95]; m = [1 1]; h = firpm(50,f,m,’hilbert’);
>> [db,mag,pha,grd,w] = freqz_m(h,[1]);
% Plot commands follow

The plots of this Hilbert transformer are shown in Figure 7.40. �
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FIGURE 7.40 Plots of the Hilbert transformer in Example 7.28

7.6 PROBLEMS

P7.1 The absolute and relative (dB) specifications for a lowpass filter are related by (7.1) and
(7.2). In this problem, we will develop a simple MATLAB function to convert one set of
specifications into another.

1. Write a MATLAB function to convert absolute specifications δ1 and δ2 into the relative
specifications Rp and As in dB. The format of the function should be

function [Rp,As] = delta2db(delta1,delta2)
% Converts absolute specs delta1 and delta2 into dB specs Rp and As
% [Rp,As] = delta2db(delta1,delta2)

Verify your function using the specifications given in Example 7.2.
2. Write a MATLAB function to convert relative (dB) specifications Rp and As into the

absolute specifications δ1 and δ2. The format of the function should be

function [delta1,delta2] = db2delta(Rp,As)
% Converts dB specs Rp and As into absolute specs delta1 and delta2
% [delta1,delta2] = db2delta(Rp,As)

Verify your function using the specifications given in Example 7.1.
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P7.2 The Type-1 linear-phase FIR filter is characterized by

h(n) = h(M − 1 − n), 0 ≤ n ≤ M − 1, M odd

Show that its amplitude response Hr(ω) is given by

Hr(ω) =
L∑

n=0

a(n) cos(ωn), L =
M − 1

2

where coefficients {a(n)} are obtained as defined in (7.7).

P7.3 The Type-2 linear-phase FIR filter is characterized by

h(n) = h(M − 1 − n), 0 ≤ n ≤ M − 1, M even

1. Show that its amplitude response Hr(ω) is given by

Hr(ω) =
M/2∑
n=1

b(n) cos
{
ω
(
n − 1

2

)}

where coefficients {b(n)} are obtained as defined in (7.10).
2. Show that Hr(ω) can be further expressed as

Hr(ω) = cos
(

ω

2

) L∑
n=0

b̃(n) cos(ωn), L =
M

2
− 1

where coefficients b̃(n) are given by

b(1) = b̃(0) + 1
2 b̃(1),

b(n) =
1
2

[
b̃(n − 1) + b̃(n)

]
, 2 ≤ n ≤ M

2
− 1,

b
(

M
2

)
=

1
2
b̃
(

M
2 − 1

)
.

P7.4 The Type-3 linear-phase FIR filter is characterized by

h(n) = −h(M − 1 − n), 0 ≤ n ≤ M − 1, M odd

1. Show that its amplitude response Hr(ω) is given by

Hr(ω) =
(M−1)/2∑

n=1

c(n) sin(ωn)

where coefficients {c(n)} are obtained as defined in (7.13).
2. Show that Hr(ω) can be further expressed as

Hr(ω) = sin(ω)
L∑

n=0

c̃(n) cos(ωn), L =
M − 3

2
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where coefficients c̃(n) are given by

c(1) = c̃(0) − 1
2 c̃(1),

c(n) =
1
2

[c̃(n − 1) − c̃(n)] , 2 ≤ n ≤ M − 3
2

,

c
(

M − 1
2

)
=

1
2
c̃
(

M − 3
2

)
.

P7.5 The Type-4 linear-phase FIR filter is characterized by

h(n) = −h(M − 1 − n), 0 ≤ n ≤ M − 1, M even

1. Show that its amplitude response Hr(ω) is given by

Hr(ω) =
M/2∑
n=1

d(n) sin
{
ω
(
n − 1

2

)}

where coefficients {d(n)} are obtained as defined in (7.16).
2. Show that the above Hr(ω) can be further expressed as

Hr(ω) = sin
(

ω

2

) L∑
n=0

d̃(n) cos(ωn), L =
M

2
− 1

where coefficients d̃(n) are given by

d(1) = d̃(0) − 1
2 d̃(1),

d(n) =
1
2

[
d̃(n − 1) − d̃(n)

]
, 2 ≤ n ≤ M

2
− 1,

d
(

M

2

)
=

1
2
d̃
(

M
2 − 1

)
.

P7.6 Write a MATLAB function to compute the amplitude response Hr(ω) given a linear phase
impulse response h(n). The format of this function should be

function [Hr,w,P,L] = Ampl_Res(h);
% Computes amplitude response Hr(w) and its polynomial P of order L,
% given a linear-phase FIR filter impulse response h.
% The type of filter is determined automatically by the subroutine.
%
% [Hr,w,P,L] = Ampl_Res(h)
% Hr = amplitude response
% w = frequencies between [0 pi] over which Hr is computed
% P = polynomial coefficients
% L = Order of P
% h = Linear-phase filter impulse response
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The function should first determine the type of the linear-phase FIR filter and then use the
appropriate Hr Type# function discussed in this chapter. It should also check if the given
h(n) is of a linear-phase type. Verify your function on sequences given here.

hI(n) = (0.9)|n−5| cos[π(n − 5)/12] [u(n) − u(n − 11)]

hII(n) = (0.9)|n−4.5| cos[π(n − 4.5)/11] [u(n) − u(n − 10)]

hIII(n) = (0.9)|n−5| sin[π(n − 5)/12] [u(n) − u(n − 11)]

hIV(n) = (0.9)|n−4.5| sin[π(n − 4.5)/11] [u(n) − u(n − 10)]

h(n) = (0.9)n cos[π(n − 5)/12] [u(n) − u(n − 11)]

P7.7 Prove the following properties of linear-phase FIR filters.

1. If H(z) has four zeros at z1 = rejθ, z2 = 1
r
e−jθ, z3 = re−jθ, and z4 = 1

r
e−jθ, then H(z)

represents a linear-phase FIR filter.
2. If H(z) has two zeros at z1 = ejθ and z2 = e−jθ, then H(z) represents a linear-phase

FIR filter.
3. If H(z) has two zeros at z1 = r and z2 = 1

r
, then H(z) represents a linear-phase FIR

filter.
4. If H(z) has a zero at z1 = 1 or a zero at z1 = −1, then H(z) represents a linear-phase

FIR filter.
5. For each of the sequences given in Problem P7.6, plot the locations of zeros. Determine

which sequences imply linear-phase FIR filters.

P7.8 A notch filter is an LTI system, which is used to eliminate an arbitrary frequency ω = ω0.
The ideal linear-phase notch filter frequency response is given by

Hd

(
ejω
)

=

{
0, |ω| = ω0;
1 · e−jαω, otherwise.

(α is a delay in samples)

1. Determine the ideal impulse response, hd(n), of the ideal notch filter.
2. Using hd(n), design a linear-phase FIR notch filter using a length 51 rectangular window

to eliminate the frequency ω0 = π/2 rad/sample. Plot the amplitude response of the
resulting filter.

3. Repeat part 2 using a length 51 Hamming window. Compare your results.

P7.9 Design a linear-phase bandpass filter using the Hann window design technique. The
specifications are

lower stopband edge: 0.2π
upper stopband edge: 0.75π

As = 40 dB

lower passband edge: 0.35π
upper passband edge: 0.55π

Rp = 0.25 dB

Plot the impulse response and the magnitude response (in dB) of the designed filter. Do not
use the fir1 function.

P7.10 Design a bandstop filter using the Hamming window design technique. The specifications are

lower stopband edge: 0.4π
upper stopband edge: 0.6π

As = 50 dB

lower passband edge: 0.3π
upper passband edge: 0.7π

Rp = 0.2 dB
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Plot the impulse response and the magnitude response (in dB) of the designed filter. Do not
use the fir1 function.

P7.11 Design a bandpass filter using the Hamming window design technique. The specifications are

lower stopband edge: 0.3π
upper stopband edge: 0.6π

As = 50 dB

lower passband edge: 0.4π
upper passband edge: 0.5π

Rp = 0.5 dB

Plot the impulse response and the magnitude response (in dB) of the designed filter. Do not
use the fir1 function.

P7.12 Design a highpass filter using one of the fixed window functions. The specifications are

stopband edge: 0.4π, As = 50 dB
passband edge: 0.6π, Rp = 0.004 dB

Plot the zoomed magnitude response (in dB) of the designed filter in the passband to verify
the passband ripple Rp. Do not use the fir1 function.

P7.13 Using the Kaiser window method, design a linear-phase FIR digital filter that meets the
following specifications:

0.975 ≤ |H(ejω)| ≤ 1.025,
0 ≤ |H(ejω)| ≤ 0.005,

0.975 ≤ |H(ejω)| ≤ 1.025,

0 ≤ ω ≤ 0.25π
0.35π ≤ ω ≤ 0.65π
0.75π ≤ ω ≤ π

Determine the minimum-length impulse response h(n) of such a filter. Provide a plot
containing subplots of the amplitude response and the magnitude response in dB. Do not
use the fir1 function.

P7.14 We wish to use the Kaiser window method to design a linear-phase FIR digital filter that
meets the following specifications:

0 ≤ |H(ejω)| ≤ 0.01,
0.95 ≤ |H(ejω)| ≤ 1.05,

0 ≤ |H(ejω)| ≤ 0.01,

0 ≤ ω ≤ 0.25π
0.35π ≤ ω ≤ 0.65π
0.75π ≤ ω ≤ π

Determine the minimum-length impulse response h(n) of such a filter. Provide a plot
containing subplots of the amplitude response and the magnitude response in dB. Do not
use the fir1 function.

P7.15 Design the staircase filter of Example 7.26 using the Kaiser window approach. The
specifications are as follows.

Band-1: 0 ≤ ω ≤ 0.3π, Ideal gain = 1, δ1 = 0.01
Band-2: 0.4π ≤ ω ≤ 0.7π, Ideal gain = 0.5, δ2 = 0.005
Band-3: 0.8π ≤ ω ≤ π, Ideal gain = 0, δ3 = 0.001

Compare the filter length of this design with that of Example 7.26. Provide a plot of the
magnitude response in dB. Do not use the fir1 function.
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P7.16 Design a bandpass filter using a fixed window design technique that has the minimum
length and that satisfies the following specifications:

lower stopband edge = 0.3π
upper stopband edge = 0.6π

}
As = 40 dB

lower passband edge = 0.4π
upper passband edge = 0.5π

}
Rp = 0.5 dB

Provide a plot of the log-magnitude response in dB and stem plot of the impulse response.

P7.17 Repeat Problem P7.9 using the fir1 function.

P7.18 Repeat Problem P7.10 using the fir1 function.

P7.19 Repeat Problem P7.11 using the fir1 function.

P7.20 Repeat Problem P7.12 using the fir1 function.

P7.21 Repeat Problem P7.13 using the fir1 function.

P7.22 Repeat Problem P7.14 using the fir1 function.

P7.23 Consider an ideal lowpass filter with the cutoff frequency ωc = 0.3π. We want to
approximate this filter using a frequency-sampling design in which we choose 40 samples.

1. Choose the sample at ωc equal to 0.5, and use the naive design method to compute h(n).
Determine the minimum stopband attenuation.

2. Now vary the sample at ωc, and determine the optimum value to obtain the largest
minimum stopband attenuation.

3. Plot the magnitude responses in dB of the preceding two designs in one plot; comment
on the results.

P7.24 Design the bandstop filter of Problem P7.10 using the frequency-sampling method. Choose
the order of the filter appropriately so that there are two samples in the transition band.
Use optimum values for these samples. Compare your results with those obtained using the
fir2 function.

P7.25 Design the bandpass filter of Problem P7.11 using the frequency-sampling method. Choose
the order of the filter appropriately so that there are two samples in the transition band.
Use optimum values for these samples. Compare your results with those obtained using the
fir2 function.

P7.26 Design the highpass filter of Problem P7.12 using the frequency-sampling method. Choose
the order of the filter appropriately so that there are two samples in the transition band.
Use optimum values. Compare your results with those obtained using the fir2 function.

P7.27 Consider the filter specifications given in Figure P7.1. Use the fir2 function and a
Hamming window to design a linear-phase FIR filter via the frequency-sampling method.
Experiment with the filter length to achieve the required design. Plot the amplitude
response of the resulting filter.

P7.28 Design a bandpass filter using the frequency-sampling method. Choose the order of the
filter appropriately so that there is one sample in the transition band. Use optimum value
for this sample. The specifications are as follows:

lower stopband edge = 0.3π

upper stopband edge = 0.7π

}
As = 40 dB
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FIGURE P7.1 Filter specifications for Problem P7.27

lower passband edge = 0.4π

upper passband edge = 0.6π

}
Rp = 0.5 dB.

Provide a plot of the log-magnitude response in dB and stem plot of the impulse response.

P7.29 The frequency response of an ideal bandpass filter is given by

Hd(ejω) =

⎧
⎨
⎩

0, 0 ≤ |ω| ≤ π/3

1, π/3 ≤ |ω| ≤ 2π/3

0, 2π/3 ≤ |ω| ≤ π

1. Determine the coefficients of a 25-tap filter based on the Parks–McClellan algorithm
with stopband attenuation of 50 dB. The designed filter should have the smallest
possible transition width.

2. Plot the amplitude response of the filter using the function developed in Problem P7.6.

P7.30 Consider the bandstop filter given in Problem P7.10.

1. Design a linear-phase bandstop FIR filter using the Parks–McClellan algorithm. Note
that the length of the filter must be odd. Provide a plot of the impulse response and the
magnitude response in dB of the designed filter.

2. Plot the amplitude response of the designed filter and count the total number of extrema
in stopband and passbands. Verify this number with the theoretical estimate of the total
number of extrema.

3. Compare the order of this filter with those of the filters in Problems P7.10 and P7.24.
4. Verify the operation of the designed filter on the following signal:

x(n) = 5 − 5 cos
(

πn

2

)
; 0 ≤ n ≤ 300
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P7.31 Using the Parks–McClellan algorithm, design a 25-tap FIR differentiator with slope equal
to 1 sample/cycle.

1. Choose the frequency band of interest between 0.1π and 0.9π. Plot the impulse response
and the amplitude response.

2. Generate 100 samples of the sinusoid

x(n) = 3 sin(0.25πn), n = 0, ..., 100

and process through the preceding FIR differentiator. Compare the result with the
theoretical “derivative” of x(n). Note: Don’t forget to take the 12-sample delay of the
FIR filter into account.

P7.32 Design a lowest-order equiripple linear-phase FIR filter to satisfy the specifications given in
Figure P7.2. Provide a plot of the amplitude response and a plot of the impulse response.

P7.33 A digital signal x(n) contains a sinusoid of frequency π/2 and a Gaussian noise w(n) of zero
mean and unit variance; that is,

x(n) = 2 cos
πn

2
+ w(n)

We want to filter out the noise component using a 50th-order causal and linear-phase FIR
filter.

1. Using the Parks–McClellan algorithm, design a narrow bandpass filter with passband
width of no more than 0.02π and stopband attenuation of at least 30 dB. Note that no
other parameters are given and that you have to choose the remaining parameters for
the firpm function to satisfy the requirements. Provide a plot of the log-magnitude
response in dB of the designed filter.

2. Generate 200 samples of the sequence x(n) and processed through the preceding filter to
obtain the output y(n). Provide subplots of x(n) and y(n) for 100 ≤ n ≤ 200 on one plot
and comment on your results.
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FIGURE P7.2 Filter specifications for Problem P7.32
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P7.34 Design a minimum-order linear-phase FIR filter, using the Parks–McClellan algorithm, to
satisfy the requirements given in Figure P7.1.

1. Provide a plot of the amplitude response with grid lines and axis labeling as shown in
Figure P7.1.

2. Generate the following signals:

x1(n) = cos(0.25πn), x2(n) = cos(0.5πn), x3(n) = cos(0.75πn); 0 ≤ n ≤ 100

Process these signals through this filter to obtain the corresponding output signals
y1(n), y2(n), and y3(n). Provide stem plots of all input and output signals in one figure.

P7.35 Design a minimum-order linear-phase FIR filter, using the Parks–McClellan algorithm, to
satisfy the requirements given in Figure P7.3. Provide a plot of the amplitude response with
grid lines and axis labeling as shown in Figure P7.3.

P7.36 The specifications on the amplitude response (not to scale) of an FIR filter are given in
Figure P7.4.

1. Using a window design approach and a fixed window function, design a minimum-length
linear-phase FIR filter to satisfy the given requirements. Provide a plot of the amplitude
response with grid lines as shown in Figure P7.4.

2. Using a window design approach and the Kaiser window function, design a
minimum-length linear-phase FIR filter to satisfy the given requirements. Provide a plot
of the amplitude response with grid lines as shown in Figure P7.4.

3. Using a frequency-sampling design approach and with no more than two samples in the
transition bands, design a minimum-length linear-phase FIR filter to satisfy the given
requirements. Provide a plot of the amplitude response with grid lines as shown in
Figure P7.4.

4. Using the Parks–McClellan design approach, design a minimum-length linear-phase FIR
filter to satisfy the given requirements. Provide a plot of the amplitude response with
grid lines as shown in Figure P7.4.

5. Compare the preceding four design methods in terms of
• the order of the filter,
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FIGURE P7.3 Filter specifications for Problem P7.35
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FIGURE P7.4 Filter specifications for Problem P7.36

• the exact band-edge frequencies,
• the exact tolerances in each band.

P7.37 Design a minimum-order linear-phase FIR filter, using the Parks–McClellan algorithm, to
satisfy the requirements given in Figure P7.5. Provide a plot of the amplitude response with
grid lines as shown in Figure P7.5.

P7.38 Design a minimum-length linear-phase bandpass filter of Problem P7.9 using the
Parks–McClellan algorithm.

1. Plot the impulse response and the magnitude response in dB of the designed filter in one
figure plot.

2. Plot the amplitude response of the designed filter and count the total number of extrema
in passband and stopbands. Verify this number with the theoretical estimate of the total
number of extrema.

3. Compare the order of this filter with that of the filter in Problem P7.9.
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FIGURE P7.5 Filter specifications for Problem P7.37
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C H A P T E R 8
IIR Filter
Design

IIR filters have infinite-duration impulse responses, and hence they can
be matched to analog filters, all of which generally have infinitely long im-
pulse responses. Therefore, the basic technique of IIR filter design trans-
forms well-known analog filters into digital filters using complex-valued
mappings. The advantage of this technique lies in the fact that both
analog filter design (AFD) tables and the mappings are available exten-
sively in the literature. This basic technique is called the A/D (analog-
to-digital) filter transformation. However, the AFD tables are available
only for lowpass filters. We also want to design other frequency-selective
filters (highpass, bandpass, bandstop, etc.). To do this, we need to apply
frequency-band transformations to lowpass filters. These transformations
are also complex-valued mappings, and they are also available in the liter-
ature. There are two approaches to this basic technique of IIR filter design:

Approach 1:

Design Analog
Lowpass Filter −→

Apply Frequency-Band
Transformation

s → s
−→

Apply Filter
Transformation

s → z
−→ Desired IIR

Filter

Approach 2:

Design Analog
Lowpass Filter −→

Apply Filter
Transformation

s → z
−→

Apply Frequency-Band
Transformation

z → z
−→ Desired IIR

Filter
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The first approach is used in MATLAB to design IIR filters. A
straightforward use of these MATLAB functions does not provide any
insight into the design methodology. Therefore, we will study the second
approach because it involves the frequency-band transformation in the
digital domain. Hence in this IIR filter design technique, we will follow
the following steps:

• Design analog lowpass filters.
• Study and apply filter transformations to obtain digital lowpass filters.
• Study and apply frequency-band transformations to obtain other digi-

tal filters from digital lowpass filters.

The main problem with these approaches is that we have no control
over the phase characteristics of the IIR filter. Hence IIR filter designs
will be treated as magnitude-only designs. More sophisticated techniques,
which can simultaneously approximate both the magnitude and the phase
responses, require advanced optimization tools and hence will not be cov-
ered in this book.

We begin with a discussion on the analog filter specifications and the
properties of the magnitude-squared response used in specifying analog
filters. Next, before we delve into basic techniques for general IIR filters,
we consider the design of special types of digital filters—for example,
resonators, notch filters, comb filters, and so on. This is followed by a
brief description of the characteristics of three widely used analog fil-
ters: Butterworth, Chebyshev, and elliptic filters. Finally, we will study
transformations to convert these prototype analog filters into different
frequency-selective digital filters and conclude this chapter with several
IIR filter designs using MATLAB.

8.1 SOME PRELIMINARIES

We discuss two preliminary issues in this section. First, we consider the
magnitude-squared response specifications, which are more typical of ana-
log (and hence of IIR) filters. These specifications are given on the relative
linear scale. Second, we study the properties of the magnitude-squared
response.

8.1.1 RELATIVE LINEAR SCALE
Let Ha(jΩ) be the frequency response of an analog filter. Then the lowpass
filter specifications on the magnitude-squared response are given by

1
1 + ε2

≤ |Ha(jΩ)|2 ≤ 1, |Ω| ≤ Ωp

0 ≤ |Ha(jΩ)|2 ≤ 1
A2 , Ωs ≤ |Ω|

(8.1)
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FIGURE 8.1 Analog lowpass filter specifications

where ε is a passband ripple parameter, Ωp is the passband cutoff fre-
quency in rad/sec, A is a stopband attenuation parameter, and Ωs is the
stopband cutoff in rad/sec. These specifications are shown in Figure 8.1,
from which we observe that |Ha(jΩ)|2 must satisfy

|Ha(jΩp)|2 =
1

1 + ε2
at Ω = Ωp

|Ha(jΩs)|2 =
1

A2 at Ω = Ωs

(8.2)

The parameters ε and A are related to parameters Rp and As, respec-
tively, of the dB scale. These relations are given by

Rp = −10 log10
1

1 + ε2
=⇒ ε =

√
10Rp/10 − 1 (8.3)

and

As = −10 log10
1

A2 =⇒ A = 10As/20 (8.4)

The ripples, δ1 and δ2, of the absolute scale are related to ε and A by

1 − δ1

1 + δ1
=

√
1

1 + ε2
=⇒ ε =

2
√

δ1

1 − δ1

and
δ2

1 + δ1
=

1
A

=⇒ A =
1 + δ1

δ2
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8.1.2 PROPERTIES OF |Ha(jΩ)|2
Analog filter specifications (8.1), which are given in terms of the
magnitude-squared response, contain no phase information. Now to eval-
uate the s-domain system function Ha(s), consider

Ha(jΩ) = Ha(s)|s=jΩ

Then we have

|Ha(jΩ)|2 = Ha(jΩ)H∗
a(jΩ) = Ha(jΩ)Ha(−jΩ) = Ha(s)Ha(−s)|s=jΩ

or

Ha(s)Ha(−s) = |Ha(jΩ)|2
∣∣∣
Ω=s/j

(8.5)

Therefore, the poles and zeros of the magnitude-squared function are dis-
tributed in a mirror-image symmetry with respect to the jΩ axis. Also for
real filters, poles and zeros occur in complex conjugate pairs (or mirror-
image symmetry with respect to the real axis). A typical pole-zero pat-
tern of Ha(s)Ha(−s) is shown in Figure 8.2. From this pattern, we can
construct Ha(s), which is the system function of our analog filter. We
want Ha(s) to represent a causal and stable filter. Then all poles of Ha(s)
must lie within the left half-plane. Thus we assign all left-half poles of
Ha(s)Ha(−s) to Ha(s). However, zeros of Ha(s) can lie anywhere in the
s-plane. Therefore, they are not uniquely determined unless they all are
on the jΩ axis. We will choose the zeros of Ha(s)Ha(−s) lying left to or
on the jΩ axis as the zeros of Ha(s). The resulting filter is then called a
minimum-phase filter.

jΩ

s-plane

σ

FIGURE 8.2 Typical pole-zero pattern of Ha(s)Ha(−s)
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374 Chapter 8 IIR FILTER DESIGN

8.2 SOME SPECIAL FILTER TYPES

In this section, we consider the design of several special types of digital
filters and describe their frequency response characteristics. We begin by
describing the design and characteristics of a digital resonator.

8.2.1 DIGITAL RESONATORS
A digital resonator is a special two-pole bandpass filter with a pair of
complex-conjugate poles located very near the unit circle, as shown in
the left plot of Figure 8.3. The magnitude of the frequency response of
the filter is shown in the top right plot of Figure 8.3. The name resonator
refers to the fact that the filter has a large magnitude response in the
vicinity of the pole position. The angle of the pole location determines
the resonant frequency of the filter. Digital resonators are useful in many
applications, including simple bandpass filtering and speech generation.

Let us consider the design of a digital resonator with a resonant peak
at or near ω = ω0. Hence we select the pole position as

p1,2 = re±jω0 (8.6)
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FIGURE 8.3 Pole positions and frequency response of a digital resonator with
r = 0.9 and ω0 = π/3
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The corresponding system function is

H(z) =
b0

(1 − rejω0z−1)(1 − re−jω0z−1)

=
b0

1 − (2r cos ω0)z−1 + r2z−2 (8.7)

where b0 is a gain parameter. The frequency response of the resonator is

H
(
ejω
)

=
b0[

1 − re−j(ω−ω0)
] [

1 − re−j(ω+ω0)
] (8.8)

Since
∣∣H(ejω

)∣∣ has its peak at or near ω = ω0, we select the gain param-
eter b0 so that

∣∣H(ejω0
)∣∣ = 1. Hence

∣∣H(ejω0
)∣∣ =

b0

|(1 − r)(1 − re−j2ω0)|

=
b0

(1 − r)
√

1 + r2 − 2r cos 2ω0
(8.9)

Consequently, the desired gain parameter is

b0 = (1 − r)
√

1 + r2 − 2r cos 2ω0 (8.10)

The magnitude of the frequency response H(ω) may be expressed as

∣∣H(ejω
)∣∣ = b0

D1(ω)D2(ω)
(8.11)

where D1(ω) and D2(ω) are given as

D1(ω) =
√

1 + r2 − 2r cos(ω − ω0) (8.12a)

D2(ω) =
√

1 + r2 − 2r cos(ω + ω0) (8.12b)

For a given value of r, D1(ω) takes its minimum value (1 − r) at ω = ω0,
and the product D1(ω)D2(ω) attains a minimum at the frequency

ωr = cos−1
(

1 + r2

2r
cos ω0

)
(8.13)

which defines precisely the resonant frequency of the filter. Note that
when r is very close to unity, ωr ≈ ω0, which is the angular position of
the pole. Furthermore, as r approaches unity, the resonant peak becomes
sharper (narrower) because D1(ω) changes rapidly in the vicinity of ω0.
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A quantitative measure of the width of the peak is the 3 dB bandwidth
of the filter, denoted as ∆(ω). For values of r close to unity,

∆ω ≈ 2(1 − r) (8.14)

Figure 8.3 illustrates the magnitude and phase responses of a digital res-
onator with ω0 = π/3, r = 0.90. Note that the phase response has its
greatest rate of change near the resonant frequency ωr ≈ ω0 = π/3.

This resonator has two zeros at z = 0. Instead of placing zeros at the
origin, an alternative choice is to locate the zeros at z = 1 and z = −1.
This choice completely eliminates the response of the filter at the frequen-
cies ω = 0 and ω = π, which may be desirable in some applications. The
corresponding resonator has the system function

H(z) =
G(1 − z−1)(1 + z−1)

(1 − rejω0z−1)(1 − re−jω0z−1)

= G
1 − z−2

1 − (2r cos ω0)z−1 + r2z−2 (8.15)

and the frequency response characteristic

H
(
ejω
)

= G
1 − e−j2ω

[1 − rej(ω0−ω)][1 − re−j(ω0+ω)]
(8.16)

where G is a gain parameter that is selected so that
∣∣H(ejω0

)∣∣ = 1.
The introduction of zeros at z = ±1 alters both the magnitude and

phase response of the resonator. The magnitude response may be ex-
pressed as

∣∣H(ejω
)∣∣ = G

N(ω)
D1(ω)D2(ω)

(8.17)

where N(ω) is defined as

N(ω) =
√

2(1 − cos 2ω) (8.18)

Due to the presence of the zeros at z = ±1, the resonant frequency of the
resonator is altered from the expression given by (8.13). The bandwidth
of the filter is also altered. Although exact values for these two parameters
are rather tedious to derive, we can easily compute the frequency response
when the zeros are at z = ±1 and z = 0 and compare the results.

Figure 8.4 illustrates the magnitude and phase responses for the cases
z = ±1 and z = 0, for pole location at ω = π/3 and r = 0.90. We observe
that the resonator with z = ±1 has a slightly smaller bandwidth than
the resonator with zeros at z = 0. In addition, there appears to be a very
small shift in the resonant frequency between the two cases.
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FIGURE 8.4 Magnitude and phase responses of digital resonator with zeros at
z = ±1 (solid lines) and z = 0 (dotted lines) for r = 0.9 and ω0 = π/3

8.2.2 NOTCH FILTERS
A notch filter is a filter that contains one or more deep notches or, ideally,
perfect nulls in its frequency response. Figure 8.5 illustrates the frequency
response of a notch filter with a null at the frequency ω = ω0. Notch filters
are useful in many applications where specific frequency components must
be eliminated. For example, instrumentation systems require that the
power line frequency of 60 Hz and its harmonics be eliminated.

To create a null in the frequency response of a filter at a frequency
ω0, we simply introduce a pair of complex-conjugate zeros on the unit
circle at the angle ω0. Hence the zeros are selected as

z1,2 = e±jω0 (8.19)

Then the system function for the notch filter is

H(z) = b0(1 − ejω0z−1)(1 − e−jω0z−1)

= b0(1 − (2 cos ω0)z−1 + z−2) (8.20)

where b0 is a gain factor. Figure 8.6 illustrates the magnitude response of
a notch filter having a null at ω = π/4.

The major problem with this notch filter is that the notch has a rela-
tively large bandwidth, which means that other frequency components

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



378 Chapter 8 IIR FILTER DESIGN

–1 –0.5 0 0.5 1

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

2

Real Part

Im
ag

in
ar

y 
P

ar
t 

Pole-Zero Plot

–1 0 1 
–50

0
10

D
ec

ib
el

s

Magnitude Response

–1 0 1 
–1

–0.5

0

0.5

1
Phase Response

ω in π  Units
R

ad
ia

ns
 / 

π

FIGURE 8.5 Frequency response of a typical notch filter

around the desired null are severely attenuated. To reduce the band-
width of the null, we may resort to the more sophisticated, longer FIR
filter designed according to the optimum equiripple design method de-
scribed in Chapter 7. Alternatively, we could attempt to improve the fre-
quency response of the filter by introducing poles in the system function.
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FIGURE 8.6 Frequency response of a notch filter with ω0 = π/4
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FIGURE 8.7 Magnitude and phase responses of notch filter with poles (solid
lines) and without poles (dotted lines) for ω0 = π/4 and r = 0.85

In particular, suppose that we select the poles at

p1,2 = re±jω0 (8.21)

Hence the system function becomes

H(z) = b0
1 − (2 cos ω0)z−1 + z2

1 − (2r cos ω0)z−1 + r2z−2 (8.22)

The magnitude of the frequency response
∣∣H(ejω

)∣∣ of this filter is illus-
trated in Figure 8.7 for ω0 = π/4 and r = 0.85. Also plotted in this figure
is the frequency response without the poles. We observe that the effect of
the pole is to introduce a resonance in the vicinity of the null and, thus, to
reduce the bandwidth of the notch. In addition to reducing the bandwidth
of the notch, the introduction of a pole in the vicinity of the null may re-
sult in a small ripple in the passband of the filter due to the resonance
created by the pole.

8.2.3 COMB FILTERS
In its simplest form, a comb filter may be viewed as a notch filter in which
the nulls occur periodically across the frequency band, hence the analogy
to an ordinary comb that has periodically spaced teeth. Comb filters are
used in many practical systems, including the rejections of power-line
harmonics and the suppression of clutter from fixed objects in moving-
target indicator (MTI) radars.
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We can create a comb filter by taking our FIR filter with system
function

H(z) =
M∑

k=0

h(k)z−k (8.23)

and replacing z by zL, where L is a positive integer. Thus the new FIR
filter has the system function

HL(z) =
M∑

k=0

h(k)z−kL (8.24)

If the frequency response of the original FIR filter is H
(
ejω
)
, the frequency

response of the filter given by (8.24) is

HL

(
ejω
)

=
M∑

k=0

h(k)e−jkLω = H
(
ejLω

)
(8.25)

Consequently, the frequency response characteristic HL

(
ejω
)

is an L-order
repetition of H

(
ejω
)

in the range 0 ≤ ω ≤ 2π. Figure 8.8 illustrates the
relationship between HL

(
ejω
)

and H
(
ejω
)

for L = 4. The introduction of
a pole at each notch may be used to narrow the bandwidth of each notch,
as just described.

FIGURE 8.8 Comb filters with frequency response HL

(
ejω
)

obtained from
H
(
ejω
)

for L = 4
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8.2.4 ALLPASS FILTERS
An allpass filter is characterized by a system function that has a constant
magnitude response for all frequencies, that is,

∣∣H(ejω
)∣∣ = 1, 0 ≤ ω ≤ π (8.26)

A simple example of an allpass system is a system that introduces a pure
delay to an input signal, that is,

H(z) = z−k (8.27)

This system passes all frequency components of an input signal without
any frequency-dependent attenuation. It simply delays all frequency com-
ponents by k samples.

A more general characterization of an allpass filter is one having a
system function of the form

H(z) =
aN + aN−1z

−1 + · · · + a1z
−N+1 + z−N

1 + a1z−1 + · · · + aN−1z−N+1 + aNz−N
(8.28)

which may be expressed in the compact form as

H(z) = z−N A(z−1)
A(z)

(8.29)

where

A(z) =
N∑

k=0

akz−k, a0 = 1 (8.30)

We observe that
∣∣H(ejω

)∣∣2 = H(z)H(z−1)|z=ejω = 1 (8.31)

for all frequencies. Hence the system is allpass.
From the form of H(z) given by (8.28), we observe that if z0 is a

pole of H(z), then 1/z0 is a zero of H(z). That is, the poles and zeros
are reciprocals of one another. Figure 8.9 illustrates the typical pole-zero
pattern for a single-pole, single-zero filter and a two-pole, two-zero filter.
Graphs of the magnitude and phase characteristics of these two filters are
shown in Figure 8.10 for a = 0.6 and r = 0.9, ω0 = π/4, where A(z) for
the two filters is, respectively, given as

A(z) = 1 + az−1 (8.32a)

A(z) = 1 − (2r cos ω0)z−1 + r2z−2 (8.32b)
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(a) (b)

Unit Circle

FIGURE 8.9 Pole-zero locations for (a) one-pole and (b) two-pole allpass filter
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FIGURE 8.10 Magnitude and phase responses for one-pole (solid line) and two-
pole (dotted line) allpass filters

The general form for the system function of an allpass filter with real
coefficients may be expressed in factored form as

H(z) =
NR∏
k=1

z−1 − αk

1 − αkz−1

NC∏
k=1

(z−1 − βk)(z−1 − β∗
k)

(1 − βkz−1)(1 − β∗
kz−1)

(8.33)

where NR is the number of real poles and zeros and NC is the number
of complex-conjugate pairs of poles and zeros. For a causal and stable
system, we require that |αk| < 1 and |βk| < 1.

Allpass filters are usually employed as phase equalizers. When placed
in cascade with a system that has an undesirable phase response, a phase
equalizer is designed to compensate for the poor phase characteristics of
the system and thus result in an overall linear phase system.

8.2.5 DIGITAL SINUSOIDAL OSCILLATORS
A digital sinusoidal oscillator can be viewed as a limiting form of a two-
pole resonator for which the complex-conjugate poles are located on the
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unit circle. From our previous discussion of resonators, the system function
for a resonator with poles at re±jω0 is

H(z) =
b0

1 − (2r cos ω0)z−1 + r2z−2 (8.34)

When we set r = 1 and select the gain parameter b0 as

b0 = A sinω0 (8.35)

the system function becomes

H(z) =
A sinω0

1 − (2 cos ω0)z−1 + z−2 (8.36)

and the corresponding impulse response of the system becomes

h(n) = A sin(n + 1)ω0 u(n) (8.37)

Thus this system generates a sinusoidal signal of frequency ω0 when ex-
cited by an impulse δ(n) = 1.

The block diagram representation of the system function given by
(8.36) is illustrated in Figure 8.11. The corresponding difference equation
for this system is

y(n) = (2 cos ω0) y(n − 1) − y(n − 2) + b0δ(n) (8.38)

where b0 = A sinω0.
Note that the sinusoidal oscillation obtained from the difference equa-

tion in (8.38) can also be obtained by setting the input to zero and setting
the initial conditions to y(−1) = 0, y(−2) = −A sinω0. Thus the zero-
input response to the second-order system described by the homogeneous
difference equation

y(n) = (2 cos ω0) y(n − 1) − y(n − 2) (8.39)

z–1

z–1

z cos (w0)

A sin (w0)d (n) y (n) = A sin [(n +1 )w0]u (n)

–1

FIGURE 8.11 Digital sinusoidal oscillator
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with initial conditions y(−1) = 0, y(−2) = −A sinω0 is exactly the same
as the response of (8.38) to an impulse excitation. In fact, the homo-
geneous difference equation in (8.39) can be obtained directly from the
trigonometric identity

sinα + sinβ = 2 sin
(

α + β

2

)
cos
(

α − β

2

)
(8.40)

where, by definition, α = (n + 1)ω0, β = (n − 1)ω0, and y(n) = sin(n +
1)ω0.

In practical applications involving modulation of two sinusoidal car-
rier signals in phase quadrature, there is a need to generate the sinusoids
A sinω0n and A cos ω0n. These quadrature carrier signals can be gener-
ated by the so-called coupled-form oscillator, which can be obtained with
the aid of the trigonometric formulas

cos(α + β) = cos α cos β − sinα sinβ (8.41)

sin(α + β) = sinα cos β + cos α sinβ (8.42)

where by definition, α = nω0, β = ω0, yc(n) = cos(n+1)ω0, and ys(n) =
sin(n + 1)ω0. Thus, with substitution of these quantities into the two
trigonometric identities, we obtain the two coupled difference equations

yc(n) = (cos ω0) yc(n − 1) − (sinω0) ys(n − 1) (8.43)

ys(n) = (sinω0) yc(n − 1) + (cos ω0) ys(n − 1) (8.44)

The structure for the realization of the coupled-form oscillator is il-
lustrated in Figure 8.12. Note that this is a two-output system that does
not require any input excitation, but it does require setting the initial
conditions yc(−1) = A cos ω0 and ys(−1) = −A sinω0 in order to begin
its self-sustaining oscillations.

z –1

z–1

ys(n)

yc(n)

sin (w0)

cos (w0)

cos (w0)

–sin (w0)

FIGURE 8.12 Realization of the coupled form oscillator
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8.3 CHARACTERISTICS OF PROTOTYPE ANALOG FILTERS

IIR filter design techniques rely on existing analog filters to obtain digital
filters. We designate these analog filters as prototype filters. Three proto-
types are widely used in practice. In this section, we briefly summarize
the characteristics of the lowpass versions of these prototypes: Butter-
worth lowpass, Chebyshev lowpass (Type I and II), and Elliptic lowpass.
Although we will use MATLAB functions to design these filters, it is nec-
essary to learn the characteristics of these filters so that we can use proper
parameters in MATLAB functions to obtain correct results.

8.3.1 BUTTERWORTH LOWPASS FILTERS
This filter is characterized by the property that its magnitude response is
flat in both passband and stopband. The magnitude-squared response of
an Nth-order lowpass filter is given by

|Ha(jΩ)|2 =
1

1 +
(

Ω
Ωc

)2N
(8.45)

where N is the order of the filter and Ωc is the cutoff frequency in rad/sec.
The plot of the magnitude-squared response is as follows.

From this plot, we can observe the following properties:

• At Ω = 0, |Ha(j0)|2 = 1 for all N .
• At Ω = Ωc, |Ha(jΩc)|2 = 1

2 for all N , which implies a 3 dB attenuation
at Ωc.

• |Ha(jΩ)|2 is a monotonically decreasing function of Ω.
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386 Chapter 8 IIR FILTER DESIGN

• |Ha(jΩ)|2 approaches an ideal lowpass filter as N → ∞.
• |Ha(jΩ)|2 is maximally flat at Ω = 0 since derivatives of all orders exist

and are equal to zero.

To determine the system function Ha(s), we put (8.45) in the form of
(8.5) to obtain

Ha(s)Ha(−s) = |Ha(jΩ)|2
∣∣∣
Ω=s/j

=
1

1 +
(

s

jΩc

)2N
=

(jΩ)2N

s2N + (jΩc)
2N

(8.46)

The roots of the denominator polynomial (or poles of Ha(s)Ha(−s)) from
(8.46) are given by

pk = (−1)
1

2N (jΩ) = Ωce
j π

2N (2k+N+1), k = 0, 1, . . . , 2N − 1 (8.47)

An interpretation of (8.47) is that

• there are 2N poles of Ha(s)Ha(−s), which are equally distributed on
a circle of radius Ωc with angular spacing of π/N radians;

• for N odd the poles are given by pk = Ωce
jkπ/N , k = 0, 1, . . . , 2N −1;

• for N even the poles are given by pk = Ωce
j( π

2N + kπ
N ), k = 0, 1, . . . ,

2N − 1;
• the poles are symmetrically located with respect to the jΩ axis;
• a pole never falls on the imaginary axis, and falls on the real axis only

if N is odd.

As an example, the poles of third- and fourth-order Butterworth filters
are shown in Figure 8.13.

0

jΩ

Ωc

s

k = 2N − 1

N = 3

k = 0
0

jΩ

Ωc

s

k = 2N − 1

N = 4

k = 0

FIGURE 8.13 Pole plots for Butterworth filters
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FIGURE 8.14 Pole plot for Example 8.1

A stable and causal filter Ha(s) can now be specified by selecting
poles in the left half-plane, and Ha(s) can be written in the form

Ha(s) =
ΩN

c∏
LHP poles

(s − pk)
(8.48)

� EXAMPLE 8.1 Given that |Ha(jΩ)|2 =
1

1 + 64Ω6 , determine the analog filter system function

Ha(s).

Solution From the given magnitude-squared response,

|Ha(jΩ)|2 =
1

1 + 64Ω6 =
1

1 +
( Ω

0.5

)2(3)

Comparing this with expression (8.45), we obtain N = 3 and Ωc = 0.5. The
poles of Ha(s)Ha(−s) are as shown in Figure 8.14.

Hence

Ha(jΩ) =
Ω3

c

(s − p2)(s − p3)(s − p4)

=
1/8

(s + 0.25 − j0.433)(s + 0.5)(s + 0.25 + j0.433)

=
0.125

(s + 0.5)(s2 + 0.5s + 0.25)
�

8.3.2 MATLAB IMPLEMENTATION
MATLAB provides a function called [z,p,k]=buttap(N) to design a nor-
malized (i.e., Ωc = 1) Butterworth analog prototype filter of order N ,
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388 Chapter 8 IIR FILTER DESIGN

which returns zeros in z array, poles in p array, and the gain value k.
However, we need an unnormalized Butterworth filter with arbitrary Ωc.
From Example 8.1, we observe that there are no zeros and that the poles
of the unnormalized filter are on a circle with radius Ωc instead of on a
unit circle. This means that we have to scale the array p of the normal-
ized filter by Ωc and the gain k by ΩN

c . In the following function, called
U buttap(N,Omegac), we design the unnormalized Butterworth analog
prototype filter.

function [b,a] = u_buttap(N,Omegac);
% Unnormalized Butterworth analog lowpass filter prototype
% --------------------------------------------------------
% [b,a] = u_buttap(N,Omegac);
% b = numerator polynomial coefficients of Ha(s)
% a = denominator polynomial coefficients of Ha(s)
% N = Order of the Butterworth Filter
% Omegac = Cutoff frequency in radians/sec
%
[z,p,k] = buttap(N);

p = p*Omegac;
k = k*OmegacˆN;
B = real(poly(z));
b0 = k; b = k*B; a = real(poly(p));

This function provides a direct form (or numerator-denominator) struc-
ture. Often, we also need a cascade form structure. In Chapter 6, we have
already studied how to convert a direct form into a cascade form. The
following sdir2cas function describes the procedure that is suitable for
analog filters.

function [C,B,A] = sdir2cas(b,a);
% DIRECT form to CASCADE form conversion in s-plane
% -------------------------------------------------
% [C,B,A] = sdir2cas(b,a)
% C = gain coefficient
% B = K by 3 matrix of real coefficients containing bk’s
% A = K by 3 matrix of real coefficients containing ak’s
% b = numerator polynomial coefficients of DIRECT form
% a = denominator polynomial coefficients of DIRECT form
%
Na = length(a)-1; Nb = length(b)-1;
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% Compute gain coefficient C
b0 = b(1); b = b/b0; a0 = a(1); a = a/a0; C = b0/a0;
%
% Denominator second-order sections:
p= cplxpair(roots(a)); K = floor(Na/2);
if K*2 == Na % Computation when Na is even

A = zeros(K,3);
for n=1:2:Na

Arow = p(n:1:n+1,:); Arow = poly(Arow);
A(fix((n+1)/2),:) = real(Arow);

end

elseif Na == 1 % Computation when Na = 1
A = [0 real(poly(p))];

else % Computation when Na is odd and > 1
A = zeros(K+1,3);
for n=1:2:2*K

Arow = p(n:1:n+1,:); Arow = poly(Arow);
A(fix((n+1)/2),:) = real(Arow);
end
A(K+1,:) = [0 real(poly(p(Na)))];

end

% Numerator second-order sections:
z = cplxpair(roots(b)); K = floor(Nb/2);
if Nb == 0 % Computation when Nb = 0

B = [0 0 poly(z)];

elseif K*2 == Nb % Computation when Nb is even
B = zeros(K,3);
for n=1:2:Nb

Brow = z(n:1:n+1,:); Brow = poly(Brow);
B(fix((n+1)/2),:) = real(Brow);

end

elseif Nb == 1 % Computation when Nb = 1
B = [0 real(poly(z))];

else % Computation when Nb is odd and > 1
B = zeros(K+1,3);
for n=1:2:2*K

Brow = z(n:1:n+1,:); Brow = poly(Brow);
B(fix((n+1)/2),:) = real(Brow);

end
B(K+1,:) = [0 real(poly(z(Nb)))];

end
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� EXAMPLE 8.2 Design a third-order Butterworth analog prototype filter with Ωc = 0.5 given
in Example 8.1.

Solution MATLAB script:

>> N = 3; OmegaC = 0.5; [b,a] = u_buttap(N,OmegaC);
>> [C,B,A] = sdir2cas(b,a)
C = 0.1250
B = 0 0 1
A = 1.0000 0.5000 0.2500

0 1.0000 0.5000

The cascade form coefficients agree with those in Example 8.1. �

8.3.3 DESIGN EQUATIONS
The analog lowpass filter is specified by the parameters Ωp, Rp, Ωs, and
As. Therefore, the essence of the design in the case of Butterworth fil-
ter is to obtain the order N and the cutoff frequency Ωc, given these
specifications. We want

• at Ω = Ωp, −10 log10 |Ha(jΩ)|2 = Rp, or

−10 log10

⎛
⎜⎜⎜⎝

1

1 +
(

Ωp

Ωc

)2N

⎞
⎟⎟⎟⎠ = Rp

and
• at Ω = Ωs, −10 log10 |Ha(jΩ)|2 = As, or

−10 log10

⎛
⎜⎜⎜⎝

1

1 +
(

Ωs

Ωc

)2N

⎞
⎟⎟⎟⎠ = As

Solving these two equations for N and Ωc, we have

N =
log10

[(
10Rp/10 − 1

)
/
(
10As/10 − 1

)]
2 log10 (Ωp/Ωs)

In general, N will not be an integer. Since we want N to be an integer,
we must choose

N =

⌈
log10

[(
10Rp/10 − 1

)
/
(
10As/10 − 1

)]
2 log10 (Ωp/Ωs)

⌉
(8.49)
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where the operation �x� means “choose the smallest integer larger than
x”—for example, �4.5� = 5. Since the actual N chosen is larger than re-
quired, specifications can be either met or exceeded either at Ωp or at Ωs.
To satisfy the specifications exactly at Ωp,

Ωc =
Ωp

2N
√(

10Rp/10 − 1
) (8.50)

or, to satisfy the specifications exactly at Ωs,

Ωc =
Ωs

2N
√(

10As/10 − 1
) (8.51)

� EXAMPLE 8.3 Design a lowpass Butterworth filter to satisfy the following specifications.

Passband cutoff: Ωp = 0.2π ; Passband ripple: Rp = 7 dB

Stopband cutoff: Ωs = 0.3π ; Stopband ripple: As = 16 dB

Solution From (8.49),

N =

⌈
log10

[(
100.7 − 1

)
/
(
101.6 − 1

)]
2 log10 (0.2π/0.3π)

⌉
= �2.79� = 3

To satisfy the specifications exactly at Ωp, from (8.50) we obtain

Ωc =
0.2π

6
√

(100.7 − 1)
= 0.4985

To satisfy specifications exactly at Ωs, from (8.51) we obtain

Ωc =
0.3π

6
√

(101.6 − 1)
= 0.5122

Now we can choose any Ωc between the above two numbers. Let us choose
Ωc = 0.5. We have to design a Butterworth filter with N = 3 and Ωc = 0.5,
which we did in Example 8.1. Hence

Ha(jΩ) =
0.125

(s + 0.5) (s2 + 0.5s + 0.25)

�
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8.3.4 MATLAB IMPLEMENTATION
The preceding design procedure can be implemented in MATLAB as a
simple function. Using the U buttap function, we provide the afd butt
function to design an analog Butterworth lowpass filter, given its specifi-
cations. This function uses (8.50).

function [b,a] = afd_butt(Wp,Ws,Rp,As);
% Analog lowpass filter design: Butterworth
% -----------------------------------------
% [b,a] = afd_butt(Wp,Ws,Rp,As);
% b = numerator coefficients of Ha(s)
% a = denominator coefficients of Ha(s)
% Wp = passband-edge frequency in rad/sec; Wp > 0
% Ws = stopband-edge frequency in rad/sec; Ws > Wp > 0
% Rp = passband ripple in +dB; (Rp > 0)
% As = stopband attenuation in +dB; (As > 0)
%
if Wp <= 0

error(’Passband edge must be larger than 0’)
end
if Ws <= Wp

error(’Stopband edge must be larger than Passband edge’)
end
if (Rp <= 0) | (As < 0)

error(’PB ripple and/or SB attenuation must be larger than 0’)
end

N = ceil((log10((10ˆ(Rp/10)-1)/(10ˆ(As/10)-1)))/(2*log10(Wp/Ws)));
fprintf(’\n*** Butterworth Filter Order = %2.0f \n’,N)
OmegaC = Wp/((10ˆ(Rp/10)-1)ˆ(1/(2*N)));
[b,a]=u_buttap(N,OmegaC);

To display the frequency-domain plots of analog filters, we provide a
function called freqs m, which is a modified version of a function freqs
provided by MATLAB. This function computes the magnitude response
in absolute as well as in relative dB scale and the phase response. This
function is similar to the freqz m function discussed earlier. One main
difference between them is that in the freqs m function the responses are
computed up to a maximum frequency Ωmax.

function [db,mag,pha,w] = freqs_m(b,a,wmax);
% Computation of s-domain frequency response: Modified version
% ------------------------------------------------------------
% [db,mag,pha,w] = freqs_m(b,a,wmax);
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% db = relative magnitude in db over [0 to wmax]
% mag = absolute magnitude over [0 to wmax]
% pha = phase response in radians over [0 to wmax]
% w = array of 500 frequency samples between [0 to wmax]
% b = numerator polynomial coefficents of Ha(s)
% a = denominator polynomial coefficents of Ha(s)
% wmax = maximum frequency in rad/sec over which response is desired
%
w = [0:1:500]*wmax/500; H = freqs(b,a,w);
mag = abs(H); db = 20*log10((mag+eps)/max(mag)); pha = angle(H);

The impulse response ha(t) of the analog filter is computed using
MATLAB’s impulse function.

� EXAMPLE 8.4 Design the analog Butterworth lowpass filter specified in Example 8.3 using
MATLAB.

Solution MATLAB script:

>> Wp = 0.2*pi; Ws = 0.3*pi; Rp = 7; As = 16;
>> Ripple = 10 ˆ (-Rp/20); Attn = 10 ˆ (-As/20);
>> % Analog filter design:
>> [b,a] = afd_butt(Wp,Ws,Rp,As);
*** Butterworth Filter Order = 3
>> % Calculation of second-order sections:
>> [C,B,A] = sdir2cas(b,a)
C = 0.1238
B = 0 0 1
A = 1.0000 0.4985 0.2485

0 1.0000 0.4985
>> % Calculation of frequency response:
>> [db,mag,pha,w] = freqs_m(b,a,0.5*pi);
>> % Calculation of impulse response:
>> [ha,x,t] = impulse(b,a);

The system function is given by

Ha(s) =
0.1238

(s2 + 0.4985s + 0.2485) (s + 0.4985)

This Ha(s) is slightly different from the one in Example 8.3 because in that
example we used Ωc = 0.5, while in the afd butt function Ωc is chosen to
satisfy the specifications at Ωp. The filter plots are shown in Figure 8.15. �
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FIGURE 8.15 Butterworth analog filter in Example 8.4

8.3.5 CHEBYSHEV LOWPASS FILTERS
There are two types of Chebyshev filters. The Chebyshev-I filters have
equiripple response in the passband, while the Chebyshev-II filters have
equiripple response in the stopband. Butterworth filters have monotonic
response in both bands. Recall our discussions regarding equiripple FIR
filters. We noted that by choosing a filter that has an equiripple rather
than a monotonic behavior, we can obtain a lower-order filter. Therefore,
Chebyshev filters provide lower order than Butterworth filters for the
same specifications.

The magnitude-squared response of a Chebyshev-I filter is

|Ha(jΩ)|2 =
1

1 + ε2T 2
N

(
Ω
Ωc

) (8.52)

where N is the order of the filter, ε is the passband ripple factor, which is
related to Rp, and TN (x) is the Nth-order Chebyshev polynomial given by

TN (x) =

{
cos
(
N cos−1(x)

)
, 0 ≤ x ≤ 1

cosh
(
cosh−1(x)

)
, 1 < x < ∞

where x =
Ω
Ωc
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The equiripple response of the Chebyshev filters is due to this polynomial
TN (x). Its key properties are (a) for 0 < x < 1, TN (x) oscillates be-
tween −1 and 1, and (b) for 1 < x < ∞, TN (x) increases monotonically
to ∞.

There are two possible shapes of |Ha(jΩ)|2, one for N odd and one for
N even as shown here. Note that x = Ω/Ωc is the normalized frequency.

1

0

1

A 2

x =

|Ha( j Ω)|2

N Odd

1 1

N Even

1

0

1

A 2

|Ha( j Ω)|2

Ωr
Ωc

Ωr
Ωc

Ω
Ωc

x = Ω
Ωc

1
1 + 

1
1 + 

From these two response plots we observe the following properties:

• At x = 0 (or Ω = 0), |Ha(j0)|2 = 1 for N odd,

|Ha(j0)|2 =
1

1 + ε2
for N even.

• At x = 1 (or Ω = Ωc), |Ha(j1)|2 =
1

1 + ε2
for all N .

• For 0 ≤ x ≤ 1 (or 0 ≤ Ω ≤ Ωc), |Ha(jx)|2 oscillates between 1 and
1

1 + ε2
.

• For x > 1 (or Ω > Ωc), |Ha(jx)|2 decreases monotonically to 0.

• At x = Ωr, |Ha(jx)|2 =
1

A2 .

To determine a causal and stable Ha(s), we must find the poles of
Ha(s)Ha(−s) and select the left half-plane poles for Ha(s). The poles of
Ha(s)Ha(−s) are obtained by finding the roots of

1 + ε2T 2
N

(
s

jΩc

)

The solution of this equation is tedious if not difficult to obtain. It can be
shown that if pk = σk + jΩk, k = 0, . . . , N − 1 are the (left half-plane)
roots of these polynomial, then
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σk = (aΩc) cos
[
π

2
+

(2k + 1)π
2N

]

Ωk = (bΩc) sin
[
π

2
+

(2k + 1)π
2N

] k = 0, . . . , N − 1 (8.53)

where

a =
1
2

(
N
√

α −N
√

1/α
)

, b =
1
2

(
N
√

α +N
√

1/α
)

, and α =
1
ε

+

√
1 +

1
ε2

(8.54)

These roots fall on an ellipse with major axis bΩc and minor axis aΩc.
Now the system function is given by

Ha(s) =
K∏

k

(s − pk)
(8.55)

where K is a normalizing factor chosen to make

Ha(j0) =

⎧
⎪⎪⎨
⎪⎪⎩

1, N odd,

1√
1 + ε2

, N even
(8.56)

8.3.6 MATLAB IMPLEMENTATION
MATLAB provides a function called [z,p,k]=cheb1ap(N,Rp) to design
a normalized Chebyshev-I analog prototype filter of order N and pass-
band ripple Rp and that returns zeros in z array, poles in p array, and
the gain value k. We need an unnormalized Chebyshev-I filter with arbi-
trary Ωc. This is achieved by scaling the array p of the normalized filter
by Ωc. Similar to the Butterworth prototype, this filter has no zeros.
The new gain k is determined using (8.56), which is achieved by scaling
the old k by the ratio of the unnormalized to the normalized denom-
inator polynomials evaluated at s = 0. In the following function, called
U chb1ap(N,Rp,Omegac), we design an unnormalized Chebyshev-I analog
prototype filter that returns Ha(s) in the direct form.
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function [b,a] = u_chb1ap(N,Rp,Omegac);
% Unnormalized Chebyshev-1 analog lowpass filter prototype
% --------------------------------------------------------
% [b,a] = u_chb1ap(N,Rp,Omegac);
% b = numerator polynomial coefficients
% a = denominator polynomial coefficients
% N = order of the elliptic filter
% Rp = passband ripple in dB; Rp > 0
% Omegac = cutoff frequency in radians/sec
%
[z,p,k] = cheb1ap(N,Rp); a = real(poly(p)); aNn = a(N+1);

p = p*Omegac; a = real(poly(p)); aNu = a(N+1);
k = k*aNu/aNn;
b0 = k; B = real(poly(z)); b = k*B;

8.3.7 DESIGN EQUATIONS
Given Ωp, Ωs, Rp, and AS , three parameters are required to determine
a Chebyshev-I filter: ε, Ωc, and N . From equations (8.3) and (8.4), we
obtain

ε =
√

100.1Rp − 1 and A = 10As/20

From these properties, we have

Ωc = Ωp and Ωr =
Ωs

Ωp
(8.57)

The order N is given by

g =
√

(A2 − 1) /ε2 (8.58)

N =

⎡
⎢⎢⎢

log10

[
g +
√

g2 − 1
]

log10

[
Ωr +

√
Ω2

r − 1
]
⎤
⎥⎥⎥

(8.59)

Now using (8.54), (8.53), and (8.55), we can determine Ha(s).

� EXAMPLE 8.5 Design a lowpass Chebyshev-I filter to satisfy the following specifications.

Passband cutoff: Ωp = 0.2π ; Passband ripple: Rp = 1 dB

Stopband cutoff: Ωs = 0.3π ; Stopband ripple: As = 16 dB

Solution First, compute the necessary parameters.

ε =
√

100.1(1) − 1 = 0.5088 A = 1016/20 = 6.3096

Ωc = Ωp = 0.2π Ωr =
0.3π

0.2π
= 1.5

g =
√

(A2 − 1) /ε2 = 12.2429 N = 4
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Now we can determine Ha(s).

α =
1
ε

+

√
1 +

1
ε2

= 4.1702

a = 0.5
(

N
√

α − N
√

1/α
)

= 0.3646

b = 0.5
(

N
√

α + N
√

1/α
)

= 1.0644

There are four poles for Ha(s):

p0,3 = (aΩc) cos
[
π

2
+

π

8

]
± (bΩc) sin

[
π

2
+

π

8

]
= −0.0877 ± j0.6179

p1,2 = (aΩc) cos
[
π

2
+

3π

8

]
± (bΩc) sin

[
π

2
+

3π

8

]
= −0.2117 ± j0.2559

Hence

Ha(s) =
K

3∏
k=0

(s − pk)
=

0.03829︷ ︸︸ ︷
0.89125 × .1103 × .3895

(s2 + 0.1754s + 0.3895) (s2 + 0.4234s + 0.1103)

Note that the numerator is such that

Ha(j0) =
1√

1 + ε2
= 0.89125

�

8.3.8 MATLAB IMPLEMENTATION
Using the U chb1ap function, we provide a function called afd chb1 to
design an analog Chebyshev-II lowpass filter, given its specifications. This
is shown below and uses the procedure described in Example 8.5.

function [b,a] = afd_chb1(Wp,Ws,Rp,As);
% Analog lowpass filter design: Chebyshev-1
% -----------------------------------------
% [b,a] = afd_chb1(Wp,Ws,Rp,As);
% b = numerator coefficients of Ha(s)
% a = denominator coefficients of Ha(s)
% Wp = passband-edge frequency in rad/sec; Wp > 0
% Ws = stopband-edge frequency in rad/sec; Ws > Wp > 0
% Rp = passband ripple in +dB; (Rp > 0)
% As = stopband attenuation in +dB; (As > 0)
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%
if Wp <= 0

error(’Passband edge must be larger than 0’)
end
if Ws <= Wp

error(’Stopband edge must be larger than Passband edge’)
end
if (Rp <= 0) | (As < 0)

error(’PB ripple and/or SB attenuation must be larger than 0’)
end

ep = sqrt(10ˆ(Rp/10)-1); A = 10ˆ(As/20);
OmegaC = Wp; OmegaR = Ws/Wp; g = sqrt(A*A-1)/ep;
N = ceil(log10(g+sqrt(g*g-1))/log10(OmegaR+sqrt(OmegaR*OmegaR-1)));
fprintf(’\n*** Chebyshev-1 Filter Order = %2.0f \n’,N)
[b,a]=u_chb1ap(N,Rp,OmegaC);

� EXAMPLE 8.6 Design the analog Chebyshev-I lowpass filter given in Example 8.5 using
MATLAB.

Solution MATLAB script:

>> Wp = 0.2*pi; Ws = 0.3*pi; Rp = 1; As = 16;
>> Ripple = 10 ˆ (-Rp/20); Attn = 10 ˆ (-As/20);
>> % Analog filter design:
>> [b,a] = afd_chb1(Wp,Ws,Rp,As);
*** Chebyshev-1 Filter Order = 4
>> % Calculation of second-order sections:
>> [C,B,A] = sdir2cas(b,a)
C = 0.0383
B = 0 0 1
A = 1.0000 0.4233 0.1103

1.0000 0.1753 0.3895
>> % Calculation of frequency response:
>> [db,mag,pha,w] = freqs_m(b,a,0.5*pi);
>> % Calculation of impulse response:
>> [ha,x,t] = impulse(b,a);

The specifications are satisfied by a fourth-order Chebyshev-I filter whose sys-
tem function is

Ha(s) =
0.0383

(s2 + 4233s + 0.1103) (s2 + 0.1753s + 0.3895)

The filter plots are shown in Figure 8.16. �
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FIGURE 8.16 Chebyshev-I analog filter in Example 8.6

A Chebyshev-II filter is related to the Chebyshev-I filter through a
simple transformation. It has a monotone passband and an equiripple
stopband, which implies that this filter has both poles and zeros in the
s-plane. Therefore, the group delay characteristics are better (and the
phase response more linear) in the passband than those of the Chebyshev-I
prototype. If we replace the term ε2T 2

N (Ω/Ωc) in (8.52) by its recipro-
cal and also the argument x = Ω/Ωc by its reciprocal, we obtain the
magnitude-squared response of Chebyshev-II as

|Ha(jΩ)|2 =
1

1 + [ε2T 2
N (Ωc/Ω)]−1 (8.60)

One approach to designing a Chebyshev-II filter is to design the corre-
sponding Chebyshev-I first and then apply these transformations. We will
not discuss the details of this filter but will use a function from MATLAB
to design a Chebyshev-II filter.

8.3.9 MATLAB IMPLEMENTATION
MATLAB provides a function called [z,p,k]=cheb2ap(N,As) to design a
normalized Chebyshev-II analog prototype filter of order N and passband
ripple As and that returns zeros in z array, poles in p array, and the gain

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Characteristics of Prototype Analog Filters 401

value k. We need an unnormalized Chebyshev-I filter with arbitrary Ωc.
This is achieved by scaling the array p of the normalized filter by Ωc. Since
this filter has zeros, we also have to scale the array z by Ωc. The new gain
k is determined using (8.56), which is achieved by scaling the old k by the
ratio of the unnormalized to the normalized rational functions evaluated
at s = 0. In the following function, called U chb2ap(N,As,Omegac), we
design an unnormalized Chebyshev-II analog prototype filter that returns
Ha(s) in the direct form.

function [b,a] = u_chb2ap(N,As,Omegac);
% Unnormalized Chebyshev-2 analog lowpass filter prototype
% --------------------------------------------------------
% [b,a] = u_chb2ap(N,As,Omegac);
% b = numerator polynomial coefficients
% a = denominator polynomial coefficients
% N = order of the Elliptic Filter
% As = stopband Ripple in dB; As > 0
% Omegac = cutoff frequency in radians/sec
%
[z,p,k] = cheb2ap(N,As);

a = real(poly(p)); aNn = a(N+1);
p = p*Omegac; a = real(poly(p)); aNu = a(N+1);
b = real(poly(z)); M = length(b); bNn = b(M);
z = z*Omegac; b = real(poly(z)); bNu = b(M);
k = k*(aNu*bNn)/(aNn*bNu);

b0 = k; b = k*b;

The design equations for the Chebyshev-II prototype are similar to
those of the Chebyshev-I except that Ωc = Ωs since the ripples are in the
stopband. Therefore, we can develop a MATLAB function similar to the
afd chb1 function for the Chebyshev-II prototype.

function [b,a] = afd_chb2(Wp,Ws,Rp,As);
% Analog lowpass filter design: Chebyshev-2
% -----------------------------------------
% [b,a] = afd_chb2(Wp,Ws,Rp,As);
% b = numerator coefficients of Ha(s)
% a = denominator coefficients of Ha(s)
% Wp = passband-edge frequency in rad/sec; Wp > 0
% Ws = stopband-edge frequency in rad/sec; Ws > Wp > 0
% Rp = passband ripple in +dB; (Rp > 0)
% As = stopband attenuation in +dB; (As > 0)
%
if Wp <= 0

error(’Passband edge must be larger than 0’)
end
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if Ws <= Wp
error(’Stopband edge must be larger than Passband edge’)

end
if (Rp <= 0) | (As < 0)

error(’PB ripple and/or SB attenuation must be larger than 0’)
end

ep = sqrt(10ˆ(Rp/10)-1); A = 10ˆ(As/20);
OmegaC = Wp; OmegaR = Ws/Wp; g = sqrt(A*A-1)/ep;
N = ceil(log10(g+sqrt(g*g-1))/log10(OmegaR+sqrt(OmegaR*OmegaR-1)));
fprintf(’\n*** Chebyshev-2 Filter Order = %2.0f \n’,N)
[b,a]=u_chb2ap(N,As,Ws);

� EXAMPLE 8.7 Design a Chebyshev-II analog lowpass filter to satisfy the specifications given
in Example 8.5:

Passband cutoff: Ωp = 0.2π ; Passband ripple: Rp = 1 dB

Stopband cutoff: Ωs = 0.3π ; Stopband ripple: As = 16 dB

Solution MATLAB script:

>> Wp = 0.2*pi; Ws = 0.3*pi; Rp = 1; As = 16;
>> Ripple = 10 ˆ (-Rp/20); Attn = 10 ˆ (-As/20);
>> % Analog filter design:
>> [b,a] = afd_chb2(Wp,Ws,Rp,As);
*** Chebyshev-2 Filter Order = 4
>> % Calculation of second-order sections:
>> [C,B,A] = sdir2cas(b,a)
C = 0.1585
B = 1.0000 0 6.0654

1.0000 0 1.0407
A = 1.0000 1.9521 1.4747

1.0000 0.3719 0.6784
>> % Calculation of frequency response:
>> [db,mag,pha,w] = freqs_m(b,a,0.5*pi);
>> % Calculation of impulse response:
>> [ha,x,t] = impulse(b,a);

The specifications are satisfied by a fourth-order Chebyshev-II filter whose sys-
tem function is

Ha(s) =
0.1585

(
s2 + 6.0654

) (
s2 + 1.0407

)
(s2 + 1.9521s + 1.4747) (s2 + 0.3719s + 0.6784)

The filter plots are shown in Figure 8.17. �
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FIGURE 8.17 Chebyshev-II analog filter in Example 8.7

8.3.10 ELLIPTIC LOWPASS FILTERS
These filters exhibit equiripple behavior in the passband as well as in
the stopband. They are similar in magnitude response characteristics to
the FIR equiripple filters. Therefore, elliptic filters are optimum filters
in that they achieve the minimum order N for the given specifications
(or alternately, achieve the sharpest transition band for the given order
N). These filters, for obvious reasons, are very difficult to analyze and,
therefore, to design. It is not possible to design them using simple tools,
and often programs or tables are needed to design them.

The magnitude-squared response of elliptic filters is given by

|Ha(jΩ)|2 =
1

1 + ε2U2
N

(
Ω
Ωc

) (8.61)

where N is the order, ε is the passband ripple (which is related to Rp),
and UN (·) is the Nth-order Jacobian elliptic function. The analysis of
this function, even on a superficial level, is beyond the scope of this book.
Note the similarity between the preceding response (8.61) and that of the
Chebyshev filters given by (8.52). Typical responses for odd and even N
are as follows:
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1

0

1

A2

Ω

|Ha( j Ω)|2

N Odd

Ωc

N Even

1

0

1

A2

Ω

|Ha( j Ω)|2

Ωc

1
1 + 

1
1 + 

8.3.11 COMPUTATION OF FILTER ORDER N
Even though the analysis of (8.61) is difficult, the order calculation for-
mula is very compact and is available in many textbooks [71, 79, 83]. It
is given by

N =
K(k)K

(√
1 − k2

1

)

K (k1) K
(√

1 − k2
) (8.62)

where

k =
Ωp

Ωs
, k1 =

ε√
A2 − 1

and

K(x) =
∫ π/2

0

dθ√
1 − x2 sin2 θ

is the complete elliptic integral of the first kind. MATLAB provides the
function ellipke to numerically compute the above integral, which we
will use to compute N and to design elliptic filters.

8.3.12 MATLAB IMPLEMENTATION
MATLAB provides a function called [z,p,k]=ellipap(N,Rp,As) to de-
sign a normalized elliptic analog prototype filter of order N, passband
ripple Rp, and stopband attenuation As, and that returns zeros in z array,
poles in p array, and the gain value k. We need an unnormalized elliptic
filter with arbitrary Ωc. This is achieved by scaling the arrays p and z of
the normalized filter by Ωc and the gain k by the ratio of the unnormalized
to the normalized rational functions evaluated at s = 0. In the following
function, called U elipap(N,Rp,As,Omegac), we design an unnormalized
elliptic analog prototype filter that returns Ha(s) in the direct form.
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function [b,a] = u_elipap(N,Rp,As,Omegac);
% Unnormalized elliptic analog lowpass filter prototype
% -----------------------------------------------------
% [b,a] = u_elipap(N,Rp,As,Omegac);
% b = numerator polynomial coefficients
% a = denominator polynomial coefficients
% N = order of the elliptic filter
% Rp = passband ripple in dB; Rp > 0
% As = stopband attenuation in dB; As > 0
% Omegac = cutoff frequency in radians/sec
%
[z,p,k] = ellipap(N,Rp,As);

a = real(poly(p)); aNn = a(N+1);
p = p*Omegac; a = real(poly(p)); aNu = a(N+1);
b = real(poly(z)); M = length(b); bNn = b(M);
z = z*Omegac; b = real(poly(z)); bNu = b(M);
k = k*(aNu*bNn)/(aNn*bNu);

b0 = k; b = k*b;

Using the U elipap function, we provide a function called afd elip
to design an analog elliptic lowpass filter, given its specifications. This
follows and uses the filter order computation formula given in (8.62).

function [b,a] = afd_elip(Wp,Ws,Rp,As);
% Analog lowpass filter design: Elliptic
% --------------------------------------
% [b,a] = afd_elip(Wp,Ws,Rp,As);
% b = numerator coefficients of Ha(s)
% a = denominator coefficients of Ha(s)
% Wp = passband-edge frequency in rad/sec; Wp > 0
% Ws = stopband-edge frequency in rad/sec; Ws > Wp > 0
% Rp = passband ripple in +dB; (Rp > 0)
% As = stopband attenuation in +dB; (As > 0)
%
if Wp <= 0

error(’Passband edge must be larger than 0’)
end
if Ws <= Wp

error(’Stopband edge must be larger than Passband edge’)
end
if (Rp <= 0) | (As < 0)

error(’PB ripple and/or SB attenuation must be larger than 0’)
end

ep = sqrt(10ˆ(Rp/10)-1); A = 10ˆ(As/20);
OmegaC = Wp; k = Wp/Ws; k1 = ep/sqrt(A*A-1);
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capk = ellipke([k.ˆ2 1-k.ˆ2]); % Version 4.0 code
capk1 = ellipke([(k1 .ˆ2) 1-(k1 .ˆ2)]); % Version 4.0 code
N = ceil(capk(1)*capk1(2)/(capk(2)*capk1(1)));
fprintf(’\n*** Elliptic Filter Order = %2.0f \n’,N)
[b,a]=u_elipap(N,Rp,As,OmegaC);

� EXAMPLE 8.8 Design an analog elliptic lowpass filter to satisfy the following specifications of
Example 8.5:

Ωp = 0.2π, Rp = 1 dB

Ωs = 0.3π, As = 16 dB

Solution MATLAB script:

>> Wp = 0.2*pi; Ws = 0.3*pi; Rp = 1; As = 16;
>> Ripple = 10 ˆ (-Rp/20); Attn = 10 ˆ (-As/20);
>> % Analog filter design:
>> [b,a] = afd_elip(Wp,Ws,Rp,As);
*** Elliptic Filter Order = 3
>> % Calculation of second-order sections:
>> [C,B,A] = sdir2cas(b,a)
C = 0.2740
B = 1.0000 0 0.6641
A = 1.0000 0.1696 0.4102

0 1.0000 0.4435
>> % Calculation of frequency response:
>> [db,mag,pha,w] = freqs_m(b,a,0.5*pi);
>> % Calculation of impulse response:
>> [ha,x,t] = impulse(b,a);

The specifications are satisfied by a third-order elliptic filter whose system func-
tion is

Ha(s) =
0.274

(
s2 + 0.6641

)
(s2 + 0.1696s + 0.4102) (s + 0.4435)

The filter plots are shown in Figure 8.18. �

8.3.13 PHASE RESPONSES OF PROTOTYPE FILTERS
Elliptic filters provide optimal performance in the magnitude-squared re-
sponse but have highly nonlinear phase response in the passband (which is
undesirable in many applications). Even though we decided not to worry
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FIGURE 8.18 Elliptic analog lowpass filter in Example 8.8

about phase response in our designs, phase is still an important issue in the
overall system. At the other end of the performance scale are the Butter-
worth filters, which have maximally flat magnitude response and require a
higher-order N (more poles) to achieve the same stopband specification.
However, they exhibit a fairly linear phase response in their passband.
The Chebyshev filters have phase characteristics that lie somewhere in
between. Therefore, in practical applications, we do consider Butterworth
as well as Chebyshev filters, in addition to elliptic filters. The choice de-
pends on both the filter order (which influences processing speed and
implementation complexity) and the phase characteristics (which control
the distortion).

8.4 ANALOG-TO-DIGITAL FILTER TRANSFORMATIONS

After discussing different approaches to the design of analog filters, we
are now ready to transform them into digital filters. These transfor-
mations are complex-valued mappings that are extensively studied in
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the literature. These transformations are derived by preserving different
aspects of analog and digital filters. If we want to preserve the shape
of the impulse response from analog to digital filter, then we obtain a
technique called impulse invariance transformation. If we want to con-
vert a differential equation representation into a corresponding difference
equation representation, then we obtain a finite difference approximation
technique. Numerous other techniques are also possible. One technique,
called step invariance, preserves the shape of the step response; this is
explored in Problem P8.24. Another technique that is similar to the
impulse invariance is the matched-z transformation, which matches the
pole-zero representation. It is described at the end of this section and is
explored in Problem P8.26. The most popular technique used in practice
is called a Bilinear transformation, which preserves the system function
representation from analog to digital domain. In this section, we will
study in detail impulse invariance and bilinear transformations, both of
which can be easily implemented in MATLAB.

8.4.1 IMPULSE INVARIANCE TRANSFORMATION
In this design method, we want the digital filter impulse response to look
“similar” to that of a frequency-selective analog filter. Hence we sample
ha(t) at some sampling interval T to obtain h(n); that is,

h(n) = ha(nT )

The parameter T is chosen so that the shape of ha(t) is “captured” by
the samples. Since this is a sampling operation, the analog and digital
frequencies are related by

ω = ΩT or ejω = ejΩT

Since z = ejω on the unit circle and s = jΩ on the imaginary axis, we
have the following transformation from the s-plane to the z-plane:

z = esT (8.63)

The system functions H(z) and Ha(s) are related through the frequency-
domain aliasing formula (3.27):

H(z) =
1
T

∞∑
k=−∞

Ha

(
s − j

2π

T
k

)
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FIGURE 8.19 Complex-plane mapping in impulse invariance transformation

The complex plane transformation under the mapping (8.63) is shown in
Figure 8.19, from which we have the following observations.

1. Using σ = Re(s), we note that

σ < 0 maps into |z| < 1 (inside of the UC)

σ = 0 maps onto |z| = 1 (on the UC)

σ > 0 maps into |z| > 1 (outside of the UC)

2. All semi-infinite strips (shown above) of width 2π/T map into |z| < 1.
Thus this mapping is not unique but a many-to-one mapping.

3. Since the entire left half of the s-plane maps into the unit circle, a
causal and stable analog filter maps into a causal and stable digital
filter.

4. If Ha(jΩ) = Ha(jω/T ) = 0 for |Ω| ≥ π/T , then

H(ejω) =
1
T

Ha(jω/T ), |ω| ≤ π

and there will be no aliasing. However, no analog filter of finite order
can be exactly band-limited. Therefore some aliasing error will occur
in this design procedure, and hence the sampling interval T plays a
minor role in this design method.

8.4.2 DESIGN PROCEDURE
Given the digital lowpass filter specifications ωp, ωs, Rp, and As, we want
to determine H(z) by first designing an equivalent analog filter and then
mapping it into the desired digital filter. The steps required for this pro-
cedure are as follows.

1. Choose T and determine the analog frequencies

Ωp =
ωp

Tp
and Ωs =

ωs

T
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2. Design an analog filter Ha(s) using the specifications Ωp, Ωs, Rp, and
As. This can be done using any one of the three (Butterworth, Cheby-
shev, or elliptic) prototypes of the previous section.

3. Using partial fraction expansion, expand Ha(s) into

Ha(s) =
N∑

k=1

Rk

s − pk

4. Now transform analog poles {pk} into digital poles {epkT } to obtain
the digital filter:

H(z) =
N∑

k=1

Rk

1 − epkT z−1 (8.64)

� EXAMPLE 8.9 Transform

Ha(s) =
s + 1

s2 + 5s + 6

into a digital filter H(z) using the impulse invariance technique in which
T = 0.1.

Solution We first expand Ha(s) using partial fraction expansion:

Ha(s) =
s + 1

s2 + 5s + 6
=

2
s + 3

− 1
s + 2

The poles are at p1 = −3 and p2 = −2. Then from (8.64) and using T = 0.1,
we obtain

H(z) =
2

1 − e−3T z−1 − 1
1 − e−2T z−1 =

1 − 0.8966z−1

1 − 1.5595z−1 + 0.6065z−2

It is easy to develop a MATLAB function to implement the impulse invari-
ance mapping. Given a rational function description of Ha(s), we can use the
residue function to obtain its pole-zero description. Then each analog pole is
mapped into a digital pole using (8.63). Finally, the residuez function can be
used to convert H(z) into rational function form. This procedure is given in the
function imp invr.

function [b,a] = imp_invr(c,d,T)
% Impulse invariance transformation from analog to digital filter
% ---------------------------------------------------------------
% [b,a] = imp_invr(c,d,T)
% b = numerator polynomial in zˆ(-1) of the digital filter
% a = denominator polynomial in zˆ(-1) of the digital filter
% c = numerator polynomial in s of the analog filter
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% d = denominator polynomial in s of the analog filter
% T = sampling (transformation) parameter
%
[R,p,k] = residue(c,d); p = exp(p*T);
[b,a] = residuez(R,p,k); b = real(b’); a = real(a’);

A similar function called impinvar is available in the SP toolbox of MATLAB.
�

� EXAMPLE 8.10 We demonstrate the use of the imp invr function on the system function from
Example 8.9.

Solution MATLAB script:

>> c = [1,1]; d = [1,5,6]; T = 0.1;
>> [b,a] = imp_invr(c,d,T)
b = 1.0000 -0.8966
a = 1.0000 -1.5595 0.6065

The digital filter is

H(z) =
1 − 0.8966z−1

1 − 1.5595z−1 + 0.6065z−2

as expected. In Figure 8.20, we show the impulse responses and the magnitude
responses (plotted up to the sampling frequency 1/T ) of the analog and the
resulting digital filter. Clearly, the aliasing in the frequency domain is evident.

�

In the next several examples, we illustrate the impulse invariance
design procedure on all three prototypes.

� EXAMPLE 8.11 Design a lowpass digital filter using a Butterworth prototype to satisfy

ωp = 0.2π, Rp = 1 dB

ωs = 0.3π, As = 15 dB

Solution The design procedure is described in the following MATLAB script.

>> % Digital filter specifications:
>> wp = 0.2*pi; % Digital passband freq in Hz
>> ws = 0.3*pi; % Digital stopband freq in Hz
>> Rp = 1; % Passband ripple in dB
>> As = 15; % Stopband attenuation in dB
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FIGURE 8.20 Impulse and frequency response plots in Example 8.10

>> % Analog prototype specifications: Inverse mapping for frequencies
>> T = 1; % Set T=1
>> OmegaP = wp / T; % Prototype passband freq
>> OmegaS = ws / T; % Prototype stopband freq

>> % Analog Butterworth prototype filter calculation:
>> [cs,ds] = afd_butt(OmegaP,OmegaS,Rp,As);
*** Butterworth Filter Order = 6

>> % Impulse invariance transformation:
>> [b,a] = imp_invr(cs,ds,T); [C,B,A] = dir2par(b,a)
C = []
B = 1.8557 -0.6304

-2.1428 1.1454
0.2871 -0.4466

A = 1.0000 -0.9973 0.2570
1.0000 -1.0691 0.3699
1.0000 -1.2972 0.6949
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FIGURE 8.21 Digital Butterworth lowpass filter using impulse invariance design

The desired filter is a sixth-order Butterworth filter whose system function H(z)
is given in the parallel form

H(z) =
1.8587 − 0.6304z−1

1 − 0.9973z−1 + 0.257z−2 +
−2.1428 + 1.1454z−1

1 − 1.0691z−1 + 0.3699z−2

+
0.2871 − 0.4463z−1

1 − 1.2972z−1 + 0.6449z−2

The frequency response plots are given in Figure 8.21. �

� EXAMPLE 8.12 Design a lowpass digital filter using a Chebyshev-I prototype to satisfy

ωp = 0.2π, Rp = 1 dB

ωs = 0.3π, As = 15 dB
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Solution The design procedure is described in the following MATLAB script.

>> % Digital filter specifications:
>> wp = 0.2*pi; % Digital passband freq in rad
>> ws = 0.3*pi; % Digital stopband freq in rad
>> Rp = 1; % Passband ripple in dB
>> As = 15; % Stopband attenuation in dB

>> % Analog prototype specifications: Inverse mapping for frequencies
>> T = 1; % Set T=1
>> OmegaP = wp / T; % Prototype passband freq
>> OmegaS = ws / T; % Prototype stopband freq
>> % Analog Chebyshev-1 prototype filter calculation:
>> [cs,ds] = afd_chb1(OmegaP,OmegaS,Rp,As);
*** Chebyshev-1 Filter Order = 4

>> % Impulse invariance transformation:
>> [b,a] = imp_invr(cs,ds,T); [C,B,A] = dir2par(b,a)
C = []
B =-0.0833 -0.0246

0.0833 0.0239
A = 1.0000 -1.4934 0.8392

1.0000 -1.5658 0.6549

The desired filter is a fourth-order Chebyshev-I filter whose system function
H(z) is

H(z) =
−0.0833 − 0.0246z−1

1 − 1.4934z−1 + 0.8392z−2 +
−0.0833 + 0.0239z−1

1 − 1.5658z−1 + 0.6549z−2

The frequency response plots are given in Figure 8.22. �

� EXAMPLE 8.13 Design a lowpass digital filter using a Chebyshev-II prototype to satisfy

ωp = 0.2π, Rp = 1 dB

ωs = 0.3π, As = 15 dB

Solution Recall that the Chebyshev-II filter is equiripple in the stopband. This means
that this analog filter has a response that does not go to zero at high frequencies
in the stopband. Therefore, after impulse invariance transformation, the aliasing
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FIGURE 8.22 Digital Chebyshev-I lowpass filter using impulse invariance design

effect will be significant; this can degrade the passband response. The MATLAB
script follows:

>> % Digital filter specifications:
>> wp = 0.2*pi; % Digital passband freq in rad
>> ws = 0.3*pi; % Digital stopband freq in rad
>> Rp = 1; % Passband ripple in dB
>> As = 15; % Stopband attenuation in dB

>> % Analog prototype specifications: Inverse mapping for frequencies
>> T = 1; % Set T=1
>> OmegaP = wp / T; % Prototype passband freq
>> OmegaS = ws / T; % Prototype stopband freq

>> % Analog Chebyshev-1 prototype filter calculation:
>> [cs,ds] = afd_chb2(OmegaP,OmegaS,Rp,As);
*** Chebyshev-2 Filter Order = 4

>> % Impulse invariance transformation:
>> [b,a] = imp_invr(cs,ds,T); [C,B,A] = dir2par(b,a);
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FIGURE 8.23 Digital Chebyshev-II lowpass filter using impulse invariance
design

From the frequency response plots in Figure 8.23, we clearly observe the pass-
band as well as stopband degradation. Hence the impulse invariance design
technique has failed to produce a desired digital filter. �

� EXAMPLE 8.14 Design a lowpass digital filter using an elliptic prototype to satisfy

ωp = 0.2π, Rp = 1 dB

ωs = 0.3π, As = 15 dB

Solution The elliptic filter is equiripple in both bands. Hence this situation is similar to
that of the Chebyshev-II filter, and we should not expect a good digital filter.
MATLAB script:

>> % Digital filter specifications:
>> wp = 0.2*pi; % Digital passband freq in rad
>> ws = 0.3*pi; % Digital stopband freq in rad
>> Rp = 1; % Passband ripple in dB
>> As = 15; % Stopband attenuation in dB
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FIGURE 8.24 Digital elliptic lowpass filter using impulse invariance design

>> % Analog prototype specifications: Inverse mapping for frequencies
>> T = 1; % Set T=1
>> OmegaP = wp / T; % Prototype passband freq
>> OmegaS = ws / T; % Prototype stopband freq

>> % Analog elliptic prototype filter calculation:
>> [cs,ds] = afd_elip(OmegaP,OmegaS,Rp,As);
*** Elliptic Filter Order = 3

>> % Impulse invariance transformation:
>> [b,a] = imp_invr(cs,ds,T); [C,B,A] = dir2par(b,a);

From the frequency response plots in Figure 8.24, we clearly observe that once
again the impulse invariance design technique has failed. �

The advantages of the impulse invariance mapping are that it is a
stable design and that the frequencies Ω and ω are linearly related. But
the disadvantage is that we should expect some aliasing of the ana-
log frequency response, and in some cases this aliasing is intolerable.
Consequently, this design method is useful only when the analog filter
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is essentially band-limited to a lowpass or bandpass filter in which there
are no oscillations in the stopband.

8.4.3 BILINEAR TRANSFORMATION
This mapping is the best transformation method; it involves a well-known
function given by

s =
2
T

1 − z−1

1 + z−1 =⇒ z =
1 + sT/2
1 − sT/2

(8.65)

where T is a parameter. Another name for this transformation is the linear
fractional transformation because when cleared of fractions, we obtain

T

2
sz +

T

2
s − z + 1 = 0

which is linear in each variable if the other is fixed, or bilinear in s and z.
The complex plane mapping under (8.65) is shown in Figure 8.25, from
which we have the following observations.

1. Using s = σ + jΩ in (8.65), we obtain

z =
(

1 +
σT

2
+ j

ΩT

2

) / (
1 − σT

2
− j

ΩT

2

)
(8.66)

Hence

σ < 0 =⇒ |z| =

∣∣∣∣∣
1 + σT

2 + j ΩT
2

1 − σT
2 − j ΩT

2

∣∣∣∣∣ < 1

σ = 0 =⇒ |z| =

∣∣∣∣∣
1 + j ΩT

2

1 − j ΩT
2

∣∣∣∣∣ = 1

σ > 0 =⇒ |z| =

∣∣∣∣∣
1 + σT

2 + j ΩT
2

1 − σT
2 − j ΩT

2

∣∣∣∣∣ > 1

Im {z}
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σ
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FIGURE 8.25 Complex-plane mapping in bilinear transformation
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2. The entire left half-plane maps into the inside of the unit circle. Hence
this is a stable transformation.

3. The imaginary axis maps onto the unit circle in a one-to-one fashion.
Hence there is no aliasing in the frequency domain.

Substituting σ = 0 in (8.66), we obtain

z =
1 + j ΩT

2

1 − j ΩT
2

= ejω

since the magnitude is 1. Solving for ω as a function of Ω, we obtain

ω = 2 tan−1
(

ΩT

2

)
or Ω =

2
T

tan
(ω

2

)
(8.67)

This shows that Ω is nonlinearly related to (or warped into) ω but that
there is no aliasing. Hence, in (8.67), we will say that ω is prewarped
into Ω.

� EXAMPLE 8.15 Transform Ha(s) =
s + 1

s2 + 5s + 6
into a digital filter using the bilinear transfor-

mation. Choose T = 1.

Solution Using (8.65), we obtain

H(z) = Ha

(
2
T

1 − z−1

1 + z−1

∣∣∣∣
T=1

)
= Ha

(
2
1 − z−1

1 + z−1

)

=
2
1 − z−1

1 + z−1 + 1
(

2
1 − z−1

1 + z−1

)2

+ 5

(
2
1 − z−1

1 + z−1

)
+ 6

Simplifying,

H(z) =
3 + 2z−1 − z−2

20 + 4z−1 =
0.15 + 0.1z−1 − 0.05z−2

1 + 0.2z−1

�

MATLAB provides a function called bilinear to implement this
mapping. Its invocation is similar to the imp invr function, but it also
takes several forms for different input-output quantities. The SP tool-
box manual should be consulted for more details. Its use is shown in the
following example.
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� EXAMPLE 8.16 Transform the system function Ha(s) in Example 8.15 using the bilinear func-
tion.

Solution MATLAB script:

>> c = [1,1]; d = [1,5,6]; T = 1; Fs = 1/T;
>> [b,a] = bilinear(c,d,Fs)
b = 0.1500 0.1000 -0.0500
a = 1.0000 0.2000 0.0000

The filter is

H(z) =
0.15 + 0.1z−1 − 0.05z−2

1 + 0.2z−1

as before. �

8.4.4 DESIGN PROCEDURE
Given digital filter specifications ωp, ωs, Rp, and As, we want to determine
H(z). The design steps in this procedure are the following.

1. Choose a value for T . This is arbitrary, and we may set T = 1.
2. Prewarp the cutoff frequencies ωp and ωs; that is, calculate Ωp and Ωs

using (8.67):

Ωp =
2
T

tan
(ωp

2

)
, Ωs =

2
T

tan
(ωs

2

)
(8.68)

3. Design an analog filter Ha(s) to meet the specifications Ωp, Ωs, Rp,
and As. We have already described how to do this in the previous
section.

4. Finally, set

H(z) = Ha

(
2
T

1 − z−1

1 + z−1

)

and simplify to obtain H(z) as a rational function in z−1.

In the next several examples, we demonstrate this design procedure
on our analog prototype filters.

� EXAMPLE 8.17 Design the digital Butterworth filter of Example 8.11. The specifications are

ωp = 0.2π, Rp = 1 dB

ωs = 0.3π, As = 15 dB
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Solution MATLAB script:

>> % Digital filter specifications:
>> wp = 0.2*pi; % Digital passband freq in rad
>> ws = 0.3*pi; % Digital stopband freq in rad
>> Rp = 1; % Passband ripple in dB
>> As = 15; % Stopband attenuation in dB
>> % Analog prototype specifications: Inverse mapping for frequencies
>> T = 1; Fs = 1/T; % Set T=1
>> OmegaP = (2/T)*tan(wp/2); % Prewarp prototype passband freq
>> OmegaS = (2/T)*tan(ws/2); % Prewarp prototype stopband freq
>> % Analog Butterworth prototype filter calculation:
>> [cs,ds] = afd_butt(OmegaP,OmegaS,Rp,As);
*** Butterworth Filter Order = 6
>> % Bilinear transformation:
>> [b,a] = bilinear(cs,ds,Fs); [C,B,A] = dir2cas(b,a)
C = 5.7969e-004
B = 1.0000 2.0183 1.0186

1.0000 1.9814 0.9817
1.0000 2.0004 1.0000

A = 1.0000 -0.9459 0.2342
1.0000 -1.0541 0.3753
1.0000 -1.3143 0.7149

The desired filter is once again a sixth-order filter and has six zeros. Since the
sixth-order zero of Ha(s) at s = −∞ is mapped to z = −1, these zeros should be
at z = −1. Due to the finite precision of MATLAB, these zeros are not exactly
at z = −1. Hence the system function should be

H(z) =
0.00057969

(
1 + z−1

)6
(1 − 0.9459z−1 + 0.2342z−2) (1 − 1.0541z−1 + 0.3753z−2) (1 − 1.3143z−1 + 0.7149z−2)

The frequency response plots are given in Figure 8.26. Comparing these plots
with those in Figure 8.21, we observe that these two designs are very similar.

�

� EXAMPLE 8.18 Design the digital Chebyshev-I filter of Example 8.12. The specifications are

ωp = 0.2π, Rp = 1 dB

ωs = 0.3π, As = 15 dB
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FIGURE 8.26 Digital Butterworth lowpass filter using bilinear transformation

Solution MATLAB script:

>> % Digital filter specifications:
>> wp = 0.2*pi; % Digital passband freq in rad
>> ws = 0.3*pi; % Digital stopband freq in rad
>> Rp = 1; % Passband ripple in dB
>> As = 15; % Stopband attenuation in dB
>> % Analog prototype specifications: Inverse mapping for frequencies
>> T = 1; Fs = 1/T; % Set T=1
>> OmegaP = (2/T)*tan(wp/2); % Prewarp prototype passband freq
>> OmegaS = (2/T)*tan(ws/2); % Prewarp prototype stopband freq
>> % Analog Chebyshev-1 prototype filter calculation:
>> [cs,ds] = afd_chb1(OmegaP,OmegaS,Rp,As);
*** Chebyshev-1 Filter Order = 4
>> % Bilinear transformation:
>> [b,a] = bilinear(cs,ds,Fs); [C,B,A] = dir2cas(b,a)
C = 0.0018
B = 1.0000 2.0000 1.0000

1.0000 2.0000 1.0000
A = 1.0000 -1.4996 0.8482

1.0000 -1.5548 0.6493
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FIGURE 8.27 Digital Chebyshev-I lowpass filter using bilinear transformation

The desired filter is a fourth-order filter and has four zeros at z = −1. The
system function is

H(z) =
0.0018

(
1 + z−1

)4
(1 − 1.4996z−1 + 0.8482z−2) (1 − 1.5548z−1 + 0.6493z−2)

The frequency response plots are given in Figure 8.27, which are similar to those
in Figure 8.22. �

� EXAMPLE 8.19 Design the digital Chebyshev-II filter of Example 8.13. The specifications are

ωp = 0.2π, Rp = 1 dB

ωs = 0.3π, As = 15 dB
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Solution MATLAB script:

>> % Digital filter specifications:
>> wp = 0.2*pi; % Digital passband freq in rad
>> ws = 0.3*pi; % Digital stopband freq in rad
>> Rp = 1; % Passband ripple in dB
>> As = 15; % Stopband attenuation in dB
>> % Analog prototype specifications: Inverse mapping for frequencies
>> T = 1; Fs = 1/T; % Set T=1
>> OmegaP = (2/T)*tan(wp/2); % Prewarp prototype passband freq
>> OmegaS = (2/T)*tan(ws/2); % Prewarp prototype stopband freq
>> % Analog Chebyshev-2 Prototype Filter Calculation:
>> [cs,ds] = afd_chb2(OmegaP,OmegaS,Rp,As);
*** Chebyshev-2 Filter Order = 4
>> % Bilinear transformation:
>> [b,a] = bilinear(cs,ds,Fs); [C,B,A] = dir2cas(b,a)
C = 0.1797
B = 1.0000 0.5574 1.0000

1.0000 -1.0671 1.0000
A = 1.0000 -0.4183 0.1503

1.0000 -1.1325 0.7183

The desired filter is again a fourth-order filter with system function

H(z) =
0.1797

(
1 + 0.5574z−1 + z−2

) (
1 − 1.0671z−1 + z−2

)
(1 − 0.4183z−1 + 0.1503z−2) (1 − 1.1325z−1 + 0.7183z−2)

The frequency response plots are given in Figure 8.28. Note that the bilinear
transformation has properly designed the Chebyshev-II digital filter. �

� EXAMPLE 8.20 Design the digital elliptic filter of Example 8.14. The specifications are

ωp = 0.2π, Rp = 1 dB

ωs = 0.3π, As = 15 dB

Solution MATLAB script:

>> % Digital filter specifications:
>> wp = 0.2*pi; % Digital passband freq in rad
>> ws = 0.3*pi; % Digital stopband freq in rad
>> Rp = 1; % Passband ripple in dB
>> As = 15; % Stopband attenuation in dB
>> % Analog prototype specifications: Inverse mapping for frequencies
>> T = 1; Fs = 1/T; % Set T=1
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FIGURE 8.28 Digital Chebyshev-II lowpass filter using bilinear transformation

>> OmegaP = (2/T)*tan(wp/2); % Prewarp prototype passband freq
>> OmegaS = (2/T)*tan(ws/2); % Prewarp prototype stopband freq
>> % Analog elliptic prototype filter calculation:
>> [cs,ds] = afd_elip(OmegaP,OmegaS,Rp,As);
*** Elliptic Filter Order = 3
>> % Bilinear transformation:
>> [b,a] = bilinear(cs,ds,Fs); [C,B,A] = dir2cas(b,a)
C = 0.1214
B = 1.0000 -1.4211 1.0000

1.0000 1.0000 0
A = 1.0000 -1.4928 0.8612

1.0000 -0.6183 0

The desired filter is a third-order filter with system function

H(z) =
0.1214

(
1 − 1.4211z−1 + z−2

) (
1 + z−1

)
(1 − 1.4928z−1 + 0.8612z−2) (1 − 0.6183z−1)

The frequency response plots are given in Figure 8.29. Note that the bilinear
transformation has again properly designed the elliptic digital filter. �
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FIGURE 8.29 Digital elliptic lowpass filter using bilinear transformation

The advantages of this mapping are that (a) it is a stable design,
(b) there is no aliasing, and (c) there is no restriction on the type of filter
that can be transformed. Therefore, this method is used exclusively in
computer programs including MATLAB, as we shall see next.

8.4.5 MATCHED-z TRANSFORMATION
In this method of filter transformation, zeros and poles of Ha(s) are di-
rectly mapped into zeros and poles in the z-plane using an exponential
function. Given a root (zero or pole) at the location s = a in the s-plane,
we map it in the z-plane at z = eaT where T is a sampling interval. Thus
the system function Ha(s) with zeros {zk} and poles {p�} is mapped into
the digital filter system function H(z) as

Ha(s) =
∏M

k=1 (s − zk)∏N
�=1 (s − p�)

→ H(z) =
∏M

k=1

(
1 − ezkT z−1

)
∏N

�=1 (s − ep�T z−1)
(8.69)

Clearly, the z-transform system function is “matched” to the s-domain
system function.

Note that this technique appears to be similar to the impulse in-
variance mapping in that the pole locations are identical and aliasing
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is unavoidable. However, these two techniques differ in zero locations.
Also, the matched-z transformation does not preserve either the impulse
response or the frequency response characteristics. Hence it is suitable
when designing using pole-zero placement, but it is generally unsuitable
when the frequency-domain specifications are given.

8.5 LOWPASS FILTER DESIGN USING MATLAB

In this section, we will demonstrate the use of MATLAB’s filter design
functions to design digital lowpass filters. These functions use the bilinear
transformation because of its desirable advantages as discussed in the
previous section. These functions are as follows.

1. [b,a]=butter(N,wn)
This function designs an Nth-order lowpass digital Butterworth filter
and returns the filter coefficients in length N + 1 vectors b and a. The
filter order is given by (8.49), and the cutoff frequency wn is determined
by the prewarping formula (8.68). However, in MATLAB all digital
frequencies are given in units of π. Hence wn is computed by using the
following relation:

ωn =
2
π

tan−1
(

ΩcT

2

)

The use of this function is given in Example 8.21.
2. [b,a]=cheby1(N,Rp,wn)

This function designs an Nth-order lowpass digital Chebyshev-I filter
with Rp decibels of ripple in the passband. It returns the filter coef-
ficients in length N + 1 vectors b and a. The filter order is given by
(8.59), and the cutoff frequency wn is the digital passband frequency
in units of π; that is,

ωn = ωp/π

The use of this function is given in Example 8.22.
3. [b,a]=cheby2(N,As,wn)

This function designs an Nth-order lowpass digital Chebyshev-II filter
with the stopband attenuation As decibels. It returns the filter coef-
ficients in length N + 1 vectors b and a. The filter order is given by
(8.59), and the cutoff frequency wn is the digital stopband frequency
in units of π; that is,

ωn = ωs/π

The use of this function is given in Example 8.23.
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4. [b,a]=ellip(N,Rp,As,wn)
This function designs an Nth-order lowpass digital elliptic filter with
the passband ripple of Rp decibels and a stopband attenuation of As
decibels. It returns the filter coefficients in length N + 1 vectors b and
a. The filter order is given by (8.62), and the cutoff frequency wn is the
digital passband frequency in units of π; that is,

ωn = ωp/π

The use of this function is given in Example 8.24.

All these above functions can also be used to design other frequency-
selective filters, such as highpass and bandpass. We will discuss their
additional capabilities in Section 8.6.

There is also another set of filter functions—namely, the buttord,
cheb1ord, cheb2ord, and ellipord functions—that can provide filter
order N and filter cutoff frequency ωn, given the specifications. These
functions are available in the Signal Processing toolbox. In the examples
to follow, we will determine these parameters using the formulas given
earlier. We will discuss the filter-order functions in the next section.

In the following examples, we will redesign the same lowpass filters
of previous examples and compare their results. The specifications of the
lowpass digital filter are

ωp = 0.2π, Rp = 1 dB

ωs = 0.3π, As = 15 dB

� EXAMPLE 8.21 Digital Butterworth lowpass filter design:

>> % Digital filter specifications:
>> wp = 0.2*pi; % Digital passband freq in rad
>> ws = 0.3*pi; % Digital stopband freq in rad
>> Rp = 1; % Passband ripple in dB
>> As = 15; % Stopband attenuation in dB

>> % Analog Prototype Specifications:
>> T = 1; % Set T=1
>> OmegaP = (2/T)*tan(wp/2); % Prewarp prototype passband freq
>> OmegaS = (2/T)*tan(ws/2); % Prewarp prototype stopband freq
>> % Analog Prototype Order Calculation:
>> N =ceil((log10((10ˆ(Rp/10)-1)/(10ˆ(As/10)-1)))/(2*log10(OmegaP/OmegaS)));
>> fprintf(’\n*** Butterworth Filter Order = %2.0f \n’,N)
** Butterworth Filter Order = 6
>> OmegaC = OmegaP/((10ˆ(Rp/10)-1)ˆ(1/(2*N))); % Analog BF prototype cutoff
>> wn = 2*atan((OmegaC*T)/2); % Digital BF cutoff freq
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>> % Digital butterworth filter design:
>> wn = wn/pi; % Digital BF cutoff in pi units
>> [b,a]=butter(N,wn); [b0,B,A] = dir2cas(b,a)
C = 5.7969e-004
B = 1.0000 2.0297 1.0300

1.0000 1.9997 1.0000
1.0000 1.9706 0.9709

A = 1.0000 -0.9459 0.2342
1.0000 -1.0541 0.3753
1.0000 -1.3143 0.7149

The system function is

H(z) =
0.00057969

(
1 + z−1

)6
(1 − 0.9459z−1 + 0.2342z−2) (1 − 1.0541z−1 + 0.3753z−2) (1 − 1.3143z−1 + 0.7149z−2)

which is the same as in Example 8.17. The frequency-domain plots were shown
in Figure 8.26. �

� EXAMPLE 8.22 Digital Chebyshev-I lowpass filter design:

>> % Digital filter specifications:
>> wp = 0.2*pi; % Digital passband freq in rad
>> ws = 0.3*pi; % Digital stopband freq in rad
>> Rp = 1; % Passband ripple in dB
>> As = 15; % Stopband attenuation in dB

>> % Analog prototype specifications:
>> T = 1; % Set T=1
>> OmegaP = (2/T)*tan(wp/2); % Prewarp prototype passband freq
>> OmegaS = (2/T)*tan(ws/2); % Prewarp prototype stopband freq

>> % Analog prototype order calculation:
>> ep = sqrt(10ˆ(Rp/10)-1); % Passband ripple factor
>> A = 10ˆ(As/20); % Stopband attenuation factor
>> OmegaC = OmegaP; % Analog prototype cutoff freq
>> OmegaR = OmegaS/OmegaP; % Analog prototype transition ratio
>> g = sqrt(A*A-1)/ep; % Analog prototype intermediate cal.
>> N = ceil(log10(g+sqrt(g*g-1))/log10(OmegaR+sqrt(OmegaR*OmegaR-1)));
>> fprintf(’\n*** Chebyshev-1 Filter Order = %2.0f \n’,N)
*** Chebyshev-1 Filter Order = 4
>> % Digital Chebyshev-I Filter Design:
>> wn = wp/pi; % Digital passband freq in pi units
>> [b,a]=cheby1(N,Rp,wn); [b0,B,A] = dir2cas(b,a)
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b0 = 0.0018
B = 1.0000 2.0000 1.0000

1.0000 2.0000 1.0000
A = 1.0000 -1.4996 0.8482

1.0000 -1.5548 0.6493

The system function is

H(z) =
0.0018

(
1 + z−1

)4
(1 − 1.4996z−1 + 0.8482z−2) (1 − 1.5548z−1 + 0.6493z−2)

which is the same as in Example 8.18. The frequency-domain plots were shown
in Figure 8.27. �

� EXAMPLE 8.23 Digital Chebyshev-II lowpass filter design:

>> % Digital filter specifications:
>> wp = 0.2*pi; % Digital passband freq in rad
>> ws = 0.3*pi; % Digital stopband freq in rad
>> Rp = 1; % Passband ripple in dB
>> As = 15; % Stopband attenuation in dB

>> % Analog prototype specifications:
>> T = 1; % Set T=1
>> OmegaP = (2/T)*tan(wp/2); % Prewarp prototype passband freq
>> OmegaS = (2/T)*tan(ws/2); % Prewarp prototype stopband freq

>> % Analog prototype order calculation:
>> ep = sqrt(10ˆ(Rp/10)-1); % Passband ripple factor
>> A = 10ˆ(As/20); % Stopband attenuation factor
>> OmegaC = OmegaP; % Analog prototype cutoff freq
>> OmegaR = OmegaS/OmegaP; % Analog prototype transition ratio
>> g = sqrt(A*A-1)/ep; % Analog prototype intermediate cal.
>> N = ceil(log10(g+sqrt(g*g-1))/log10(OmegaR+sqrt(OmegaR*OmegaR-1)));
>> fprintf(’\n*** Chebyshev-2 Filter Order = %2.0f \n’,N)
*** Chebyshev-2 Filter Order = 4

>> % Digital Chebyshev-II filter design:
>> wn = ws/pi; % Digital stopband freq in pi units
>> [b,a]=cheby2(N,As,wn); [b0,B,A] = dir2cas(b,a)
b0 = 0.1797
B = 1.0000 0.5574 1.0000

1.0000 -1.0671 1.0000
A = 1.0000 -0.4183 0.1503

1.0000 -1.1325 0.7183
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The system function is

H(z) =
0.1797

(
1 + 0.5574z−1 + z−2

) (
1 − 1.0671z−1 + z−2

)
(1 − 0.4183z−1 + 0.1503z−2) (1 − 1.1325z−1 + 0.7183z−2)

which is the same as in Example 8.19. The frequency-domain plots were shown
in Figure 8.28. �

� EXAMPLE 8.24 Digital elliptic lowpass filter design:

>> % Digital filter specifications:
>> wp = 0.2*pi; % Digital passband freq in rad
>> ws = 0.3*pi; % Digital stopband freq in rad
>> Rp = 1; % Passband ripple in dB
>> As = 15; % Stopband attenuation in dB

>> % Analog prototype specifications:
>> T = 1; % Set T=1
>> OmegaP = (2/T)*tan(wp/2); % Prewarp prototype passband freq
>> OmegaS = (2/T)*tan(ws/2); % Prewarp prototype stopband freq

>> % Analog elliptic filter order calculations:
>> ep = sqrt(10ˆ(Rp/10)-1); % Passband ripple factor
>> A = 10ˆ(As/20); % Stopband attenuation factor
>> OmegaC = OmegaP; % Analog prototype cutoff freq
>> k = OmegaP/OmegaS; % Analog prototype transition ratio
>> k1 = ep/sqrt(A*A-1); % Analog prototype intermediate cal.
>> capk = ellipke([k.ˆ2 1-k.ˆ2]);
>> capk1 = ellipke([(k1 .ˆ2) 1-(k1 .ˆ2)]);
>> N = ceil(capk(1)*capk1(2)/(capk(2)*capk1(1)));
>> fprintf(’\n*** Elliptic Filter Order = %2.0f \n’,N)
*** Elliptic Filter Order = 3

>> % Digital elliptic filter design:
>> wn = wp/pi; % Digital passband freq in pi units
>> [b,a]=ellip(N,Rp,As,wn); [b0,B,A] = dir2cas(b,a)
b0 = 0.1214
B = 1.0000 -1.4211 1.0000

1.0000 1.0000 0
A = 1.0000 -1.4928 0.8612

1.0000 -0.6183 0

The system function is

H(z) =
0.1214

(
1 − 1.4211z−1 + z−2

) (
1 + z−1

)
(1 − 1.4928z−1 + 0.8612z−2) (1 − 0.6183z−1)

which is the same as in Example 8.20. The frequency-domain plots were shown
in Figure 8.29. �
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TABLE 8.1 Comparison of four prototype filters

Prototype Order N Actual Rp Actual As

Butterworth 6 1 17.6
Chebyshev-I 4 1 23.6
Chebyshev-II 4 0.15 15
Elliptic 3 1 16

8.5.1 COMPARISON OF FOUR PROTOTYPE FILTERS
In Examples 8.17–8.20, we designed a lowpass digital filter using the bi-
linear mapping on four different prototype analog filters satisfying the
specifications ωp = 0.2π, Rp = 1 dB, ωs = 0.3π, and As = 15 dB. Let us now
compare their performance in terms of order N , the actual passband ripple
Rp measured at ωp, and the actual stopband attenuation As measured at
ωs. This comparison is shown in Table 8.1. The Butterworth, Chebyshev-
I, and elliptic filters satisfy Rp specification exactly at ωp but exceed As

specification at ωs while the Chebyshev-II filter performs exactly opposite.
Clearly, the elliptic prototype gives the best design in terms of the

smallest order while satisfying magnitude specifications almost exactly.
However, if we compare phase responses of all four filters, then the ellip-
tic design has the most nonlinear phase response in the passband, while
Butterworth has the least nonlinear phase response.

8.6 FREQUENCY-BAND TRANSFORMATIONS

In the preceding two sections, we designed digital lowpass filters from
their corresponding analog filters. Certainly, we would like to design other
types of frequency-selective filters, such as highpass, bandpass, and band-
stop. This is accomplished by transforming the frequency axis (or band)
of a lowpass filter so that it behaves as another frequency-selective fil-
ter. These transformations on the complex variable z are very similar
to bilinear transformations, and the design equations are algebraic. The
procedure to design a general frequency-selective filter is to first design
a digital prototype (of fixed bandwidth—say, unit bandwidth) lowpass fil-
ter and then to apply these algebraic transformations. In this section, we
will describe the basic philosophy behind these mappings and illustrate
their mechanism through examples. MATLAB provides functions that
incorporate frequency-band transformation in the s-plane. We will first
demonstrate the use of the z-plane mapping and then illustrate the use
of MATLAB functions. Typical specifications for most commonly used
types of frequency-selective digital filters are shown in Figure 8.30.
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FIGURE 8.30 Specifications of frequency-selective filters

Let HLP (Z) be the given prototype lowpass digital filter, and let H(z)
be the desired frequency-selective digital filter. Note that we are using
two different frequency variables, Z and z, with HLP and H, respectively.
Define a mapping of the form

Z−1 = G(z−1)

such that
H(z) = HLP (Z)|Z−1=G(z−1)

To do this, we simply replace Z−1 everywhere in HLP by the function
G(z−1). Given that HLP (Z) is a stable and causal filter, we also want
H(z) to be stable and causal. This imposes the following requirements.

1. G(·) must be a rational function in z−1 so that H(z) is implementable.
2. The unit circle of the Z-plane must map onto the unit circle of the

z-plane.
3. For stable filters, the inside of the unit circle of the Z-plane must also

map onto the inside of the unit circle of the z-plane.
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Let ω′ and ω be the frequency variables of Z and z, respectively—that
is, Z = ejω′

and z = ejω on their respective unit circles. Then requirement
2 above implies that

∣∣Z−1
∣∣ = ∣∣G(z−1)

∣∣ = ∣∣G(e−jω)
∣∣ = 1

and
e−jω′

=
∣∣G(e−jω)

∣∣ ej � G(e−jω)

or
−ω′ = � G(e−jω)

The general form of the function G(·) that satisfies these requirements is
a rational function of the allpass type given by

Z−1 = G
(
z−1) = ±

n∏
k=1

z−1 − αk

1 − αkz−1

where |αk| < 1 for stability and to satisfy requirement 3.
Now by choosing an appropriate order n and the coefficients {αk}, we

can obtain a variety of mappings. The most widely used transformations
are given in Table 8.2. We will now illustrate the use of this table for
designing a highpass digital filter.

� EXAMPLE 8.25 In Example 8.22 we designed a Chebyshev-I lowpass filter with specifications

ω′
p = 0.2π,

ω′
s = 0.3π,

Rp = 1 dB

As = 15 dB

and determined its system function

HLP (Z) =
0.001836(1 + Z−1)4

(1 − 1.4996Z−1 + 0.8482Z−2)(1 − 1.5548Z−1 + 0.6493Z−2)

Design a highpass filter with these tolerances but with passband beginning at
ωp = 0.6π.

Solution We want to transform the given lowpass filter into a highpass filter such that
the cutoff frequency ω′

p = 0.2π is mapped onto the cutoff frequency ωp = 0.6π.
From Table 8.2,

α = −cos[(0.2π + 0.6π)/2]
cos[(0.2π − 0.6π)/2]

= −0.38197 (8.70)

Hence

HLP (z) = H(Z)|
Z=− z−1−0.38197

1−0.38197z−1

=
0.02426(1 − z−1)4

(1 + 0.5661z−1 + 0.7657z−2)(1 + 1.0416z−1 + 0.4019z−2)

which is the desired filter. The frequency response plots of the lowpass filter
and the new highpass filter are shown in Figure 8.31. �
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TABLE 8.2 Frequency transformation for digital filters (prototype lowpass filter has cutoff
frequency ω′

c)

Type of
Transformation Transformation Parameters

Lowpass z−1 −→ z−1 − α

1 − αz−1 ωc = cutoff frequency of new filter

α =
sin [(ω′

c − ωc) /2]
sin [(ω′

c + ωc) /2]

Highpass z−1 −→ − z−1 + α

1 + αz−1 ωc = cutoff frequency of new filter

α = −cos [(ω′
c + ωc) /2]

cos [(ω′
c − ωc) /2]

Bandpass z−1 −→ − z−2 − α1z
−1 + α2

α2z−2 − α1z−1 + 1
ω� = lower cutoff frequency

ωu = upper cutoff frequency

α1 = −2βK/(K + 1)

α2 = (K − 1)/(K + 1)

β =
cos [(ωu + ω�) /2]
cos [(ωu − ω�) /2]

K = cot
ωu − ω�

2
tan

ω′
c

2

Bandstop z−1 −→ z−2 − α1z
−1 + α2

α2z−2 − α1z−1 + 1
ω� = lower cutoff frequency

ωu = upper cutoff frequency

α1 = −2β/(K + 1)

α2 = (K − 1)/(K + 1)

β =
cos [(ωu + ω�) /2]
cos [(ωu − ω�) /2]

K = tan
ωu − ω�

2
tan

ω′
c

2

From this example, it is obvious that to obtain the rational function
of a new digital filter from the prototype lowpass digital filter, we should
be able to implement rational function substitutions from Table 8.2. This
appears to be a difficult task, but since these are algebraic functions, we
can use the conv function repetitively for this purpose. The following
zmapping function illustrates this approach.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



436 Chapter 8 IIR FILTER DESIGN

0 0.2 1
0

0.8913
1

LP Filter Magnitude Response

|H
|

0 0.2 1
30

 1
 0

LP Filter Magnitude in dB

D
ec

ib
el

s
0 0.6 1

0

0.8913
1

HP Filter Magnitude Response

|H
|

0 0.6 1
30

 1
 0

HP Filter Magnitude in dB

D
ec

ib
el

s

Frequency in π Units

Frequency in π Units Frequency in π Units

Frequency in π Units

FIGURE 8.31 Magnitude response plots for Example 8.25

function [bz,az] = zmapping(bZ,aZ,Nz,Dz)
% Frequency-band transformation from Z-domain to z-domain
% -------------------------------------------------------
% [bz,az] = zmapping(bZ,aZ,Nz,Dz)
% performs:
% b(z) b(Z)|
% ---- = ----| N(z)
% a(z) a(Z)|@Z = ----
% D(z)
%

bNzord = (length(bZ)-1)*(length(Nz)-1);
aDzord = (length(aZ)-1)*(length(Dz)-1);
bzord = length(bZ)-1; azord = length(aZ)-1;
bz = zeros(1,bNzord+1);
for k = 0:bzord

pln = [1];
for l = 0:k-1

pln = conv(pln,Nz);
end
pld = [1];
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for l = 0:bzord-k-1
pld = conv(pld,Dz);

end
bz = bz+bZ(k+1)*conv(pln,pld);

end
az = zeros(1,aDzord+1);
for k = 0:azord

pln = [1];
for l = 0:k-1

pln = conv(pln,Nz);
end
pld = [1];
for l = 0:azord-k-1

pld = conv(pld,Dz);
end
az = az+aZ(k+1)*conv(pln,pld);

end

� EXAMPLE 8.26 Use the zmapping function to perform the lowpass-to-highpass transformation
in Example 8.25.

Solution First we will design the lowpass digital filter in MATLAB using the bilinear
transformation procedure and then use the zmapping function.

MATLAB script:

>> % Digital lowpass filter specifications:
>> wplp = 0.2*pi; % Digital passband freq in rad
>> wslp = 0.3*pi; % Digital stopband freq in rad
>> Rp = 1; % Passband ripple in dB
>> As = 15; % Stopband attenuation in dB

>> % Analog prototype specifications: Inverse mapping for frequencies
>> T = 1; Fs = 1/T; % Set T=1
>> OmegaP = (2/T)*tan(wplp/2); % Prewarp prototype passband freq
>> OmegaS = (2/T)*tan(wslp/2); % Prewarp prototype stopband freq

>> % Analog Chebyshev prototype filter calculation:
>> [cs,ds] = afd_chb1(OmegaP,OmegaS,Rp,As);
** Chebyshev-1 Filter Order = 4

>> % Bilinear transformation:
>> [blp,alp] = bilinear(cs,ds,Fs);
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>> % Digital highpass filter cutoff frequency:
>> wphp = 0.6*pi; % Passband-edge frequency

>> % LP-to-HP frequency-band transformation:
>> alpha = -(cos((wplp+wphp)/2))/(cos((wplp-wphp)/2))
alpha = -0.3820

>> Nz = -[alpha,1]; Dz = [1,alpha];
>> [bhp,ahp] = zmapping(blp,alp,Nz,Dz); [C,B,A] = dir2cas(bhp,ahp)
C = 0.0243
B = 1.0000 -2.0000 1.0000

1.0000 -2.0000 1.0000
A = 1.0000 1.0416 0.4019

1.0000 0.5561 0.7647

The system function of the highpass filter is

H(z) =
0.0243(1 − z−1)4

(1 + 0.5661z−1 + 0.7647z−2)(1 + 1.0416z−1 + 0.4019z−2)

which is essentially identical to that in Example 8.25. �

8.6.1 DESIGN PROCEDURE
In Example 8.26, a lowpass prototype digital filter was available to trans-
form into a highpass filter so that a particular band-edge frequency was
properly mapped. In practice, we have to first design a prototype lowpass
digital filter whose specifications should be obtained from specifications
of other frequency-selective filters as given in Figure 8.30. We will now
show that the lowpass prototype filter specifications can be obtained from
the transformation formulas given in Table 8.2.

Let us use the highpass filter of Example 8.25 as an example. The
passband-edge frequencies were transformed using the parameter α =
−0.38197 in (8.70). What is the stopband-edge frequency of the highpass
filter, say ωs, corresponding to the stopband edge ω′

s = 0.3π of the pro-
totype lowpass filter? This can be answered by (8.70). Since α is fixed for
the transformation, we set the equation

α = −cos[(0.3π + ωs)/2]
cos[(0.3π − ωs)/2]

= −0.38197

This is a transcendental equation whose solution can be obtained iter-
atively from an initial guess. It can be done using MATLAB, and the
solution is

ωs = 0.4586π
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Now, in practice, we will know the desired highpass frequencies ωs and
ωp, and we are required to find the prototype lowpass cutoff frequencies
ω′

s and ω′
p. We can choose the passband frequency ω′

p with a reasonable
value—say, ω′

p = 0.2π—and determine α from ωp using the formula from
Table 8.2. Now ω′

s can be determined (for our highpass filter example)
from α and

Z = − z−1 + α

1 + αz−1

where Z = ejω′
s and z = ejωs , or

ω′
s = �

(
− e−jωs + α

1 + αe−jωs

)
(8.71)

Continuing our highpass filter example, let ωp = 0.6π and ωs = 0.4586π be
the band-edge frequencies. Let us choose ω′

p = 0.2π. Then α = −0.38197
from (8.70), and from (8.71)

ω′
s = �

(
− e−j0.4586π − 0.38197

1 − 0.38197e−j−0.38197

)
= 0.3π

as expected. Now we can design a digital lowpass filter and transform
it into a highpass filter using the zmapping function to complete our
design procedure. For designing a highpass Chebyshev-I digital filter, the
above procedure can be incorporated into a MATLAB function called the
cheb1hpf function, shown here.

function [b,a] = cheb1hpf(wp,ws,Rp,As)
% IIR highpass filter design using Chebyshev-1 prototype
% function [b,a] = cheb1hpf(wp,ws,Rp,As)
% b = numerator polynomial of the highpass filter
% a = denominator polynomial of the highpass filter
% wp = passband frequency in radians
% ws = stopband frequency in radians
% Rp = passband ripple in dB
% As = stopband attenuation in dB
%
% Determine the digital lowpass cutoff frequencies:
wplp = 0.2*pi;
alpha = -(cos((wplp+wp)/2))/(cos((wplp-wp)/2));
wslp = angle(-(exp(-j*ws)+alpha)/(1+alpha*exp(-j*ws)));
%
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% Compute analog lowpass prototype specifications:
T = 1; Fs = 1/T;
OmegaP = (2/T)*tan(wplp/2);
OmegaS = (2/T)*tan(wslp/2);

% Design analog Chebyshev prototype lowpass filter:
[cs,ds] = afd_chb1(OmegaP,OmegaS,Rp,As);

% Perform bilinear transformation to obtain digital lowpass
[blp,alp] = bilinear(cs,ds,Fs);

% Transform digital lowpass into highpass filter
Nz = -[alpha,1]; Dz = [1,alpha];
[b,a] = zmapping(blp,alp,Nz,Dz);

We will demonstrate this procedure in the following example.

� EXAMPLE 8.27 Design a highpass digital filter to satisfy

ωp = 0.6π,

ωs = 0.4586π,

Rp = 1 dB

As = 15 dB

Use the Chebyshev-I prototype.

Solution MATLAB script:

>> % Digital highpass filter specifications:
>> wp = 0.6*pi; % Digital passband freq in rad
>> ws = 0.4586*pi; % Digital stopband freq in rad
>> Rp = 1; % Passband ripple in dB
>> As = 15; % Stopband attenuation in dB

>> [b,a] = cheb1hpf(wp,ws,Rp,As); [C,B,A] = dir2cas(b,a)
C = 0.0243
B = 1.0000 -2.0000 1.0000

1.0000 -2.0000 1.0000
A = 1.0000 1.0416 0.4019

1.0000 0.5561 0.7647

The system function is

H(z) =
0.0243(1 − z−1)4

(1 + 0.5661z−1 + 0.7647z−2)(1 + 1.0416z−1 + 0.4019z−2)

which is identical to that in Example 8.26. �
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This highpass filter design procedure can be easily extended to other
frequency-selective filters using the transformation functions in Table 8.2.
These design procedures are explored in Problems P8.34, P8.36, P8.38,
and P8.40. We now describe MATLAB’s filter design functions for design-
ing arbitrary frequency-selective filters.

8.6.2 MATLAB IMPLEMENTATION
In the preceding section, we discussed four MATLAB functions to design
digital lowpass filters. These same functions can also be used to design
highpass, bandpass, and bandstop filters. The frequency-band transfor-
mations in these functions are done in the s-plane; that is, they use
Approach-1 discussed on page 370. For the purpose of illustration, we
will use the function butter. It can be used with the following variations
in its input arguments.

• [b,a] = BUTTER(N,wn,’high’) designs an Nth-order highpass filter
with digital 3 dB cutoff frequency wn in units of π.

• [b,a] = BUTTER(N,wn,)designs an order 2N bandpass filter if wn is a
two-element vector, wn=[w1 w2], with 3 dB passband w1 < w < w2 in
units of π.

• [b,a] = BUTTER(N,wn,’stop’) is an order 2N bandstop filter if wn=[w1
w2]with 3 dB stopband w1 < w < w2 in units of π.

To design any frequency-selective Butterworth filter, we need to know
the order N and the 3 dB cutoff frequency vector wn. In this chapter, we
described how to determine these parameters for lowpass filters. However,
these calculations are more complicated for bandpass and bandstop filters.
In their SP toolbox, MATLAB provides a function called buttord to
compute these parameters. Given the specifications, ωp, ωs, Rp, and As,
this function determines the necessary parameters. Its syntax is

[N,wn] = buttord(wp,ws,Rp,As)

The parameters wp and ws have some restrictions, depending on the type
of filter:

• For lowpass filters wp < ws.
• For highpass filters wp > ws.
• For bandpass filters wp and ws are two-element vectors, wp=[wp1,

wp2] and ws=[ws1,ws2], such that ws1 < wp1 < wp2 < ws2.
• For bandstop filters wp1 < ws1 < ws2 < wp2.

Now using the buttord function in conjunction with the butter func-
tion, we can design any Butterworth IIR filter. Similar discussions apply
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for cheby1, cheby2, and ellip functions with appropriate modifications.
We illustrate the use of these functions through the following examples.

� EXAMPLE 8.28 In this example, we will design a Chebyshev-I highpass filter whose specifications
were given in Example 8.27.

Solution MATLAB script:

>> % Digital filter specifications: % Type: Chebyshev-I highpass
>> ws = 0.4586*pi; % Dig. stopband-edge frequency
>> wp = 0.6*pi; % Dig. passband-edge frequency
>> Rp = 1; % Passband ripple in dB
>> As = 15; % Stopband attenuation in dB

>> % Calculations of Chebyshev-I filter parameters:
>> [N,wn] = cheb1ord(wp/pi,ws/pi,Rp,As);

>> % Digital Chebyshev-I highpass filter design:
>> [b,a] = cheby1(N,Rp,wn,’high’);

>> % Cascade form realization:
>> [b0,B,A] = dir2cas(b,a)
b0 = 0.0243
B = 1.0000 -1.9991 0.9991

1.0000 -2.0009 1.0009
A = 1.0000 1.0416 0.4019

1.0000 0.5561 0.7647

The cascade form system function

H(z) =
0.0243(1 − z−1)4

(1 + 0.5661z−1 + 0.7647z−2)(1 + 1.0416z−1 + 0.4019z−2)

is identical to the filter designed in Example 8.27, which demonstrates that
the two approaches described on page 370 are identical. The frequency-domain
plots are shown in Figure 8.32. �

� EXAMPLE 8.29 In this example, we will design an elliptic bandpass filter whose specifications
are given in the following MATLAB script.

>> % Digital filter specifications: % Type: Elliptic bandpass
>> ws = [0.3*pi 0.75*pi]; % Dig. stopband-edge frequency
>> wp = [0.4*pi 0.6*pi]; % Dig. passband-edge frequency
>> Rp = 1; % Passband ripple in dB
>> As = 40; % Stopband attenuation in dB
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FIGURE 8.32 Digital Chebyshev-I highpass filter in Example 8.28

>> % Calculations of elliptic filter parameters:
>> [N,wn] = ellipord(wp/pi,ws/pi,Rp,As);

>> % Digital elliptic bandpass filter design:
>> [b,a] = ellip(N,Rp,As,wn);

>> % Cascade form realization:
>> [b0,B,A] = dir2cas(b,a)
b0 = 0.0197
B = 1.0000 1.5066 1.0000

1.0000 0.9268 1.0000
1.0000 -0.9268 1.0000
1.0000 -1.5066 1.0000

A = 1.0000 0.5963 0.9399
1.0000 0.2774 0.7929
1.0000 -0.2774 0.7929
1.0000 -0.5963 0.9399

Note that the designed filter is a tenth-order filter. The frequency-domain plots
are shown in Figure 8.33. �
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FIGURE 8.33 Digital elliptic bandpass filter in Example 8.29

� EXAMPLE 8.30 Finally, we will design a Chebyshev-II bandstop filter whose specifications are
given in the following MATLAB script.

>> % Digital filter specifications: % Type: Chebyshev-II bandstop
>> ws = [0.4*pi 0.7*pi]; % Dig. stopband-edge frequency
>> wp = [0.25*pi 0.8*pi]; % Dig. passband-edge frequency
>> Rp = 1; % Passband ripple in dB
>> As = 40; % Stopband attenuation in dB

>> % Calculations of Chebyshev-II filter parameters:
>> [N,wn] = cheb2ord(wp/pi,ws/pi,Rp,As);

>> % Digital Chebyshev-II bandstop filter design:
>> [b,a] = cheby2(N,As,ws/pi,’stop’);

>> % Cascade form realization:
>> [b0,B,A] = dir2cas(b,a)
b0 = 0.1558
B = 1.0000 1.1456 1.0000

1.0000 0.8879 1.0000
1.0000 0.3511 1.0000
1.0000 -0.2434 1.0000
1.0000 -0.5768 1.0000
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FIGURE 8.34 Digital Chebyshev-II bandstop filter in Example 8.30

A = 1.0000 1.3041 0.8031
1.0000 0.8901 0.4614
1.0000 0.2132 0.2145
1.0000 -0.4713 0.3916
1.0000 -0.8936 0.7602

This is also a tenth-order filter. The frequency domain plots are shown in
Figure 8.34. �

8.7 PROBLEMS

P8.1 A digital resonator is to be designed with ω0 = π/4 that has two zeros at z = 0.

1. Compute and plot the frequency response of this resonator for r = 0.8, 0.9, and 0.99.
2. For each case in part 1, determine the 3 dB bandwidth and the resonant frequency ωr

from your magnitude plots.
3. Check if your results in part 2 are in agreement with the theoretical results.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



446 Chapter 8 IIR FILTER DESIGN

P8.2 A digital resonator is to be designed with ω0 = π/4 that has two zeros at z = 1 and z = −1.

1. Compute and plot the frequency response of this resonator for r = 0.8, 0.9, and 0.99.
2. For each case in part 1 determine the 3 dB bandwidth and the resonant frequency ωr

from your magnitude plots.
3. Compare your results in part 2 with (8.48) and (8.47), respectively.

P8.3 We want to design a digital resonator with the following requirements: a 3 dB bandwidth of
0.05 rad, a resonant frequency of 0.375 cycles/sam, and zeros at z = 1 and z = −1. Using
trial-and-error approach, determine the difference equation of the resonator.

P8.4 A notch filter is to be designed with a null at the frequency ω0 = π/2.

1. Compute and plot the frequency response of this notch filter for r = 0.7, 0.9, and 0.99.
2. For each case in part 1, determine the 3 dB bandwidth from your magnitude plots.
3. By trial-and-error approach, determine the value of r if we want the 3 dB bandwidth to

be 0.04 radians at the null frequency ω0 = π/2.

P8.5 Repeat Problem P8.4 for a null at ω0 = π/6.

P8.6 A speech signal with bandwidth of 4 kHz is sampled at 8 kHz. The signal is corrupted by
sinusoids with frequencies 1 kH, 2 kHz, and 3 kHz.

1. Design an IIR filter using notch filter components that eliminates these sinusoidal
signals.

2. Choose the gain of the filter so that the maximum gain is equal to 1, and plot the
log-magnitude response of your filter.

3. Load the handel sound file in MATLAB, and add the preceding three sinusoidal signals
to create a corrupted sound signal. Now filter the corrupted sound signal using your
filter and comment on its performance.

P8.7 Consider the system function of an IIR lowpass filter

H(z) = K
1 + z−1

1 − 0.9z−1 (8.72)

where K is a constant that can be adjusted to make the maximum gain response equal to 1.
We obtain the system function of an Lth-order comb filter HL(z) using HL(z) = H

(
zL
)
.

1. Determine the value of K for the system function in (8.72).
2. Using the K value from part 1, determine and plot the log-magnitude response of the

comb filter for L = 6.
3. Describe the shape of your plot in part 2.

P8.8 Consider the system function of an IIR highpass filter

H(z) = K
1 − z−1

1 − 0.9z−1 (8.73)

where K is a constant that can be adjusted to make the maximum gain response equal to 1.
We obtain the system function of an Lth-order comb filter HL(z) using HL(z) = H

(
zL
)
.
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1. Determine the value of K for the system function in (8.73).
2. Using the K value from part 1, determine and plot the log-magnitude response of the

comb filter for L = 6.
3. Describe the shape of your plot in part 2.

P8.9 (Adapted from [72]) As discussed in Chapter 1, echos and reverberations of a signal x(n)
can be obtained by scaling and delaying, that is,

y(n) =
∞∑

k=0

αkx(n − kD) (8.74)

where D is a positive integer for minimum delay and αk > αk−1 > 0.

1. Consider the IIR comb filter given by

H(z) =
1

1 − az−D
(8.75)

Determine its impulse response. Explain why this filter can be used as a reverberator.
2. Consider the cascade of three allpass comb filters

H(z) =
zD1 − a1

1 − a1z−D1
× zD2 − a2

1 − a2z−D2
× zD3 − a3

1 − a3z−D3
(8.76)

which can be used as a practical digital reverberator. Compute and plot the impulse
response of this reverberator for D1 = 50, a1 = 0.7; D2 = 41, a2 = 0.665; and D3 = 32,
a3 = 0.63175.

3. Repeat part 2 for D1 = 53, a1 = 0.7; D2 = 40, a2 = 0.665; and D3 = 31, a3 = 0.63175.
How does the shape of this reverberator differ from the one in part 2? Which is a good
reverberator?

P8.10 Consider the first-order allpass system function given by

H(z) =
a + z−1

1 + az−1 , 0 < a < 1 (8.77)

The phase-delay of a system is defined as Φ(ω) �
=

− � H
(
ejω
)
/ω and is measured in samples.

1. Show that the phase-delay of the system in (8.77) at low frequencies is given by

Φ(ω) ≈ 1 − a

1 + a
for a ≈ 1 (8.78)

2. Plot the phase-delay over −π/2 ≤ ω ≤ π/2 for a = 0.9, 0.95, and 0.99 to verify
Problem P8.10. Comment on the accuracy of the results.

3. Design a first-order allpass system that has phase delay of 0.01 samples. Plot its
magnitude and phase-delay responses.

P8.11 Consider the second-order allpass system function given by

H(z) =
a2 + a1z

−1 + z−2

1 + a1z−1 + a2z−2 (8.79)
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The phase-delay of a system is defined as Φ(ω) �
=

− � H
(
ejω
)
/ω and is measured in samples.

It can be shown that if we choose

a1 = 1
(2 − d

1 + d

)
, a2 =

(2 − d)(1 − d)
(2 + d)(1 + d)

(8.80)

then phase-delay Φ(ω) at low frequencies is approximated by d in samples. Verify this result
by plotting Φ(ω) over −π/2 ≤ ω ≤ π/2 for d = 0.1, d = 0.05, and d = 0.01.

P8.12 Design an analog Butterworth lowpass filter that has a 0.25 dB or better ripple at
500 rad/sec and at least 50 dB of attenuation at 2000 rad/sec. Determine the system
function in a rational function form. Plot the magnitude response, the log-magnitude
response in dB, the phase response, and the impulse response of the filter.

P8.13 Design an analog Butterworth lowpass filter that has a 0.5 dB or better ripple at 10 kHz
and at least 45 dB of attenuation at 20 kHz. Determine the system function in a cascade
form. Plot the magnitude response, the log-magnitude response in dB, the group-delay, and
the impulse response of the filter.

P8.14 Design a lowpass analog Chebyshev-I filter with an acceptable ripple of 1 dB for |Ω| ≤ 10
and an attenuation of 50 dB or greater beyond |Ω| = 15 rad/sec. Determine the system
function in a rational function form. Plot the magnitude response, the log-magnitude
response in dB, the group-delay, and the impulse response of the filter.

P8.15 Design a lowpass analog Chebyshev-I filter with the following characteristics:

• a passband ripple of 0.5 dB,
• passband cutoff frequency of 4 kHz, and
• stopband attenuation of 45 dB or greater beyond 20 kHz.

Determine the system function in a cascade form. Plot the magnitude response, the
log-magnitude response in dB, the phase response, and the impulse response of the filter.

P8.16 A signal xa(t) contains two frequencies, 10 kHz and 15 kHz. We want to suppress the
15 kHz component to 50 dB attenuation while passing the 10 kHz component with less than
0.25 dB attenuation. Design a minimum-order Chebyshev-II analog filter to perform this
filtering operation. Plot the log-magnitude response, and verify the design.

P8.17 Design an analog Chebyshev-II lowpass filter that has a 0.25 dB or better ripple at 250 Hz
and at least 40 dB of attenuation at 400 Hz. Plot the magnitude response, the
log-magnitude response in dB, the group-delay, and the impulse response of the filter.

P8.18 A signal xa(t) contains two frequencies, 10 kHz and 15 kHz. We want to suppress the
15 kHz component to 50 dB attenuation while passing the 10 kHz component with less than
0.25 dB attenuation. Design a minimum-order elliptic analog filter to perform this filtering
operation. Plot the log-magnitude response and verify the design. Compare your design
with the Chebyshev-II design in Problem P8.16.

P8.19 Design an analog elliptic lowpass filter that has a 0.25 dB or better ripple at 500 rad/sec
and at least 50 dB of attenuation at 2000 rad/sec. Determine the system function in a
rational function form. Plot the magnitude response, the log-magnitude response in dB, the
phase response, and the impulse response of the filter. Compare your design with the
Butterworth design in Problem P8.12.

P8.20 Write a MATLAB function to design analog lowpass filters. The format of this function
should be
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function [b,a] =afd(type,Fp,Fs,Rp,As)
%
% function [b,a] =afd(type,Fp,Fs,Rp,As)
% Designs analog lowpass filters
% type = ’butter’ or ’cheby1’ or ’cheby2’ or ’ellip’
% Fp = passband cutoff in Hz
% Fs = stopband cutoff in Hz
% Rp = passband ripple in dB
% As = stopband attenuation in dB

Use the afd butt, afd chb1, afd chb2, and afd elip functions developed in this chapter.
Check your function using specifications given in Problems P8.12 through P8.17.

P8.21 We want to design a Chebyshev-I prototype lowpass digital filter operating at a sampling
rate of 8 kHz with a passband edge of 3.2 kHz, a passband ripple of 0.5 dB, and a minimum
stopband attenuation of 45 dB at 3.8 kHz.

1. Using the impulse invariance transformation with T = 1 sec, design the digital filter. Plot
the magnitude and the log-magnitude responses as functions of analog frequency in kHz.

2. Repeat part 1 using T = 1/8000 sec.
3. Compare the above two designs in parts 1 and 2 in terms of their frequency responses.

Comment on the effect of T on the impulse invariance design.

P8.22 Design a Butterworth digital lowpass filter to satisfy the following specifications.

passband edge: 0.4π, Rp = 0.5 dB

stopband edge: 0.6π, As = 50 dB

Use the impulse invariance method with T = 2. Determine the system function in the
rational form, and plot the log-magnitude response in dB. Plot the impulse response h(n)
and the impulse response ha(t) of the analog prototype and compare their shapes.

P8.23 Write a MATLAB function to design digital lowpass filters based on the impulse invariance
transformation. The format of this function should be

function [b,a] =dlpfd_ii(type,wp,ws,Rp,As,T)
%
% function [b,a] =dlpfd_ii(type,wp,ws,Rp,As,T)
% Designs digital lowpass filters using impulse invariance
% type = ’butter’ or ’cheby1’
% wp = passband cutoff in Hz
% ws = stopband cutoff in Hz
% Rp = passband ripple in dB
% As = stopband attenuation in dB
% T = sampling interval

Use the afd function developed in Problem P8.20. Check your function on specifications
given in Problems P8.21 and P8.22.
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P8.24 In this problem, we will develop a technique called the step invariance transformation. In
this technique, the step response of an analog prototype filter is preserved in the resulting
digital filter; that is, if va(t) is the step response of the prototype and if v(n) is the step
response of the digital filter, then

v(n) = va(t)|t=nT , T : sampling interval

Note that the frequency-domain quantities are related by

Va(s)
�
= L [va(t)] = Ha(s)/s

and

V (z)
�
= Z [v(n)] = H(z)

1
1 − z−1

Hence the step invariance transformation steps are as follows.
Given Ha(s),

• divide Ha(s) by s to obtain Va(s),
• find residues {Rk} and poles {pk} of Va(s),
• transform analog poles {pk} into digital poles

{
epkT

}
where T is arbitrary,

• determine V (z) from residues {Rk} and poles
{
epkT

}
, and finally

• determine H(z) by multiplying V (z) by
(
1 − z−1

)
.

Use the above procedure to develop a MATLAB function to implement the step invariance
transformation. The format of this function should be

function [b,a] =stp_invr(c,d,T)
% Step invariance transformation from analog to digital filter
% [b,a] =stp_invr(c,d,T)
% b = numerator polynomial in zˆ(-1) of the digital filter
% a = denominator polynomial in zˆ(-1) of the digital filter
% c = numerator polynomial in s of the analog filter
% d = denominator polynomial in s of the analog filter
% T = sampling (transformation) parameter

P8.25 Design the lowpass Butterworth digital filter of Problem P8.22 using the step invariance
method. Plot the log-magnitude response in dB and compare it with that in Problem P8.22.
Plot the step response v(n) and the impulse response va(t) of the analog prototype and
compare their shapes.

P8.26 In this chapter, we discussed a filter transformation technique called the matched-z
transformation. Using (8.69), write a MATLAB function called mzt that maps the analog
system function Ha(s) into the digital system function H(z). The format of the function
should be
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function [b,a] = mzt(c,d,T)
% Matched-z transformation from analog to digital filter
% [b,a] = MZT(c,d,T)
% b = numerator polynomial in zˆ(-1) of the digital filter
% a = denominator polynomial in zˆ(-1) of the digital filter
% c = numerator polynomial in s of the analog filter
% d = denominator polynomial in s of the analog filter
% T = sampling interval (transformation parameter)

Using this function, transform

Ha(s) =
s + 1

s2 + 5s + 6

into a digital filter H(z) for the sampling intervals (in seconds) T = 0.05, T = 0.1, and
T = 0.2. In each case, obtain a plot similar to that in Figure 8.20 and comment on the
performance of this technique.

P8.27 Consider an analog Butterworth lowpass filter that has a 1 dB or better ripple at 100 Hz
and at least 30 dB of attenuation at 150 Hz. Transform this filter into a digital filter using
the matched-z transformation technique in which Fs = 1000 Hz. Plot the magnitude and
phase response of the resulting digital filter and determine the exact band-edge frequencies
for the given dB specifications. Comment on the results.

P8.28 Consider an analog Chebyshev-I lowpass filter that has a 0.5 dB or better ripple at 500 Hz
and at least 40 dB of attenuation at 700 Hz. Transform this filter into a digital filter using
the matched-z transformation technique in which Fs = 2000 Hz. Plot the magnitude and
phase response of the resulting digital filter and determine the exact band-edge frequencies
for the given dB specifications. Comment on the results.

P8.29 Consider an analog Chebyshev-II lowpass filter that has a 0.25 dB or better ripple at
1500 Hz and at least 80 dB of attenuation at 2000 Hz. Transform this filter into a digital
filter using the matched-z transformation technique in which Fs = 8000 Hz. Plot the
magnitude and phase response of the resulting digital filter, and determine the exact
band-edge frequencies for the given dB specifications. Comment on the results. Is this a
satisfactory design?

P8.30 Consider the design of the lowpass Butterworth filter of Problem P8.22.

1. Use the bilinear transformation technique outlined in this chapter and the bilinear
function. Plot the log-magnitude response in dB. Compare the impulse responses of the
analog prototype and the digital filter.

2. Use the butter function and compare this design with the one in part 1.

P8.31 Consider the design of the digital Chebyshev-1 filter of Problem P8.21.

1. Use the bilinear transformation technique outlined in this chapter and the bilinear
function. Plot the log-magnitude response in dB. Compare the impulse responses of the
analog prototype and the digital filter.

2. Use the cheby1 function and compare this design with the one above.
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P8.32 Design a digital lowpass filter using elliptic prototype to satisfy the requirements

passband edge: 0.3π, Rp = 0.25 dB

stopband edge: 0.4π, As = 50 dB

Use the bilinear as well as the ellip function and compare your designs.

P8.33 Design a digital lowpass filter to satisfy the specifications

passband edge: 0.45π, Rp = 0.5 dB

stopband edge: 0.5π, As = 60 dB

1. Use the butter function and determine the order N and the actual minimum stopband
attenuation in dB.

2. Use the cheby1 function and determine the order N and the actual minimum stopband
attenuation in dB.

3. Use the cheby2 function and determine the order N and the actual minimum stopband
attenuation in dB.

4. Use the ellip function and determine the order N and the actual minimum stopband
attenuation in dB.

5. Compare the orders, the actual minimum stopband attenuations, and the group delays
in each of the above designs.

P8.34 Write a MATLAB function to determine the lowpass prototype digital filter frequencies
from an highpass digital filter specifications using the procedure outlined in this chapter.
The format of this function should be

function [wpLP,wsLP,alpha] = hp2lpfre(wphp,wshp)
% Band-edge frequency conversion from highpass to lowpass digital filter
% [wpLP,wsLP,a] = hp2lpfre(wphp,wshp)
% wpLP = passband edge for the lowpass prototype
% wsLP = stopband edge for the lowpass prototype
% alpha = lowpass-to-highpass transformation parameter
% wphp = passband edge for the highpass
% wshp = stopband edge for the highpass

Using this function, develop a MATLAB function to design a highpass digital filter using
the bilinear transformation. The format of this function should be

function [b,a] = dhpfd_bl(type,wp,ws,Rp,As)
% IIR highpass filter design using bilinear transformation
% [b,a] = dhpfd_bl(type,wp,ws,Rp,As)
% type = ’butter’ or ’cheby1’ or ’chevy2’ or ’ellip’
% b = numerator polynomial of the highpass filter
% a = denominator polynomial of the highpass filter
% wp = passband frequency in radians
% ws = stopband frequency in radians (wp < ws)
% Rp = passband ripple in dB
% As = stopband attenuation in dB

Verify your function using the specifications in Example 8.27.
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P8.35 Design a highpass filter to satisfy the specifications

stopband edge: 0.4π, As = 60 dB
passband edge: 0.6π, Rp = 0.5 dB

1. Use the dhpfd bl function of Problem P8.34 and the Chebyshev-I prototype to design
this filter. Plot the log-magnitude response in dB of the designed filter.

2. Use the cheby1 function for design and plot the log-magnitude response in dB. Compare
these two designs.

P8.36 Write a MATLAB function to determine the lowpass prototype digital filter frequencies
from an arbitrary lowpass digital filter specifications using the functions given in Table 8.2
and the procedure outlined for highpass filters. The format of this function should be

function [wpLP,wsLP,alpha] = lp2lpfre(wplp,wslp)
% Band-edge frequency conversion from lowpass to lowpass digital filter
% [wpLP,wsLP,a] = lp2lpfre(wplp,wslp)
% wpLP = passband edge for the lowpass prototype
% wsLP = stopband edge for the lowpass prototype
% alpha = lowpass-to-highpass transformation parameter
% wplp = passband edge for the given lowpass
% wslp = passband edge for the given lowpass

Using this function, develop a MATLAB function to design a lowpass filter from a
prototype lowpass digital filter using the bilinear transformation. The format of this
function should be

function [b,a] = dlpfd_bl(type,wp,ws,Rp,As)
% IIR lowpass filter design using bilinear transformation
% [b,a] = dlpfd_bl(type,wp,ws,Rp,As)
% type = ’butter’ or ’cheby1’ or ’chevy2’ or ’ellip’
% b = numerator polynomial of the bandpass filter
% a = denominator polynomial of the bandpass filter
% wp = passband frequency in radians
% ws = stopband frequency in radians
% Rp = passband ripple in dB
% As = stopband attenuation in dB

Verify your function using the designs in Problem P8.33.

P8.37 Design a bandpass digital filter using the Cheby2 function. The specifications are

lower stopband edge: 0.3π
upper stopband edge: 0.6π

As = 50 dB

lower passband edge: 0.4π
upper passband edge: 0.5π

Rp = 0.5 dB

Plot the impulse response and the log-magnitude response in dB of the designed filter.

P8.38 Write a MATLAB function to determine the lowpass prototype digital filter frequencies
from a bandpass digital filter specifications using the functions given in Table 8.2 and the
procedure outlined for highpass filters. The format of this function should be
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function [wpLP,wsLP,alpha] = bp2lpfre(wpbp,wsblp)
% Band-edge frequency conversion from bandpass to lowpass digital filter
% [wpLP,wsLP,a] = bp2lpfre(wpbp,wsbp)
% wpLP = passband edge for the lowpass prototype
% wsLP = stopband edge for the lowpass prototype
% alpha = lowpass-to-highpass transformation parameter
% wpbp = passband-edge frequency array [wp_lower, wp_upper] for the bandpass
% wsbp = passband-edge frequency array [ws_lower, ws_upper] for the bandpass

Using this function, develop a MATLAB function to design a bandpass filter from a
prototype lowpass digital filter using the bilinear transformation. The format of this
function should be

function [b,a] = dbpfd_bl(type,wp,ws,Rp,As)
% IIR bandpass filter design using bilinear transformation
% [b,a] = dbpfd_bl(type,wp,ws,Rp,As)
% type = ’butter’ or ’cheby1’ or ’chevy2’ or ’ellip’
% b = numerator polynomial of the bandpass filter
% a = denominator polynomial of the bandpass filter
% wp = passband frequency array [wp_lower, wp_upper] in radians
% ws = stopband frequency array [wp_lower, wp_upper] in radians
% Rp = passband ripple in dB
% As = stopband attenuation in dB

Verify your function using the design in Problem P8.37.

P8.39 We wish to use the Chebyshev-I prototype to design a bandstop digital IIR filter that meets
the following specifications:

0.95 ≤ |H(ejω)| ≤ 1.05,
0 ≤ |H(ejω)| ≤ 0.01,

0.95 ≤ |H(ejω)| ≤ 1.05,

0 ≤ |ω| ≤ 0.25π
0.35π ≤ |ω| ≤ 0.65π
0.75π ≤ |ω| ≤ π

Use the cheby1 function and determine the system function H(z) of such a filter. Provide a
plot containing subplots of the log-magnitude response in dB and the impulse response.

P8.40 Write a MATLAB function to determine the lowpass prototype digital filter frequencies
from a bandstop digital filter specifications using the functions given in Table 8.2 and the
procedure outlined for highpass filters. The format of this function should be

function [wpLP,wsLP,alpha] = bs2lpfre(wpbp,wsblp)
% Band-edge frequency conversion from bandstop to lowpass digital filter
% [wpLP,wsLP,a] = bs2lpfre(wpbp,wsbp)
% wpLP = passband edge for the lowpass prototype
% wsLP = stopband edge for the lowpass prototype
% alpha = lowpass-to-highpass transformation parameter
% wpbp = passband-edge frequency array [wp_lower, wp_upper] for the bandstop
% wsbp = passband-edge frequency array [ws_lower, ws_upper] for the bandstop
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Using this function, develop a MATLAB function to design a bandstop filter from a
prototype lowpass digital filter using the bilinear transformation. The format of this
function should be

function [b,a] = dbsfd_bl(type,wp,ws,Rp,As)
% IIR bandstop filter design using bilinear transformation
% [b,a] = dbsfd_bl(type,wp,ws,Rp,As)
% type = ’butter’ or ’cheby1’ or ’chevy2’ or ’ellip’
% b = numerator polynomial of the bandstop filter
% a = denominator polynomial of the bandstop filter
% wp = passband frequency array [wp_lower, wp_upper] in radians
% ws = stopband frequency array [wp_lower, wp_upper] in radians
% Rp = passband ripple in dB
% As = stopband attenuation in dB

Verify your function using the design in Problem P8.39.

P8.41 An analog signal

xa(t) = 3 sin(40πt) + 3 cos(50πt)

is to be processed by a

xa(t) −→ A/D −→ H(z) −→ D/A −→ ya(t)

system in which the sampling frequency is 100 sam/sec.

1. Design a minimum-order IIR digital filter that will pass the first component of xa(t)
with attenuation of less than 1 dB and suppress the second component to at least 50 dB.
The filter should have a monotone passband and an equiripple stopband. Determine the
system function in rational function form and plot the log-magnitude response.

2. Generate 500 samples (sampled at 100 sam/sec) of the signal xa(t) and process through
the designed filter to obtain the output sequence. Interpolate this sequence (using any
one of the interpolating techniques discussed in Chapter 3) to obtain ya(t). Plot the
input and the output signals and comment on your results.

P8.42 Using the bilinear transformation method, design a tenth-order elliptic bandstop filter to
remove the digital frequency ω = 0.44π with bandwidth of 0.08π. Choose a reasonable value
for the stopband attenuation. Plot the magnitude response. Generate 201 samples of the
sequence

x(n) = sin [0.44πn] , n = 0, . . . , 200

and process thorough the bandstop filter. Comment on your results.

P8.43 Design a digital highpass filter H(z) to be used in a

xa(t) −→ A/D −→ H(z) −→ D/A −→ ya(t)
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structure to satisfy the following requirements:

• sampling rate of 10 Khz,
• stopband edge of 1.5 Khz with attenuation of 40 dB,
• passband edge of 2 Khz with ripple of 1 dB,
• equiripple passband and stopband, and
• bilinear transformation method.

1. Plot the magnitude response of the overall analog filter over the [0, 5 Khz] interval.
2. Plot the magnitude response of the digital lowpass prototype.
3. What limitations must be placed on the input signals so that the preceding structure

truly acts as a highpass filter to them?

P8.44 The filter specifications shown in Figure P8.1 can be considered a combination of a
bandpass and a highpass specifications. Design a minimum-order IIR digital filter to satisfy
these specifications. Provide a plot of the magnitude response with grid lines as shown in
Figure P8.1. From your design and plot determine the order of the filter and the exact
band-edge frequencies.

P8.45 The filter specifications shown in Figure P8.2 can be considered as a combination of a
lowpass and a bandpass specifications. Design a minimum-order IIR digital filter to satisfy
these specifications. Provide a plot of the magnitude response with grid lines as shown in
Figure P8.2. From your design and plot determine the order of the filter and the exact
band-edge frequencies.

P8.46 Design a minimum-order IIR digital filter to satisfy the following specifications:

• a passband over the [0.35π, 0.5π] interval,
• stopbands over the [0, 0.3π] and [0.6π, π] intervals,
• passband ripple of 1 dB,
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FIGURE P8.1 Filter specifications for Problem P8.44
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FIGURE P8.2 Filter specifications for Problem P8.45

• stopband attenuation of 40 dB, and
• equiripple passbands and stopband.

Determine the system function H(z) of the designed filter in the rational function form.
Provide a plot of the log-magnitude response in dB. From your design and plot, answer the
following questions.

1. What is the order of the filter?
2. From your plot what are the exact band-edge frequencies for the given passband and

stopband attenuations?
3. Why is there a discrepancy between the specification frequencies and the exact

frequencies?
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C H A P T E R 9
Sampling Rate
Conversion

In many practical applications of digital signal processing, one is faced
with the problem of changing the sampling rate of a signal, either increas-
ing it or decreasing it by some amount. The process of converting a signal
from a given rate to a different rate is called sampling rate conversion.
In turn, systems that employ multiple sampling rates in the processing
of digital signals are called multirate digital signal processing systems. In
this chapter, we describe sampling rate conversion and multirate signal
processing in the digital domain.

As an example, consider the system shown in Figure 9.1, in which
an analog signal xa(t) is sampled using the sampling rate of Fs = 1

T
samples/second. The resulting digital signal x(n) is subsequently filtered
using a lowpass filter (LPF) with a cutoff frequency of ωc.

Thus the output signal y(n) has all its energy in the band 0 ≤ ω ≤
ωc = 2πfc. According to the sampling theorem, such a signal may be rep-
resented by the rate of 2fc/T samples/second instead of its existing rate
of Fs = 1/T . Note that |fc| ≤ 0.5. However, if fc � 0.5, then 2fc/T � Fs.
Hence it would seem more advantageous to lower the sampling frequency
to a value closer to 2fc/T and perform signal processing operations at
this lower rate.

Other applications include the need for an optimal interpolation in
computer tomography and efficient multistage designs of narrowband low-
pass filters.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Introduction 459

H(w) Y(w)

Lowpass
Filter

wc

xa(t)

Xa(Ω)

x(n) y(n)

−wcwc–wc wc
w wΩ

0 0 0p /T−p /T p p–p −p

ADC

Fs =
1
T

FIGURE 9.1 A typical signal processing system

9.1 INTRODUCTION

The idea of interpolation is a very familiar concept to most of us and has
its origin in numerical analysis. Typically, interpolation is performed on a
table of numbers representing a mathematical function. Such a table may
be printed in a handbook or stored in a computer memory device. The
interpolation, often simply a linear (or straight line) approximation, cre-
ates an error called the interpolation error. The main difference between
interpolation in digital signal processing and interpolation in numerical
analysis is that we will assume that the given data is bandlimited to some
band of frequencies and develop schemes that are optimal on this ba-
sis, whereas a numerical analyst typically assumes that the data consists
of samples of polynomials (or very nearly so) and develops schemes to
minimize the resulting error.

To motivate this concept of interpolation in signal processing, it is
helpful to think of an underlying (or original) analog signal xa(t) that
was sampled to produce the given discrete signal x(n). If the xa(t) was
sampled at the minimum required rate, then, according to the sampling
theorem, it can be recovered completely from the samples x(n). If we now
sample this recovered analog signal, at, say, twice the old rate, we have
succeeded in doubling the sampling rate or interpolating by a factor of 2
with zero interpolation error. Specifically, we have the following.

Original discrete signal: x(n) = xa(nT ) (9.1)

Reconstructed analog signal: xa(t) =
∑

k xa(kT )
sin[π(t − kT )/T ]

π(t − kT )/T
(9.2)
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Resampled analog signal: xa

(
m

T

2

)
=
∑

k

xa(kT )
sin
[
π
(
mT

2 − kT
)
/T
]

π
(
mT

2 − kT
)
/T

=
∑

k

xa(kT )
sin
[
π
(

m
2 − k

)]

π
(

m
2 − k

) (9.3)

resulting in high-rate discrete signal: y(m)
�
=xa

(
m

T

2

)
(9.4)

In this formulation of ideal interpolation, the discrete signal was converted
to the analog signal and then back to the discrete signal at twice the rate.
In the subsequent sections, we will study how to avoid this roundabout
approach and perform sampling rate conversion completely in the digital
domain.

The process of sampling rate conversion in the digital domain can
be viewed as a linear filtering operation, as illustrated in Figure 9.2a.
The input signal x(n) is characterized by the sampling rate Fx = 1/Tx,
and the output signal y(m) is characterized by the sampling rate Fy =
1/Ty, where Tx and Ty are the corresponding sampling intervals. In our
treatment, the ratio Fy/Fx is constrained to be rational

Fy

Fx
=

I

D
(9.5)

where D and I are relatively prime integers. We shall show that the
linear filter is characterized by a time-variant impulse response, denoted

Rate Fx =

(a)

(b)

y(m)

y(m)

y(m + 1)

y(m + 2)

y(m + 3) y(m + 4)
y(m + 5) y(m + 6)

x(n + 1)x(n)

x(n)

x(n + 2) x(n + 3) x(n + 4) x(n + 5)

ti

Linear Filter
h(n, m)

Fy =
1
Ty

1
Ty

FIGURE 9.2 Sampling rate conversion viewed as a linear filtering process
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as h(n, m). Hence the input x(n) and the output y(m) are related by the
superposition summation for time-variant systems.

The sampling rate conversion process can also be understood from the
point of view of digital resampling of the same analog signal. Let xa(t)
be the analog signal that is sampled at the first rate Fx to generate x(n).
The goal of rate conversion is to obtain another sequence y(m) directly
from x(n), which is equal to the sampled values of xa(t) at a second rate
Fy. As is depicted in Figure 9.2b, y(m) is a time-shifted version of x(n).
Such a time shift can be realized by using a linear filter that has a flat
magnitude response and a linear phase response (i.e., it has a frequency
response of e−jωτi , where τi is the time delay generated by the filter). If
the two sampling rates are not equal, the required amount of time shifting
will vary from sample to sample, as shown in Figure 9.2b. Thus the rate
converter can be implemented using a set of linear filters that have the
same flat magnitude response but generate different time delays.

Before considering the general case of sampling rate conversion, we
shall consider two special cases. One is the case of sampling rate reduction
by an integer factor D, and the second is the case of a sampling rate
increase by an integer factor I. The process of reducing the sampling rate
by a factor D (downsampling by D) is called decimation. The process of
increasing the sampling rate by an integer factor I (upsampling by I) is
called interpolation.

9.2 DECIMATION BY A FACTOR D

The basic operation required in decimation is the downsampling of the
high-rate signal x(n) into a low-rate signal y(m). We will develop the
time- and frequency-domain relationships between these two signals to
understand the frequency-domain aliasing in y(m). We will then study
the condition needed for error-free decimation and the system structure
required for its implementation.

9.2.1 THE DOWNSAMPLER
Note that the downsampled signal y(m) is obtained by selecting one out
of D samples of x(n) and throwing away the other (D − 1) samples out
of every D samples—that is,

y(m) = x(n)|n=mD = x(mD); n, m, D ∈ {integers} (9.6)

The block diagram representation of (9.6) is shown in Figure 9.3. This
downsampling element changes the rate of processing and thus is funda-
mentally different from other block diagram elements that we have used
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x(n) y (m)
Rate Fx Rate Fy =

Fx

D

D

FIGURE 9.3 A downsampling element

previously. In fact, we can show that a system containing a downsam-
pling element is shift varying. However, this fact does not prohibit the
frequency-domain analysis of y(m) in terms of x(n), as we shall see later.

� EXAMPLE 9.1 Using D = 2 and x(n) = {1
↑
, 2, 3, 4, 3, 2, 1}, verify that the downsampler is time

varying.

Solution The downsampled signal is y(m) = {1
↑
, 3, 3, 1}. If we now delay x(n) by one

sample, we get x(n−1) = {0
↑
, 1, 2, 3, 4, 3, 2, 1}. The corresponding downsampled

signal is y1(m) = {0
↑
, 2, 4, 2}, which is different from y(m − 1). �

MATLAB Implementation MATLAB provides the function [y] =
downsample(x,D) that downsamples input array x into output array y
by keeping every Dth sample starting with the first sample. An optional
third parameter “phase” specifies the sample offset which must be an
integer between 0 and (D-1). For example,

>> x = [1,2,3,4,3,2,1]; y = downsample(x,2)
y =

1 3 3 1

downsamples by a factor of 2 starting with the first sample. However,

>> x = [1,2,3,4,3,2,1]; y = downsample(x,2,1)
y =

2 4 2

produces an entirely different sequence by downsampling, starting with
the second sample (i.e., offset by 1).

The frequency-domain representation of the downsampled sig-
nal y(m) We now express Y (ω) in terms of X(ω) using z-transform
relations. Toward this, we introduce a high-rate sequence x̄(n), which is
given by

x̄(n)
�
=

{
x(n), n = 0,±D,±2D, . . .

0, elsewhere
(9.7)
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Clearly, x̄(n) can be viewed as a sequence obtained by multiplying x(n)
with a periodic train of impulses p(n), with period D, as illustrated in
Figure 9.4. The discrete Fourier series representation of p(n) is

p(n)
�
=

{
1, n = 0,±D,±2D, . . .

0, elsewhere
=

1
D

D−1∑
�=0

ej 2π
D �n (9.8)

Hence we can write
x̄(n) = x(n)p(n) (9.9)

and
y(m) = x̄(mD) = x(mD)p(mD) = x(mD) (9.10)

as shown in (9.6). Figure 9.4 shows an example of sequences x(n), x̄(n),
and y(m) defined in (9.7)–(9.10).

n

n

n

m

x(n)

y(m)

p(n)

(a)

(b)

(c)

(d)

−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9

−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9

−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9

−3 −2 −1 0 1 2 3

x(n)

FIGURE 9.4 Operation of downsampling: (a) original signal x(n), (b) periodic
impulse train p(n) with period D = 3, (c) multiplication of x(n) with p(n), and
(d) downsampled signal y(m)
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Now the z-transform of the output sequence y(m) is

Y (z) =
∞∑

m=−∞
y(m)z−m =

∞∑
m=−∞

x̄(mD)z−m

(9.11)

Y (z) =
∞∑

m=−∞
x̄(m)z−m/D

where the last step follows from the fact that x̄(m) = 0, except at multi-
ples of D. By making use of the relations in (9.7) and (9.8) in (9.11), we
obtain

Y (z) =
∞∑

m=−∞
x(m)

[
1
D

D−1∑
k=0

ej2πmk/D

]
z−m/D

=
1
D

D−1∑
k=0

∞∑
m=−∞

x(m)
(
e−j2πk/Dz1/D

)−m

=
1
D

D−1∑
k=0

X
(
e−j2πk/Dz1/D

)
(9.12)

The key steps in obtaining the z-transform representation (9.12), for the
(D ↓ 1) downsampler, are as follows:

• the introduction of the high-rate sequence x̄(n), which has (D−1) zeros
in between the retained values x(nD), and

• the impulse-train representation (9.8) for the periodic sampling series
that relates x(n) to x̄(n).

By evaluating Y (z) on the unit circle, we obtain the spectrum of the
output signal y(m). Since the rate of y(m) is Fy = 1/Ty, the frequency
variable, which we denote as ωy, is in radians and is relative to the sam-
pling rate Fy,

ωy =
2πF

Fy
= 2πFTy (9.13)

Since the sampling rates are related by the expression

Fy =
Fx

D
(9.14)

it follows that the frequency variables ωy and

ωx =
2πF

Fx
2πFTx (9.15)
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FIGURE 9.5 Spectra of x(n) and y(m) in no-aliasing case

are related by
ωy = Dωx (9.16)

Thus, as expected, the frequency range 0 ≤ |ωx| ≤ π/D is stretched into
the corresponding frequency range 0 ≤ |ωy| ≤ π by the downsampling
process.

We conclude that the spectrum Y (ωy), which is obtained by evaluat-
ing (9.12) on the unit circle, can be expressed as1

Y (ωy) =
1
D

D−1∑
k=0

X

(
ωy − 2πk

D

)
(9.17)

which is an aliased version of the spectrum X(ωx) of x(n). To avoid alias-
ing error, one needs the spectrum X(ωx) to be less than full band or
bandlimited (note that this bandlimitedness is in the digital frequency
domain). In fact, we must have

X(ωx) = 0 for
π

D
≤ |ωx| ≤ π (9.18)

Then

Y (ωy) =
1
D

X
(ωy

D

)
, |ωy| ≤ π (9.19)

and no aliasing error is present. An example of this for D = 3 is shown in
Figure 9.5.

1In this chapter, we will make a slight change in our notation for the DTFT. We will use
X(ω) to denote the spectrum of x(n) instead of the previously used notation X(ejω).
Although this change does conflict with the z-transform notation, the meaning should
be clear from the context. This change is made for the sake of clarity and visibility of
variables.
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Comments:

1. The sampling theorem interpretation for (9.19) is that the sequence
x(n) was originally sampled at D times higher rate than required;
therefore, downsampling by D simply reduces the effective sampling
rate to the minimum required to prevent aliasing.

2. Equation (9.18) expresses the requirement for zero decimation error
in the sense that no information is lost—i.e., there is no irreversible
aliasing error in the frequency domain.

3. The argument ωy

D occurs because in our notation ω is expressed in
rad/sample. Thus the frequency of y(m) expressed in terms of the
higher-rate sequence x(n) must be divided by D to account for the
slower rate of y(m).

4. Note that there is a factor 1
D in (9.19). This factor is required to make

the inverse Fourier transform work out properly and is entirely consis-
tent with the spectra of the sampled analog signals.

9.2.2 THE IDEAL DECIMATOR
In general, (9.18) will not be exactly true, and the (D ↓ 1) downsampler
would cause irreversible aliasing error. To avoid aliasing, we must first
reduce the bandwidth of x(n) to Fx,max = Fx/2D, or equivalently, to
ωx,max = π/D. Then we may downsample by D and thus avoid aliasing.

The decimation process is illustrated in Figure 9.6. The input se-
quence x(n) is passed through a lowpass filter, characterized by the
impulse response h(n) and a frequency response HD(ωx), which ideally
satisfies the condition

HD(ωx) =

{
1, |ωx| ≤ π/D

0, otherwise
(9.20)

Thus the filter eliminates the spectrum of X(ωx) in the range π/D <
ωx < π. Of course, the implication is that only the frequency components
of x(n) in the range |ωx| ≤ π/D are of interest in further processing of
the signal.

IDEAL
LPF

D y(m)x(n)
v (n)

Rate: Fx Fx

Ideal Decimator

= Fy
Fx

D

FIGURE 9.6 Ideal decimation by a factor D
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The output of the filter is a sequence v(n) given as

v(n)
�
=

∞∑
k=0

h(k)x(n − k) (9.21)

which is then downsampled by the factor D to produce y(m). Thus

y(m) = v(mD) =
∞∑

k=0

h(k)x(mD − k) (9.22)

Although the filtering operation on x(n) is linear and time invariant, the
downsampling operation in combination with the filtering results also in
a time-variant system.

The frequency-domain characteristics of the output sequence y(m)
obtained through the filtered signal v(n) can be determined by following
the analysis steps given before—that is, by relating the spectrum of y(m)
to the spectrum of the input sequence x(n). Using these steps, we can
show that

Y (z) =
1
D

D−1∑
k=0

H
(
e−j2πk/Dz1/D

)
X
(
e−j2πk/Dz1/D

)
(9.23)

or that

Y (ωy) =
1
D

D−1∑
k=0

H

(
ωy − 2πk

D

)
X

(
ωy − 2πk

D

)
(9.24)

With a properly designed filter HD(ω), the aliasing is eliminated and,
consequently, all but the first term in (9.24) vanish. Hence

Y (ωy) =
1
D

HD

(ωy

D

)
X
(ωy

D

)
=

1
D

X
(ωy

D

)
(9.25)

for 0 ≤ |ωy| ≤ π. The spectra for the sequences x(n), h(n), v(n), and
y(m) are illustrated in Figure 9.7.

MATLAB Implementation MATLAB provides the function y =
decimate(x,D) that resamples the sequence in array x at 1/D times
the original sampling rate. The resulting resampled array y is D times
shorter—that is, length(y) = length(x)/D. The ideal lowpass filter
given in (9.20) is not possible in the MATLAB implementation; however,
fairly accurate approximations are used. The default lowpass filter used
in the function is an eighth-order Chebyshev type-I lowpass filter with
the cutoff frequency of 0.8π/D. Using additional optional arguments, the
filter order can be changed or an FIR filter of specified order and cutoff
frequency can be used.
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FIGURE 9.7 Spectra of signals in the decimation of x(n) by a factor D

� EXAMPLE 9.2 Let x(n) = cos(0.125πn). Generate a large number of samples of x(n) and
decimate them using D = 2, 4, and 8 to show the results of decimation.

Solution We will plot the middle segments of the signals to avoid end-effects due to
the default lowpass filter in the decimate function. The following MATLAB
script shows details of these operations, and Figure 9.7 shows the plots of the
sequences.

n = 0:2048; k1 = 256; k2 = k1+32; m = 0:(k2-k1);
Hf1 = figure(’units’,’inches’,’position’,[1,1,6,4],...

’paperunits’,’inches’,’paperposition’,[0,0,6,4]);

% (a) Original signal
x = cos(0.125*pi*n); subplot(2,2,1);
Ha = stem(m,x(m+k1+1),’g’,’filled’); axis([-1,33,-1.1,1.1]);
set(Ha,’markersize’,2); ylabel(’Amplitude’);
title(’Original Sequence x(n)’,’fontsize’,TF);
set(gca,’xtick’,[0,16,32]); set(gca,’ytick’,[-1,0,1]);

% (b) Decimation by D = 2
D = 2; y = decimate(x,D); subplot(2,2,2);
Hb = stem(m,y(m+k1/D+1),’c’,’filled’); axis([-1,33,-1.1,1.1]);
set(Hb,’markersize’,2); ylabel(’Amplitude’);
title(’Decimated by D = 2’,’fontsize’,TF);
set(gca,’xtick’,[0,16,32]); set(gca,’ytick’,[-1,0,1]);
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% (c) Decimation by D = 4
D = 4; y = decimate(x,D); subplot(2,2,3);
Hc = stem(m,y(m+k1/D+1),’r’,’filled’); axis([-1,33,-1.1,1.1]);
set(Hc,’markersize’,2); ylabel(’Amplitude’);
title(’Decimated by D = 4’,’fontsize’,TF);
set(gca,’xtick’,[0,16,32]); set(gca,’ytick’,[-1,0,1]);
xlabel(’n’);

% (d) Decimation by D = 8
D = 8; y = decimate(x,D); subplot(2,2,4);
Hd = stem(m,y(m+k1/D+1),’m’,’filled’); axis([-1,33,-1.1,1.1]);
set(Hd,’markersize’,2); ylabel(’Amplitude’);
title(’Decimated by D = 8’,’fontsize’,TF);
set(gca,’xtick’,[0,16,32]); set(gca,’ytick’,[-1,0,1]);
xlabel(’n’);

From Figure 9.8, we observe that the decimated sequences for D = 2 and
D = 4 are correct and represent the original sinusoidal sequence x(n) at lower
sampling rates. However, the sequence for D = 8 is almost zero because the
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FIGURE 9.8 Original and decimated signals in Example 9.2
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470 Chapter 9 SAMPLING RATE CONVERSION

lowpass filter has attenuated x(n) prior to downsampling. Recall that the cutoff
frequency of the lowpass filter is set to 0.8π/D = 0.1π, which eliminates x(n).
If we had used the downsampling operation on x(n) instead of decimation, the
resulting sequence would be y(m) = 1, which is an aliased signal. Thus the
lowpass filtering is necessary. �

9.3 INTERPOLATION BY A FACTOR I

An increase in the sampling rate by an integer factor of I—that is,
Fy = IFx—can be accomplished by interpolating I − 1 new samples
between successive values of the signal. The interpolation process can
be accomplished in a variety of ways. We shall describe a process that
preserves the spectral shape of the signal sequence x(n). This process can
be accomplished in two steps. The first step creates an intermediate signal
at the high rate Fy by interlacing zeros in between nonzero samples in an
operation called upsampling. In the second step, the intermediate signal
is filtered to “fill in” zero-interlaced samples to create the interpolated
high-rate signal. As before, we will first study the time- and frequency-
domain characteristics of the upsampled signal and then introduce the
interpolation system.

9.3.1 THE UPSAMPLER
Let v(m) denote the intermediate sequence with a rate Fy = IFx, which
is obtained from x(n) by adding I − 1 zeros between successive values of
x(n). Thus

v(m) =

{
x(m/I), m = 0,±I,±2I, . . .

0, otherwise
(9.26)

and its sampling rate is identical to the rate of v(m). The block diagram
of the upsampler is shown in Figure 9.9. Again, any system containing
the upsampler is a time-varying system (Problem P9.1).

I v(m)x(n)

Rate IFx = FvRate Fx

FIGURE 9.9 An upsampling element

� EXAMPLE 9.3 Let I = 2 and x(n) = {1
↑
, 2, 3, 4}. Verify that the upsampler is time varying.
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Solution The upsampled signal is v(m) = {1
↑
, 0, 2, 0, 3, 0, 4, 0}. If we now delay x(n) by

one sample, we get x(n−1) = {0
↑
, 1, 2, 3, 4}. The corresponding upsampled signal

is v1(m) = {0
↑
, 0, 1, 0, 2, 0, 3, 0, 4, 0} = v(m − 2) and not v(m − 1). �

MATLAB Implementation MATLAB provides the function [v] =
upsample(x,I) that upsamples input array x into output v by insert-
ing (I-1) zeros between input samples. An optional third parameter,
“phase,” specifies the sample offset, which must be an integer between
0 and (I-1). For example,

>> x = [1,2,3,4]; v = upsample(x,3)
v =

1 0 0 2 0 0 3 0 0 4 0 0

upsamples by a factor of 2 starting with the first sample. However,

>> v = upsample(x,3,1)
v =

0 1 0 0 2 0 0 3 0 0 4 0
>> v = upsample(x,3,2)
v =

0 0 1 0 0 2 0 0 3 0 0 4

produces two different signals by upsampling, starting with the second
and the third sample (i.e., offset by 1), respectively. Note that the lengths
of the upsampled signals are I times the length of the original signal.

The frequency-domain representation of the upsampled signal
y(m) The sequence v(m) has a z-transform

V (z) =
∞∑

m=−∞
v(m)z−m =

∞∑
m=−∞

v(m)z−mI = X(zI) (9.27)

The corresponding spectrum of v(m) is obtained by evaluating (9.27) on
the unit circle. Thus

V (ωy) = X(ωyI) (9.28)

where ωy denotes the frequency variable relative to the new sampling rate
Fy (i.e., ωy = 2πF/Fy). Now the relationship between sampling rates
is Fy = IFx, and hence the frequency variables ωx and ωy are related
according to the formula

ωy =
ωx

I
(9.29)
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FIGURE 9.10 Spectra of x(n) and v(m) where V (ωy) = X(ωyI)

The spectra X(ωx) and V (ωy) are illustrated in Figure 9.10. We observe
that the sampling rate increase, obtained by the addition of I − 1 zero
samples between successive values of x(n), results in a signal whose spec-
trum V (ωy) is an I-fold periodic repetition of the input signal spectrum
X(ωx).

9.3.2 THE IDEAL INTERPOLATOR
Since only the frequency components of x(n) in the range 0 ≤ ωy ≤
π/I are unique, the images of X(ω) above ωy = π/I should be rejected
by passing the sequence v(m) through a lowpass filter with a frequency
response HI(ωy) that ideally has the characteristic

HI(ωy) =

{
C, 0 ≤ |ωy| ≤ π/I

0, otherwise
(9.30)

where C is a scale factor required to properly normalize the output
sequence y(m). Consequently, the output spectrum is

Y (ωy) =

{
CX(ωyI), 0 ≤ |ωy| ≤ π/I

0, otherwise
(9.31)

The scale factor C is selected so that the output y(m) = x(m/I) for
m = 0,±I,±2I, . . . . For mathematical convenience, we select the point
m = 0. Thus

y(0) =
1
2π

∫ π

−π

Y (ωy)dωy =
C

2π

∫ π/I

−π/I

X(ωyI)dωy (9.32)

Since ωy = ωx/I, (9.32) can be expressed as

y(0) =
C

I

1
2π

∫ π

−π

X(ωx)dωx =
C

I
x(0) (9.33)

therefore C = I is the desired normalization factor.
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IDEAL
LPF

I y(m)x(n)
v (m)

Rate: Fx IFx IFx

Ideal Interpolator

FIGURE 9.11 Ideal interpolation by a factor I

Finally, we indicate that the output sequence y(m) can be expressed
as a convolution of the sequence v(n) with the unit sample response h(n)
of the lowpass filter. Thus

y(m) =
∞∑

k=−∞
h(m − k)v(k) (9.34)

Since v(k) = 0 except at multiples of I, where v(kI) = x(k), (9.34)
becomes

y(m) =
∞∑

k=−∞
h(m − kI)x(k) (9.35)

The ideal interpolator is shown in Figure 9.11.

MATLAB Implementation MATLAB provides the function [y,h] =
interp(x,I) that resamples the signal in array x at I times the original
sampling rate. The resulting resampled array y is I times longer—that
is, length(y) = I*length(x). The ideal lowpass filter given in (9.30) is
approximated by a symmetric filter impulse response, h, which is designed
internally. It allows the original samples to pass through unchanged and
interpolates between so that the mean square error between them and
their ideal values is minimized. The third optional parameter, L, specifies
the length of the symmetric filter as 2*L*I+1, and the fourth optional
parameter, cutoff, specifies the cutoff frequency of the input signal in π
units. The default values are L = 5 and cutoff = 0.5. Thus, if I = 2,
then the length of the symmetric filter is 21 for the default L = 5.

� EXAMPLE 9.4 Let x(n) = cos(πn). Generate samples of x(n) and interpolate them using I = 2,
4, and 8 to show the results of interpolation.

Solution We will plot the middle segments of the signals to avoid end-effects due to
the default lowpass filter in the interp function. The following MATLAB
script shows details of these operations, and Figure 9.12 shows the plots of the
sequences.
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FIGURE 9.12 Original and interpolated signals in Example 9.4

n = 0:256; k1 = 64; k2 = k1+32; m = 0:(k2-k1);
Hf1 = figure(’units’,’inches’,’position’,[1,1,6,4],...

’paperunits’,’inches’,’paperposition’,[0,0,6,4]);

% (a) Original signal
x = cos(pi*n); subplot(2,2,1);
Ha = stem(m,x(m+k1+1),’g’,’filled’); axis([-1,33,-1.1,1.1]);
set(Ha,’markersize’,2); ylabel(’Amplitude’);
title(’Original Sequence x(n)’,’fontsize’,TF);
set(gca,’xtick’,[0,16,32]); set(gca,’ytick’,[-1,0,1]);

% (b) Interpolation by I = 2
I = 2; y = interp(x,I); subplot(2,2,2);
Hb = stem(m,y(m+k1*I+1),’c’,’filled’); axis([-1,33,-1.1,1.1]);
set(Hb,’markersize’,2); ylabel(’Amplitude’);
title(’Interpolated by I = 2’,’fontsize’,TF);
set(gca,’xtick’,[0,16,32]); set(gca,’ytick’,[-1,0,1]);
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% (c) Interpolation by I = 4
I = 4; y = interp(x,I); subplot(2,2,3);
Hc = stem(m,y(m+k1*I+1),’r’,’filled’); axis([-1,33,-1.1,1.1]);
set(Hc,’markersize’,2); ylabel(’Amplitude’);
title(’Interpolated by I = 4’,’fontsize’,TF);
set(gca,’xtick’,[0,16,32]); set(gca,’ytick’,[-1,0,1]);
xlabel(’n’);

% (d) Interpolation by I = 8
I = 8; y = interp(x,I); subplot(2,2,4);
Hd = stem(m,y(m+k1*I+1),’m’,’filled’); axis([-1,33,-1.1,1.1]);
set(Hd,’markersize’,2); ylabel(’Amplitude’);
title(’Interpolated by I = 8’,’fontsize’,TF);
set(gca,’xtick’,[0,16,32]); set(gca,’ytick’,[-1,0,1]);
xlabel(’n’);

From Figure 9.11, we observe that the interpolated sequences for all three values
of I are appropriate and represent the original sinusoidal signal x(n) at higher
sampling rates. In the case of I = 8, the resulting sequence does not appear
to be perfectly sinusoidal in shape. This is due to the fact that the frequency
response of the designed lowpass filter is not close to that of an ideal filter. �

� EXAMPLE 9.5 Examine the frequency response of the lowpass filter used in the interpolation
of the signal in Example 10.4.

Solution The second optional argument in the interp function provides the impulse
response from which we can compute the frequency response, as shown in the
following MATLAB script.

n = 0:256; x = cos(pi*n); w = [0:100]*pi/100;
Hf1 = figure(’units’,’inches’,’position’,[1,1,6,4],...

’paperunits’,’inches’,’paperposition’,[0,0,6,4]);

% (a) Interpolation by I = 2, L = 5;
I = 2; [y,h] = interp(x,I); H = freqz(h,1,w); H = abs(H);
subplot(2,2,1); plot(w/pi,H,’g’); axis([0,1,0,I+0.1]); ylabel(’Magnitude’);
title(’I = 2, L = 5’,’fontsize’,TF);
set(gca,’xtick’,[0,0.5,1]); set(gca,’ytick’,[0:1:I]);

% (b) Interpolation by I = 4, L = 5;
I = 4; [y,h] = interp(x,I); H = freqz(h,1,w); H = abs(H);
subplot(2,2,2); plot(w/pi,H,’g’); axis([0,1,0,I+0.2]); ylabel(’Magnitude’);
title(’I = 4, L = 5’,’fontsize’,TF);
set(gca,’xtick’,[0,0.25,1]); set(gca,’ytick’,[0:1:I]);
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FIGURE 9.13 Filter frequency responses in Example 9.5

% (c) Interpolation by I = 8, L = 5;
I = 8; [y,h] = interp(x,I); H = freqz(h,1,w); H = abs(H);
subplot(2,2,3); plot(w/pi,H,’g’); axis([0,1,0,I+0.4]); ylabel(’Magnitude’);
title(’I = 8, L = 5’,’fontsize’,TF); xlabel(’\omega/\pi’,’fontsize’,10)
set(gca,’xtick’,[0,0.125,1]); set(gca,’ytick’,[0:2:I]);

% (d) Interpolation by I = 8, L = 10;
I = 8; [y,h] = interp(x,I,10); H = freqz(h,1,w); H = abs(H);
subplot(2,2,4); plot(w/pi,H,’g’); axis([0,1,0,I+0.4]); ylabel(’Magnitude’);
title(’I = 8, L = 10’,’fontsize’,TF); xlabel(’\omega/\pi’,’fontsize’,10)
set(gca,’xtick’,[0,0.125,1]); set(gca,’ytick’,[0:2:I]);

The frequency response plots are shown in Figure 9.13. The first three plots
are for L = 5, and, as expected, the filters are all lowpass with passband edges
approximately around π/I frequencies and the gain of I. Also note that the
filters do not have sharp transitions and thus are not good approximations to
the ideal filter. The last plot shows the response for L = 10, which indicates
a more sharp transition, which is to be expected. Any value beyond L = 10
results in an unstable filter design and hence should be avoided. �
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9.4 SAMPLING RATE CONVERSION BY A RATIONAL FACTOR I/D

Having discussed the special cases of decimation (downsampling by a fac-
tor D) and interpolation (upsampling by a factor I), we now consider
the general case of sampling rate conversion by a rational factor I/D.
Basically, we can achieve this sampling rate conversion by first perform-
ing interpolation by the factor I and then decimating the output of the
interpolator by the factor D. In other words, a sampling rate conversion
by the rational factor I/D is accomplished by cascading an interpolator
with a decimator, as illustrated in Figure 9.14.

We emphasize that the importance of performing the interpolation
first and the decimation second is to preserve the desired spectral charac-
teristics of x(n). Furthermore, with the cascade configuration illustrated
in Figure 9.14, the two filters with impulse response {hu(k)} and {hd(k)}
are operated at the same rate—namely, IFx—and hence can be combined
into a single lowpass filter with impulse response h(k), as illustrated in
Figure 9.15. The frequency response H(ωv) of the combined filter must
incorporate the filtering operations for both interpolation and decimation,
and hence it should ideally possess the frequency-response characteristic

H(ωv) =

{
I, 0 ≤ |ωv| ≤ min(π/D, π/I)
0, otherwise

(9.36)

where ωv = 2πF/Fv = 2πF/IFx = ωx/I.

Explanation of (9.36) Note that V (ωv) and hence W (ωv) in
Figure 9.15 are periodic with period 2π/I. Thus

• if D < I, then filter H(ωv) allows a full period through and there is no
net lowpass filtering;

• if D > I, then filter must first truncate the fundamental period of
W (ωv) to avoid aliasing error in the (D↓1) decimation stage to follow.

Putting these two observations together, we can state that when
D/I < 1, we have net interpolation and no smoothing is required by

IDEAL
LPF
hu(k)

IDEAL
LPF
hd(k)

I D y(m)x(n)
v (k) w(k)

Rate: Fx IFx IFx IFx

Interpolator Decimator

Fx = Fy
I

D

FIGURE 9.14 Cascade of interpolator and decimator for sampling rate conver-
sion by a factor I/D
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FIGURE 9.15 Method for sampling rate conversion by a factor I/D

H(ωv) other than to extract the fundamental period of W (ωv). In this
respect, H(ωv) acts as a lowpass filter as in the ideal interpolator. On
the other hand, if D/I > 1, then we have net decimation. Hence it is
necessary to first truncate even the fundamental period of W (ωv) to get
the frequency band down to [−π/D, π/D] and to avoid aliasing in the
decimation that follows. In this respect, H(ωv) acts as a smoothing filter
in the ideal decimator. When D or I is equal to 1, the general deci-
mator/interpolator in Figure 9.15 along with (9.36) reduces to the ideal
interpolator or decimator as a special case, respectively.

In the time domain, the output of the upsampler is the sequence

v(k) =

{
x(k/I), k = 0,±I,±2I, . . .

0, otherwise
(9.37)

and the output of the linear time-invariant filter is

w(k) =
∞∑

�=−∞
h(k − �)v(�) =

∞∑
�=−∞

h(k − �I)x(�) (9.38)

Finally, the output of the sampling rate converter is the sequence {y(m)},
which is obtained by downsampling the sequence {w(k)} by a factor of
D. Thus

y(m) = w(mD) =
∞∑

�=−∞
h(mD − �I)x(�) (9.39)

It is illuminating to express (9.39) in a different form by making a
change in variable. Let

� =
⌊

mD

I

⌋
− n (9.40)

where the notation�r� denotes the largest integer contained in r. With
this change in variable, (9.39) becomes

y(m) =
∞∑

n=−∞
h

(
mD −

⌊
mD

I

⌋
I + nI

)
x

(⌊
mD

I

⌋
− n

)
(9.41)

We note that

mD −
⌊

mD

I

⌋
I = (mD) modulo I = ((mD))I
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FIGURE 9.16 Examples of signals x(n), v(k), w(k), and y(m) in the sampling
rate converter of Figure 9.15 for I = 3 and D = 2

Consequently, (9.41) can be expressed as

y(m) =
∞∑

n=−∞
h[nI + ((mD))I ]x

(⌊
mD

I

⌋
− n

)
(9.42)

These operations are shown in Figure 9.16 for I = 3 and D = 2.
It is apparent from (9.41) and Figure 9.16 that the output y(m) is

obtained by passing the input sequence x(n) through a time-variant filter
with impulse response

g(n, m) = h[nI + ((mD))I ] − ∞ < m, n < ∞ (9.43)
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where h(k) is the impulse response of the time-invariant lowpass filter
operating at the sampling rate IFx. We further observe that for any
integer k,

g(n, m + kI) = h[nI + ((mD + kDI))I ] = h[nI + ((mD))I ]
= g(n, m) (9.44)

Hence g(n, m) is periodic in the variable m with period I.
Regarding the computational complexity of the lowpass filter in the

general resampler, we note that it has a nonzero input only every I sam-
ples and the output is required only every D samples. If we use an FIR im-
plementation for this lowpass filter, we need only compute its output one
out of every D samples. However, if we instead use IIR implementation,
we would generally have to compute intermediate outputs also because
of the recursive nature of the filter. However, both types of filter benefit
from the computational savings due to their sparse input.

The frequency-domain representation of the resampled signal
y(m) The frequency-domain relationships can be obtained by com-
bining the results of the interpolation and decimation process. Thus the
spectrum at the output of the linear filter with impulse response h(k) is

V (ωv) = H(ωv)X(ωvI)

=

{
IX(ωvI), 0 ≤ |ωv| ≤ min(π/D, π/I)
0, otherwise

(9.45)

The spectrum of the output sequence y(m), obtained by decimating the
sequence v(n) by a factor of D, is

Y (ωy) =
1
D

D−1∑
k=0

V

(
ωy − 2πk

D

)
(9.46)

where ωy = Dωv. Since the linear filter prevents aliasing as implied by
(9.45), the spectrum of the output sequence given by (9.46) reduces to

Y (ωy) =

⎧
⎪⎨
⎪⎩

I

D
X
(ωy

D

)
, 0 ≤ |ωy| ≤ min

(
π, πD

I

)

0, otherwise

(9.47)

MATLAB Implementation MATLAB provides the function [y,h]=
resample(x,I,D) that resamples the signal in array x at I/D times
the original sampling rate. The resulting resampled array y is I/D times
longer (or the ceiling of it if the ratio is not an integer)—that is,
length(y) = ceil(I/D)*length(x). The function approximates the
anti-aliasing (lowpass) filter given in (9.36) by an FIR filter, h, designed
(internally) using the Kaiser window. It also compensates for the filter’s
delay.
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The length of the FIR filter h that resample uses is proportional to
the fourth (optional) parameter L that has the default value of 10. For
L = 0, resample performs a nearest-neighbor interpolation. The fifth op-
tional parameter beta (default value 5) can be used to specify the Kaiser
window stopband attenuation parameter β. The filter characteristics can
be studied using the impulse response h.

� EXAMPLE 9.6 Consider the sequence x(n) = cos(0.125πn) discussed in Example 9.2. Change
its sampling rate by 3/2, 3/4, and 5/8.

Solution The following MATLAB script shows the details.

n = 0:2048; k1 = 256; k2 = k1+32; m = 0:(k2-k1);
% (a) Original signal
x = cos(0.125*pi*n);
% (b) Sample rate conversion by 3/2: I= 3, D = 2
I = 3; D = 2; y = resample(x,I,D);
% (c) Sample rate conversion by 3/4: I= 3, D = 4
I = 3; D = 4; y = resample(x,I,D);
% (d) Sample rate conversion by 5/8: I= 5, D = 8
I = 5; D = 8; y = resample(x,I,D);
% Plotting commands follow
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FIGURE 9.17 Original and resampled signals in Example 9.6
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The resulting plots are shown in Figure 9.17. The original x(n) signal has 16
samples in one period of the cosine waveform. Since the first sampling rate
conversion by 3/2 is greater than 1, the overall effect is to interpolate x(n).
The resulting signal has 16 × 3/2 = 24 samples in one period. The other two
sampling rate conversion factors are less than 1; thus the overall effect is to
decimate x(n). The resulting signals have 16 × 3/4 = 12 and 16 × 5/8 = 10
samples per period, respectively. �

9.5 FIR FILTER DESIGNS FOR SAMPLING RATE CONVERSION

In practical implementations of sampling rate converters, we must replace
the ideal lowpass filters of equations (9.20), (9.30), and (9.36) by a prac-
tical finite-order filter. The lowpass filter can be designed to have linear
phase, a specified passband ripple, and stopband attenuation. Any of the
standard, well-known FIR filter design techniques (e.g., window method,
frequency-sampling method) can be used to carry out this design. We
consider linear-phase FIR filters for this purpose because of their ease
of design and because they fit very nicely into a decimator stage where
only one of D outputs is required [see the discussion following (9.44) on
page 480]. We will first discuss integer interpolators, followed by integer
decimators and then the rational resamplers. The main emphasis will be
on the specifications of these FIR lowpass filters, since the design problem
has already been considered in Chapter 7.

9.5.1 FIR INTEGER INTERPOLATION
Replacing the ideal filter of the system given on page 473 with an FIR
filter, we obtain the system shown in Figure 9.18. The relevant equation
that relates the Fourier transforms V (ω) and X(ω) is (9.28), repeated
here for convenience:

V (ω) = X(ωI) (9.48)

Considering the frequency compression by I and the required amplitude
scale factor of I, the ideal lowpass filter was determined in (9.30) and
(9.33) to be

HI(ω) =

{
I, |ω| < π/I

0, otherwise
(9.49)

FIR LPF
H(w)  I y (m)x(n)

v (m)

Rate: Fx IFx IFx

FIR Interpolator

FIGURE 9.18 An FIR integer interpolator
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MATLAB Implementation To design a linear-phase FIR filter for
use in interpolation (and, as we shall see later, for decimation) operation,
MATLAB provides the function h = intfilt(I,L,alpha). When used
on a sequence interspersed with I-1 consecutive zeros between every
I samples, the function performs ideal bandlimited interpolation using
the nearest 2*L nonzero samples. It assumes that the bandwidth of the
signal x(n) is alpha times π radians/sample—that is, alpha=1 means the
full signal bandwidth. The length of the filter impulse response array h
is 2*I*L-1. The designed filter is identical to that used by the interp
function. Therefore, the parameter L should be chosen carefully to avoid
numerical instability. It should be a smaller value for higher I value but
no more than 10.

� EXAMPLE 9.7 Design a linear-phase FIR interpolation filter to interpolate a signal by a factor
of 4, using the bandlimited method.

Solution We will explore the intfilt function for the design using L = 5 and study the
effect of alpha on the filter design. The following MATLAB script provides the
detail.

I = 4; L = 5;
% (a) Full signal bandwidth: alpha = 1
alpha = 1; h = intfilt(I,L,alpha);
[Hr,w,a,L] = Hr_Type1(h); Hr_min = min(Hr); w_min = find(Hr == Hr_min);
H = abs(freqz(h,1,w)); Hdb = 20*log10(H/max(H)); min_attn = Hdb(w_min);
% (b) Partial signal bandwidth: alpha = 0.75
alpha = 0.75; h = intfilt(I,L,alpha);
[Hr,w,a,L] = Hr_Type1(h); Hr_min = max(Hr(end/2:end)); w_min = find(Hr == Hr_min);
H = abs(freqz(h,1,w)); Hdb = 20*log10(H/max(H)); min_attn = Hdb(w_min);
% Plotting commands follow

The plots are shown in Figure 9.19. For the full bandwidth case of alpha = 1,
the filter has more ripple in both the passband and the stopband with the
minimum stopband attenuation of 22 dB. This is because the filter transition
band is very narrow. For alpha = 0.75, the filter specifications are more lenient,
and hence its response is well behaved with minimum stopband attenuation of
40 dB. Note that we do not have complete control over other design parameters.
These issues are discussed in more detail further along in this section. �

In the following example, we design a linear-phase equiripple FIR
interpolation filter using the Parks–McClellen algorithm.

� EXAMPLE 9.8 Design an interpolator that increases the input sampling rate by a factor of
I = 5. Use the firpm algorithm to determine the coefficients of the FIR filter
that has 0.1 dB ripple in the passband and is down by at least 30 dB in the
stopband. Choose reasonable values for band-edge frequencies.
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FIGURE 9.19 FIR interpolation filter design plots for I = 4 and L = 5

Solution The passband cutoff frequency should be ωp = π/I = 0.2π. To get a reasonable
value for the filter length, we choose the transition width of 0.12π, which gives
stopband cutoff frequency of ωs = 0.32π. Note that the nominal gain of the
filter in the passband should be equal to I = 5, which means that the ripple
values computed using the decibel values are scaled by 5. A filter of length
M = 31 achieves the design specifications given above. The details are given in
the following MATLAB script.

I = 5; Rp = 0.1; As = 30; wp = pi/I; ws = wp+pi*0.12;
[delta1,delta2] = db2delta(Rp,As); weights = [delta2/delta1,1];
F = [0,wp,ws,pi]/pi; A = [I,I,0,0];
h = firpm(30,F,A,weights); n = [0:length(h)-1];
[Hr,w,a,L] = Hr_Type1(h); Hr_min = min(Hr); w_min = find(Hr == Hr_min);
H = abs(freqz(h,1,w)); Hdb = 20*log10(H/max(H)); min_attn = Hdb(w_min);

The responses of the designed FIR filter are given in Figure 9.20. Even
though this filter passes the original signal, it is possible that some of the
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FIGURE 9.20 Responses of the FIR interpolation filter in Example 9.8

neighboring spectral energy may also leak through if the signal is of full
bandwidth of π radians. Hence we need better design specifications, which are
discussed further along in this section. �

MATLAB Implementation To use the FIR filter for interpolation
purposes (such as the one designed in Example 9.8), MATLAB has pro-
vided a general function, upfirdn, that can be used for interpolation
and decimation as well as for resampling purposes. Unlike other functions
discussed in this chapter, upfirdn incorporates the user-defined FIR fil-
ter (which need not be linear phase) in the operation. When invoked as
y = upfirdn(x,h,I), the function upsamples the input data in the array
x by a factor of the integer I and then filters the upsampled signal data
with the impulse response sequence given in the array h to produce the
output array y, thus implementing the system in Figure 9.18.

� EXAMPLE 9.9 Let x(n) = cos(0.5πn). Increase the input sampling rate by a factor of I = 5,
using the filter designed in Example 9.8.
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Solution The steps are given in the following MATLAB script.

% Given Parameters:
I = 5; Rp = 0.1; As = 30; wp = pi/I; ws = 0.32*pi;
[delta1,delta2] = db2delta(Rp,As); weights = [delta2/delta1,1];
n = [0:50]; x = cos(0.5*pi*n);
n1 = n(1:17); x1 = x(17:33); % For plotting purposes
% Input signal plotting commands follow
% Interpolation with Filter Design: Length M = 31
M = 31; F = [0,wp,ws,pi]/pi; A = [I,I,0,0];
h = firpm(M-1,F,A,weights); y = upfirdn(x,h,I);
delay = (M-1)/2; % Delay imparted by the filter
m = delay+1:1:50*I+delay+1; y = y(m); m = 1:81; y = y(81:161); % for plotting
% Output signal plotting commands follow

The signal stem plots are shown in Figure 9.21. The upper left-hand plot shows
a segment of the input signal x(n), and the upper right-hand plot shows the
interpolated signal y(n) using the filter of length 31. The plot is corrected for
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FIGURE 9.21 Signal plots in Example 9.9
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filter delay and the effect of its transient response. It is somewhat surprising that
the interpolated signal is not what it should be. The signal peak is more than
1, and the shape is distorted. A careful observation of the filter response plot in
Figure 9.20 reveals that the broad transition width and a smaller attenuation
has allowed some of the spectral energy to leak, creating a distortion.

To investigate this further, we designed filters with larger orders of 51 and
81, as detailed in the following MATLAB script.

% Interpolation with Filter Design: Length M = 51
M = 51; F = [0,wp,ws,pi]/pi; A = [I,I,0,0];
h = firpm(M-1,F,A,weights); y = upfirdn(x,h,I);
delay = (M-1)/2; % Delay imparted by the filter
m = delay+1:1:50*I+delay+1; y = y(m); m = 1:81; y = y(81:161);
% Plotting commands follow
% Interpolation with Filter Design: Length M = 81
M = 81; F = [0,wp,ws,pi]/pi; A = [I,I,0,0];
h = firpm(M-1,F,A,weights); y = upfirdn(x,h,I);
delay = (M-1)/2; % Delay imparted by the filter
m = delay+1:1:50*I+delay+1; y = y(m); m = 1:81; y = y(81:161);
% Plotting commands follow

The resulting signals are shown in lower plots in Figure 9.21. Clearly, for large
orders, the filter has better lowpass characteristics. The signal peak value ap-
proaches 1, and its shape approaches the cosine waveform. Thus a good filter
design is critical even in a simple signal case. �

9.5.2 DESIGN SPECIFICATIONS
When we replace HI(ω) by a finite-order FIR filter H(ω), we must allow
for a transition band; thus the filter cannot have a passband edge up to
π/I. Toward this, we define

• ωx,p as the highest frequency of the signal x(n) that we want to pre-
serve, and

• ωx,s as the full signal bandwidth of x(n),—that is, there is no energy
in x(n) above the frequency ωx,s.

Thus we have 0 < ωx,p < ωx,s < π. Note that the parameters ωx,p and
ωx,s, as defined, are signal parameters, not filter parameters; they are
shown in Figure 9.22a. The filter parameters will be defined based on
ωx,p and ωx,s.

From equation (9.48), these signal parameter frequencies for v(m)
become ωx,p/I and ωx,s/I, respectively, because the frequency scale is
compressed by the factor I. This is shown in Figure 9.22b. A linear-phase
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FIR filter can now be designed to pass frequencies up to ωx,p/I and to
suppress frequencies starting at (2π − ωx,s)/I. Let

ωp =
(ωx,p

I

)
and ωs =

(
2π − ωx,s

I

)
(9.50)

be the passband and stopband edge frequencies, respectively, of the low-
pass linear-phase FIR filter given by

H(ω) = Hr(ω)ejθ(ω) (9.51)

where Hr(ω) is the real-valued amplitude response and θ(ω) is the un-
wrapped phase response. Then we have the following filter design specifi-
cations:

1
I
Hr(ω) ≤ 1 ± δ1 for |ω| ∈ [0, ωp]

1
I
Hr(ω) ≤ ±δ2 for |ω| ∈ [ωs, π]

(9.52)
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where ωp and ωs are as given in (9.50) and δ1 and δ2 are the pass-
band and stopband ripple parameters, respectively, of the lowpass FIR
filter.

Comment: Instead of beginning the stopband at π/I, we were able to
shift it to (2π − ωs) /I. If ωx,s � π, then this will be an important con-
sideration to lower filter order. However, in the worst-case scenario of
ωx,s = π, the stopband will begin at π

I , which is the same as in the ideal
lowpass filter of (9.49). Almost always, ωx,s < π, and we can then choose
ωx,p as close to ωx,s as we want. However, this will reduce the size of the
transition band, which means a higher filter order.

� EXAMPLE 9.10 Design a better FIR lowpass filter for sampling rate increase by a factor of I = 5
for the signal in Example 9.9.

Solution Since x(n) = cos(0.5πn), the signal bandwidth and bandwidth to be preserved
are the same—that is, ωx,p = ωx,s = 0.5π. Thus, from (9.50), ωp = 0.5π/5 =
0.1π and ωs = (2π − 0.5π)/5 = 0.3π. We will design the filter for Rp = 0.01
and As = 50 dB. The resulting filter order is 32, which is 2 higher than the
one in Example 9.9 but with much superior attenuation. The details are given
below.

% Given Parameters:
n = [0:50]; wxp = 0.5*pi; x = cos(wxp*n);
n1 = n(1:9); x1 = x(9:17); % for plotting purposes
I = 5; I = 5; Rp = 0.01; As = 50; wp = wxp/I; ws = (2*pi-wxp)/I;
[delta1,delta2] = db2delta(Rp,As); weights = [delta2/delta1,1];
[N,Fo,Ao,weights] = firpmord([wp,ws]/pi,[1,0],[delta1,delta2],2);N = N+2;
% Input signal plotting commands follow
% Interpolation with Filter Design: Length M = 31
h = firpm(N,Fo,I*Ao,weights); y = upfirdn(x,h,I);
delay = (N)/2; % Delay imparted by the filter
m = delay+1:1:50*I+delay+1; y = y(m); m = 0:40; y = y(81:121);
% Output signal plotting commands follow
[Hr,w,a,L] = Hr_Type1(h); Hr_min = min(Hr); w_min = find(Hr == Hr_min);
H = abs(freqz(h,1,w)); Hdb = 20*log10(H/max(H)); min_attn = Hdb(w_min);
% Filter design plotting commands follow

The signal stem plots and filter design plots are shown in Figure 9.23. The
designed filter has a minimum stopband attenuation of 53 dB, and the resulting
interpolation is accurate even with the filter order of 32. �
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FIGURE 9.23 Signal plots and filter design plots in Example 9.10

9.5.3 FIR INTEGER DECIMATION
Consider the system in Figure 9.6 on page 466 in which the ideal lowpass
filter is replaced by an FIR filter H(ω), which then results in the system
shown in Figure 9.24. The relationship between Y (ωy) and X(ω) is given
by (9.24), which is repeated here for convenience:

Y (ωy) =
1
D

D−1∑
k=0

H

(
ω − 2πk

D

)
X

(
ω − 2πk

D

)
; ω =

ωy

D
(9.53)

FIR LPF
H(w)

y (m)x(n)
v (n)

Rate: Fx Fx

FIR Decimator

= Fy
Fx

D

D

FIGURE 9.24 An FIR integer decimator
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which is nothing but the aliased sum of the H(ω)X(ω). Thus the condition
necessary to avoid aliasing is

H(ω)X(ω) = 0 for
π

D
≤ |ω| ≤ π (9.54)

Then
Y (ωy) =

1
D

X(ω)H(ω) (9.55)

as in (9.25), where the ideal filtering was accomplished with HD(ω) as
given in (9.20).

� EXAMPLE 9.11 Design a decimator that downsamples an input signal x(n) by a factor D = 2.
Use the firpm algorithm to determine the coefficients of the FIR filter that has
a 0.1 dB ripple in the passband and is down by at least 30 dB in the stopband.
Choose reasonable values for band-edge frequencies.

Solution The passband cutoff frequency should be ωp = π/D = 0.5π. To get a reasonable
value for the filter length, we choose the transition width of 0.1π, which gives
stopband a cutoff frequency of ωs = 0.3π. A filter of length M = 37 achieves the
preceding design specifications. The details are given in the following MATLAB
script.

% Filter Design
D = 2; Rp = 0.1; As = 30; wp = pi/D; ws = wp+0.1*pi;
[delta1,delta2] = db2delta(Rp,As);
[N,F,A,weights] = firpmord([wp,ws]/pi,[1,0],[delta1,delta2],2);
h = firpm(N,F,A,weights); n = [0:length(h)-1];
[Hr,w,a,L] = Hr_Type1(h); Hr_min = min(Hr); w_min = find(Hr == Hr_min);
H = abs(freqz(h,1,w)); Hdb = 20*log10(H/max(H)); min_attn = Hdb(w_min);
% Plotting commands follow

The responses of the designed FIR filter are given in Figure 9.25. This filter
passes the signal spectrum over the passband [0, π/2] without any distortion.
However, since the transition width is not very narrow, it is possible that some
of the signal over the transition band may alias into the band of interest. Also,
the 30 db attenuation may allow a small fraction of the signal spectrum from the
stopband into the passband after downsampling. Therefore, we need a better
approach for filter specifications, as discussed further along in this section. �

MATLAB Implementation As discussed, the upfirdn function can
also be used for implementing the user-designed FIR filter in the decima-
tion operation. When invoked as y = upfirdn(x,h,1,D), the function
filters the signal data in the array x with the impulse response given in the
array h and then downsamples the filtered data by the integer factor D to
produce the output array y, thus implementing the system in Figure 9.24.
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FIGURE 9.25 Responses of the FIR decimation filter in Example 9.11

� EXAMPLE 9.12 Using the filter designed in Example 9.11, decimate sinusoidal signals x1(n) =
cos(πn/8) and x2(n) = cos(πn/2) with frequencies within the passband of
the filter. Verify the performance of the FIR filter and the results of the
decimation.

Solution The following MATLAB script provides the details.

% Given Parameters:
D = 2; Rp = 0.1; As = 30; wp = pi/D; ws = wp+0.1*pi;
% Filter Design
[delta1,delta2] = db2delta(Rp,As);
[N,F,A,weights] = firpmord([wp,ws]/pi,[1,0],[delta1,delta2],2);
h = firpm(N,F,A,weights); delay = N/2; % Delay imparted by the filter
% Input signal x1(n) = cos(2*pi*n/16)
n = [0:256]; x = cos(pi*n/8);
n1 = n(1:33); x1 = x(33:65); % for plotting purposes
% Input signal plotting commands follow
% Decimation of x1(n): D = 2
y = upfirdn(x,h,1,D);
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m = delay+1:1:128/D+delay+1; y = y(m); m = 0:16; y = y(16:32);
% Output signal plotting commands follow
% Input signal x2(n) = cos(8*pi*n/16)
n = [0:256]; x = cos(8*pi*n/(16));
n1 = n(1:33); x1 = x(33:65); % for plotting purposes
% Input signal plotting commands follow
% Decimation of x2(n): D = 2
y = upfirdn(x,[h],1,D); %y = downsample(conv(x,h),2);
m = delay+1:1:128/D+delay+1; y = y(m); m = 0:16; y = y(16:32);
% Output signal plotting commands follow

The signal stem plots are shown in Figure 9.26. The left-side plots show the
signal x1(n) and the corresponding decimated signal y1(n), and the right-side
plots show the same for x2(n) and y2(n). In both cases, the decimation appears
to be correct. If we had chosen any frequency above π/2, then the filter would
have attenuated or eliminated the signal. �

Input Signal: x1(n) = cos(pn/8)
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FIGURE 9.26 Signal plots in Example 9.12
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9.5.4 DESIGN SPECIFICATIONS
When we replace the ideal lowpass filter HD(ω) by a finite-order FIR filter
H(ω), we must allow for a transition band. Again we define

• ωx,p as the signal bandwidth to be preserved, and
• ωx,s as the frequency above which aliasing error is tolerated.

Then we have 0 < ωx,p ≤ ωx,s ≤ π/D. If we choose ωx,s = π/D, then
the decimator will give no aliasing error. If we choose ωx,s = ωx,p, then
the band above the signal band will contain aliasing errors. With these
definitions and observations, we can now specify the desired filter speci-
fications. The filter must pass frequencies up to ωx,p, and its stopband
must begin at

( 2π
D − ωx,s

)
and continue up to π. Then none of the k �= 0

terms in (9.53)—that is, the “aliases”—will cause appreciable distortion
in the band up to ωx,s. Let

ωp = ωx,p and ωs =
(

2π

D
− ωx,s

)
(9.56)

be the passband and stopband edge frequencies, respectively, of the low-
pass linear-phase FIR filter given in (9.51). Then we have the following
filter design specifications:

Hr(ω) ≤ 1 ± δ1 for |ω| ∈ [0, ωp]

Hr(ω) ≤ ±δ2 for |ω| ∈ [ωs, π]
(9.57)

where ωp and ωs are as given in (9.56) and δ1 and δ2 are the passband and
stopband ripple parameters of the lowpass FIR filter, respectively. Note
that it does not matter what the spectrum X(ω) is. We simply require
that the product X(ω)H(ω) be very small beginning at ω| = 2π/D −ωx,s
so that k �= 0 terms in (9.53) do not provide significant contribution in
the band [−ωx,s, ωx,s], which is required to be free of aliasing.

Significance of δ1 and δ2 The filter ripple parameters δ1 and δ2 have
the following significance, which must be taken into consideration while
specifying their values:

• The passband ripple δ1 measures the ripple in the passband and hence
controls the distortion in the signal bandwidth ωp.

• The stopband ripple δ2 controls the amount of aliased energy (also
called leakage) that gets into the band up to ωx,s.
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There are (D − 1) contributions due to k �= 0 terms in (9.53). These
are expected to add incoherently (i.e., have peaks at different locations),
so the overall peak error should be about δ2. The actual error depends
on how X(ω) varies over the rest of the band |ω| > ωx,p. Clearly,
the filter stopband ripple δ2 controls the aliasing error in the signal
passband. Therefore, both δ1 and δ2 affect the decimated signal in its
passband.

Comment: Comparing the FIR decimator filter specifications (9.57) to
those for the FIR interpolator in (9.52), we see a high degree of similarity.
In fact, a filter designed to decimate by factor D can also be used to
interpolate by the factor I = D, as we see from the following example.
This means that the function intfilt can also be used to design FIR
filters for decimation.

� EXAMPLE 9.13 To design a decimate by D stage, we need values for ωx,p and ωx,s (remember
that these are signal parameters). Assume ωx,p = π/(2D), which satisfies the
constraint ωx,p ≤ π/D and is exactly half the decimated bandwidth. Let ωx,s =
ωx,p. Then the FIR lowpass filter must pass frequencies up to ωp = π/(2D) and
stop frequencies above ωs = 2π/D − π/(2D) = 3π/(2D).

Now consider the corresponding interpolation problem. We want to inter-
polate by I. We again choose ωx,s = ωx,p, but now the range is ωx,p < π. If we
take exactly half this band, we get ωx,p = π/2. Then according to the specifi-
cations (9.52) for the interpolation, we want the filter to pass frequencies up to
π/2I and to stop above 3π/2I. Thus for I = D, we have the same filter speci-
fications, so the same filter could serve both the decimation and interpolation
problems. �

� EXAMPLE 9.14 Design a decimation FIR filter for the signal x1(n) in Example 9.12 that has a
better stopband attenuation of As = 50 dB and a lower filter order.

Solution The signal bandwidth is ωx,p = π/8, and we will choose ωx,s = π/D = π/2.
Then ωp = π/8 and ωs = (2π/D) − ωx,s = π/2. With these parameters the
optimum FIR filter length is 13, which is much lower than the previous one of
37 with a higher attenuation.

MATLAB script:

% Given Parameters:
D = 2; Rp = 0.1; As = 50; wxp = pi/8; wxs = pi/D; wp = wxp; ws = (2*pi/D)-wxs;
% Filter Design
[delta1,delta2] = db2delta(Rp,As);
[N,F,A,weights] = firpmord([wp,ws]/pi,[1,0],[delta1,delta2],2); N = ceil(N/2)*2;
h = firpm(N,F,A,weights); delay = N/2; % Delay imparted by the filter
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FIGURE 9.27 Signal plots and filter design plots in Example 9.14

% Input signal x(n) = cos(2*pi*n/16)
n = [0:256]; x = cos(pi*n/8);
n1 = n(1:33); x1 = x(33:65); % for plotting purposes
% Input signal plotting commands follow
% Decimation of x(n): D = 2
y = upfirdn(x,h,1,D);
m = delay+1:1:128/D+delay+1; y1 = y(m); m = 0:16; y1 = y1(14:30);
% Output signal plotting commands follow
% Filter Design Plots
[Hr,w,a,L] = Hr_Type1(h); Hr_min = min(Hr); w_min = find(Hr == Hr_min);
H = abs(freqz(h,1,w)); Hdb = 20*log10(H/max(H)); min_attn = Hdb(w_min);
% Filter design plotting commands follow

The signal stem plots and the filter responses are shown in Figure 9.27. The
designed filter achieves an attenuation of 51 dB, and the decimated signal is
correct. �
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9.5.5 FIR RATIONAL-FACTOR RATE CONVERSION
Replacing the ideal filter of the system given on page 478 with an FIR
filter H(ω), we obtain the system shown in Figure 9.28. In this case, the
relevant ideal lowpass filter is given by (9.36), which is repeated here for
convenience:

H(ω) =

{
I, 0 ≤ |ω| ≤ min(π/D, π/I)
0, otherwise

(9.58)

For the signal x(n), we define

• ωx,p as the signal bandwidth that should be preserved,
• ωx,s1 as the overall signal bandwidth, and
• ωx,s2 as the signal bandwidth that is required to be free of aliasing error

after resampling.

Then we have

0 < ωx,p ≤ ωx,s2 ≤ Iπ

D
and ωx,s1 ≤ π (9.59)

Now, for the interpolation part, the lowpass filter must pass frequencies
up to ωx,p/I and attenuate frequencies starting at (2π/I − ωx,s1/I). The
decimation part of the filter must again pass frequencies up to ωx,p/I
but attenuate frequencies above (2π/D − ωx,s2/I). Therefore, the stop-
band must start at the lower of these two values. Defining filter cutoff
frequencies as

ωp =
(ωx,p

I

)
and ωs = min

[
2π

I
− ωx,s1

I
,
2π

D
− ωx,s2

I

]
(9.60)

and the corresponding ripple parameters as δ1 and δ2, we have the fol-
lowing filter specifications:

1
I
Hr(ω) ≤ 1 ± δ1 for |ω| ∈ [0, ωp]

1
I
Hr(ω) ≤ ±δ2 for |ω| ∈ [ωs, π]

(9.61)

FIR LPF
H(w)

y (m)x(n)

Rate: Fx IFx IFx

FIR Resampler

Fx = Fy
I
D

DI

FIGURE 9.28 An FIR rational-factor resampler
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where Hr(ω) is the amplitude response. Note that if we set ωx,s1 = π and
ωx,s2 = Iπ/D, which are their maximum values, then we get the ideal
cutoff frequency max[π/I, π/D], as given before in (9.36).

MATLAB Implementation Clearly, the upfirdn function implements
all the necessary operations needed in the rational sampling rate conver-
sion system shown in Figure 9.28. When invoked as y = upfirdn(x,h,
I,D), it performs a cascade of three operations: upsampling the input data
array x by a factor of the integer I, FIR filtering the upsampled signal data
with the impulse response sequence given in the array h, and, finally, down-
sampling the result by a factor of the integer D. Using a well-designed filter,
we have complete control over the sampling rate conversion operation.

� EXAMPLE 9.15 Design a sampling rate converter that increases the sampling rate by a factor of
2.5. Use the firpm algorithm to determine the coefficients of the FIR filter that
has 0.1 dB ripple in the passband and is down by at least 30 dB in the stopband.

Solution The FIR filter that meets the specifications of this problem is exactly the same
as the filter designed in Example 9.8. Its bandwidth is π/5. �

� EXAMPLE 9.16 A signal x(n) has a total bandwidth of 0.9π. It is resampled by a factor of
4/3 to obtain y(m). We want to preserve the frequency band up to 0.8π and
require that the band up to 0.7π be free of aliasing. Using the Parks–McClellan
algorithm, determine the coefficients of the FIR filter that has 0.1 dB ripple in
the passband and 40 dB attenuation in the stopband.

Solution The overall signal bandwidth is ωx,s1 = 0.9π, the bandwidth to be preserved is
ωx,p = 0.8π, and the bandwidth above which aliasing is tolerated is ωx,s2 = 0.7π.
From (9.60) and using I = 4 and D = 3, the FIR filter design parameters are
ωp = 0.2π and ωs = 0.275π. With these parameters, along with the passband
ripple of 0.1 dB and stopband attenuation of 40 dB, the optimum FIR filter
length is 58. The details and computation of design plots follow.

% Given Parameters:
I = 4; D = 3; Rp = 0.1; As = 40;
wxp = 0.8*pi; wxs1 = 0.9*pi; wxs2 = 0.7*pi;
% Computed Filter Parameters
wp = wxp/I; ws = min((2*pi/I-wxs1/I),(2*pi/D-wxs2/I));
% Filter Design
[delta1,delta2] = db2delta(Rp,As);
[N,F,A,weights] = firpmord([wp,ws]/pi,[1,0],[delta1,delta2],2);
N = ceil(N/2)*2+1; h = firpm(N,F,I*A,weights);
[Hr,w,a,L] = Ampl_res(h); Hr_min = min(Hr); w_min = find(Hr == Hr_min);
H = abs(freqz(h,1,w)); Hdb = 20*log10(H/max(H)); min_attn = Hdb(w_min);
% Plotting commands follow
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FIGURE 9.29 The filter design plots in Example 9.16

The filter responses are shown in Figure 9.29, which shows that the designed
filter achieves the attenuation of 40 dB. �

9.5.6 FIR FILTERS WITH MULTIPLE STOPBANDS
We now discuss the use of multiple stopbands in the design of FIR in-
teger interpolators when the low sampling rate is more than two times
that required. Let us refer back to the Figure 9.22b on page 488, which
illustrates a typical spectrum V (ω) in integer interpolators. We could
use a lowpass filter with multiple stopbands of bandwidth ωs/I cen-
tered at 2πk/I for k �= 0. For I = 4, such a spectrum is shown in
Figure 9.30(a), and the corresponding filter specifications are shown in
Figure 9.30b.

Clearly, these filter specifications differ from those given in (9.52) on
page 488 in that the stopband is no longer one contiguous interval. Now,
if ωs < π/2, then there is a practical advantage to using this multiband
design because it results in a lower-order filter [9]. For π ≥ ωs > π/2, the
single-band lowpass filter specification (9.52) is easier and works as well.

Similar advantages can be obtained for FIR integer decimators. We
again find that we can substitute a multiple-stopband lowpass filter
for the single-stopband design given in (9.57). With reference to the
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FIGURE 9.30 Multiple-stopband design: (a) signal spectrum, (b) filter specifica-
tions

signal specifications on page 494, we note that only part of the bands
[π/D, 3π/D], [3π/D, 5π/D], . . . and so on will get aliased into [−ωs,+ωs].
Therefore, the multiple stopbands are given by [(2π/D)−ωs, (2π/D)+ωs],
[(4π/D) − ωs, (4π/D) + ωs], and so on, centered at 2πk/D, k �= 0. Once
again, there are practical advantages when ωs < π/2M .

9.6 FIR FILTER STRUCTURES FOR SAMPLING RATE CONVERSION

As indicated in the discussion in Section 9.4, sampling rate conversion
by a factor I/D can be achieved by first increasing the sampling rate by
I, accomplished by inserting I − 1 zeros between successive values of the
input signal x(n), followed by linear filtering of the resulting sequence to
eliminate the unwanted images of X(ω), and finally by downsampling the
filtered signal by the factor D. In this section, we consider the design and
implementation of the linear filter. We begin with the simplest structure,
which is the direct form FIR filter structure, and develop its computation-
ally efficient implementation. We then consider another computationally
efficient structure called the polyphase structure, which is used in the im-
plementation of the MATLAB functions resample and upfirdn. Finally,
we close this section by discussing the time-variant filter structures for
the general case of sampling rate conversion.
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9.6.1 DIRECT FORM FIR FILTER STRUCTURES
In principle, the simplest realization of the filter is the direct form FIR
structure with system function

H(z) =
M−1∑
k=0

h(k)z−k (9.62)

where h(k) is the unit sample response of the FIR filter. After design-
ing the filter as discussed in the previous section, we will have the filter
parameters h(k), which allow us to implement the FIR filter directly, as
shown in Figure 9.31.

Although the direct form FIR filter realization illustrated in
Figure 9.31 is simple, it is also very inefficient. The inefficiency results
from the fact that the upsampling process introduces I − 1 zeros between
successive points of the input signal. If I is large, most of the signal
components in the FIR filter are zero. Consequently, most of the multi-
plications and additions result in zeros. Furthermore, the downsampling
process at the output of the filter implies that only one out of every D
output samples is required at the output of the filter. Consequently, only
one out of every D possible values at the output of the filter should be
computed.

To develop a more efficient filter structure, let us begin with a decima-
tor that reduces the sampling rate by an integer factor D. From our pre-
vious discussion, the decimator is obtained by passing the input sequence

Upsampler
Downsampler

x (n)

h(0) y (m)

h(1)

z −1

z −1

h(M − 2)

h(M − 1)

I

3

2

1

D

FIGURE 9.31 Direct form realization of FIR filter in sampling rate conversion
by a factor I/D
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FIGURE 9.32 Decimation by a factor D: (a) standard realization, (b) efficient
realization

x(n) through an FIR filter and then downsampling the filter output by
a factor D, as illustrated in Figure 9.32a. In this configuration, the filter
is operating at the high sampling rate Fx, while only one out of every
D output samples is actually needed. The logical solution to this ineffi-
ciency problem is to embed the downsampling operation within the filter,
as illustrated in the filter realization given in Figure 9.32b. In this fil-
ter structure, all the multiplications and additions are performed at the
lower sampling rate Fx/D. Thus we have achieved the desired efficiency.
Additional reduction in computation can be achieved by exploiting the
symmetry characteristics of {h(k)}. Figure 9.33 illustrates an efficient re-
alization of the decimator in which the FIR filter has linear phase and
hence {h(k)} is symmetric.

Next, let us consider the efficient implementation of an interpolator,
which is realized by first inserting I − 1 zeros between samples of x(n)
and then filtering the resulting sequence. The direct form realization is
illustrated in Figure 9.34. The major problem with this structure is that
the filter computations are performed at the high sampling rate of IFx.
The desired simplification is achieved by first using the transposed form
of the FIR filter, as illustrated in Figure 9.35a, and then embedding the
upsampler within the filter, as shown in Figure 9.35b. Thus all the filter
multiplications are performed at the low rate Fx, while the upsampling
process introduces I−1 zeros in each of the filter branches of the structure
shown in Figure 9.35b. The reader can easily verify that the two filter
structures in Figure 9.35 are equivalent.

It is interesting to note that the structure of the interpolator, shown
in Figure 9.35b, can be obtained by transposing the structure of the
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FIGURE 9.33 Efficient realization of a decimator that exploits the symmetry in
the FIR filter
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FIGURE 9.34 Direct form realization of FIR filter in interpolation by a factor I
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FIGURE 9.35 Efficient realization of an interpolator
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FIGURE 9.36 Duality relationships obtained through transpositions

decimator shown in Figure 9.32. We observe that the transpose of a deci-
mator is an interpolator, and vice versa. These relationships are illustrated
in Figure 9.36, where part b is obtained by transposing part a and part d
is obtained by transposing part c. Consequently, a decimator is the dual
of an interpolator, and vice versa. From these relationships, it follows
that there is an interpolator whose structure is the dual of the decimator
shown in Figure 9.33, which exploits the symmetry in h(n).

9.6.2 POLYPHASE FILTER STRUCTURE
The computational efficiency of the filter structure shown in Figure 9.35
can also be achieved by reducing the large FIR filter of length M into
a set of smaller filters of length K = M/I, where M is selected to be a
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multiple of I. To demonstrate this point, let us consider the interpolator
given in Figure 9.34. Since the upsampling process inserts I − 1 zeros
between successive values of x(n), only K out of the M input values
stored in the FIR filter at any one time are nonzero. At one time instant,
these nonzero values coincide and are multiplied by the filter coefficients
h(0), h(I), h(2I), . . . , h(M − I). In the following time instant, the non-
zero values of the input sequence coincide and are multiplied by the filter
coefficients h(1), h(I + 1), h(2I + 1), and so on. This observation leads us
to define a set of smaller filters, called polyphase filters, with unit sample
responses

pk(n) = h(k + nI); k = 0, 1, . . . , I − 1, n = 0, 1, . . . , K − 1 (9.63)

where K = M/I is an integer.
From this discussion, it follows that the set of I polyphase filters can

be arranged as a parallel realization, and the output of each filter can be
selected by a commutator, as illustrated in Figure 9.37. The rotation of
the commutator is in the counterclockwise direction, beginning with the
point at m = 0. Thus the polyphase filters perform the computations at
the low sampling rate Fx, and the rate conversion results from the fact
that I output samples are generated, one from each of the filters, for each
input sample.

The decomposition of {h(k)} into the set of I subfilters with impulse
response pk(n), k = 0, 1, . . . , I−1, is consistent with our previous observa-
tion that the input signal was being filtered by a periodically time-variant
linear filter with impulse response

g(n, m) = h(nI + (mD)I) (9.64)

p0(n)

x(n)

Rate: Fx Rate: Fx

Rate: Fy = IFx

Rate:
Fy = IFx

y(m)
p1(n)

pI − 1(n)

FIGURE 9.37 Interpolation by use of polyphase filters
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where D = 1 in the case of the interpolator. We noted previously that
g(n, m) varies periodically with period I. Consequently, a different set of
coefficients is used to generate the set of I output samples y(m), m =
0, 1, . . . , I − 1.

Additional insight can be gained about the characteristics of the set
of polyphase subfilters by noting that pk(n) is obtained from h(n) by
decimation with a factor I. Consequently, if the original filter frequency
response H(ω) is flat over the range 0 ≤ |ω| ≤ ω/I, each of the polyphase
subfilters possesses a relatively flat response over the range 0 ≤ |ω| ≤ π
(i.e., the polyphase subfilters are basically allpass filters and differ pri-
marily in their phase characteristics). This explains the reason for using
the term polyphase in describing these filters.

The polyphase filter can also be viewed as a set of I subfilters con-
nected to a common delay line. Ideally, the kth subfilter will generate a
forward time shift of (k/I)Tx, for k = 0, 1, 2, . . . , I − 1, relative to the
zeroth subfilter. Therefore, if the zeroth filter generates zero delay, the
frequency response of the kth subfilter is

pk(ω) = ejωk/I

A time shift of an integer number of input sampling intervals (e.g., kTx)
can be generated by shifting the input data in the delay line by I samples
and using the same subfilters. By combining these two methods, we can
generate an output that is shifted forward by an amount (k + i/I)Tx

relative to the previous output.
By transposing the interpolator structure in Figure 9.37, we obtain

a commutator structure for a decimator based on the parallel bank of
polyphase filters, as illustrated in Figure 9.38. The unit sample responses
of the polyphase filters are now defined as

pk(n) = h(k + nD); k = 0, 1, . . . , D − 1, n = 0, 1, . . . , K − 1 (9.65)

where K = M/D is an integer when M is selected to be a multiple of
D. The commutator rotates in a counterclockwise direction, starting with
the filter p0(n) at m = 0.

Although the two commutator structures for the interpolator and the
decimator just described rotate in a counterclockwise direction, it is also
possible to derive an equivalent pair of commutator structures having a
clockwise rotation. In this alternative formulation, the sets of polyphase
filters are defined to have impulse responses

pk(n) = h(nI − k), k = 0, 1, . . . , I − 1 (9.66)

and
pk(n) = h(nD − k), k = 0, 1, . . . , D − 1 (9.67)

for the interpolator and decimator, respectively.
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p0(n)

x(n)

Rate: Fx

Rate: Fy

y(m)

p1(n)

pI − 1(n)

Rate: Fy =
Fx

D

FIGURE 9.38 Decimation by use of polyphase filters

� EXAMPLE 9.17 For the decimation filter designed in Example 9.11, determine the polyphase
filter coefficients {pk(n)} in terms of the FIR filter coefficients {h(n)}.

Solution The polyphase filters obtained from h(n) have impulse responses

pk(n) = h(2n + k) k = 0, 1; n = 0, 1, . . . , 14

Note that p0(n) = h(2n) and p1(n) = h(2n + 1). Hence one filter consists of
the even-numbered samples of h(n), and the other filter consists of the odd-
numbered samples of h(n). �

� EXAMPLE 9.18 For the interpolation filter designed in Example 9.8, determine the polyphase
filter coefficients {pk(n)} in terms of the filter coefficients {h(n)}.

Solution The polyphase filters obtained from h(n) have impulse responses

pk(n) = h(5n + k) k = 0, 1, 2, 3, 4

Consequently, each filter has length 6. �

9.6.3 TIME-VARIANT FILTER STRUCTURES
Having described the filter implementation for a decimator and an inter-
polator, let us now consider the general problem of sampling rate conver-
sion by the factor I/D. In the general case of sampling rate conversion
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508 Chapter 9 SAMPLING RATE CONVERSION

by a factor I/D, the filtering can be accomplished by means of the linear
time-variant filter described by the response function

g(n, m) = h[nI − ((mD))I ] (9.68)

where h(n) is the impulse response of the lowpass FIR filter, which, ideally,
has the frequency response specified by (9.36). For convenience, we select
the length of the FIR filter {h(n)} to be a multiple of I (i.e., M = KI). As
a consequence, the set of coefficients {g(n, m)} for each m = 0, 1, 2, . . . , I−
1, contains K elements. Since g(n, m) is also periodic with period I, as
demonstrated in (9.44), it follows that the output y(m) can be expressed
as

y(m) =
K−1∑
n=0

g
(
n, m −

⌊m

I

⌋
I
)

x

(⌊
mD

I

⌋
− n

)
(9.69)

Conceptually, we can think of performing the computations specified
by (9.69) by processing blocks of data of length K by a set of K filter
coefficients g(n, m − �m/I� I), n = 0, 1, . . . , K − 1. There are I such sets
of coefficients, one set for each block of I output points of y(m). For each
block of I output points, there is a corresponding block of D input points
of x(n) that enter in the computation.

The block processing algorithm for computing (9.69) can be visual-
ized as illustrated in Figure 9.39. A block of D input samples is buffered
and shifted into a second buffer of length K, one sample at a time. The
shifting from the input buffer to the second buffer occurs at a rate of one

Input
Buffer of
Length D

x(n) Coefficient Storage

Buffer
of

Length
K

1

2
3

K

n = 0

K − 1

Σ

g(n, 0); 0 ≤ n ≤ K −1

g(n, 1); 0 ≤ n ≤ K −1

g(n, I − 1); 0 ≤ n ≤ K −1

Output
Buffer of
Length I

y (m)

Rate: Fx
I
D

FIGURE 9.39 Efficient implementation of sampling rate conversion by block
processing
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y (m)
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Rate: Fx
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FIGURE 9.40 Efficient realization of sampling rate conversion by a factor I/D

sample each time the quantity �mD/I� increases by 1. For each output
sample y(l), the samples from the second buffer are multiplied by the
corresponding set of filter coefficients g(n, l) for n = 0, 1, . . . , K − 1, and
the K products are accumulated to give y(l), for l = 0, 1, . . . , I − 1. Thus
this computation produces I outputs. It is then repeated for a new set of
D input samples, and so on.

An alternative method for computing the output of the sampling rate
converter, specified by (9.69), is by means of an FIR filter structure with
periodically varying filter coefficients. Such a structure is illustrated in
Figure 9.40. The input samples x(n) are passed into a shift register that
operates at the sampling rate Fx and is of length K = M/I, where M
is the length of the time-invariant FIR filter specified by the frequency
response given by (9.36). Each stage of the register is connected to a hold-
and-sample device that serves to couple the input sampling rate Fx to
the output sampling rate Fy = (I/D)Fx. The sample at the input to each
hold-and-sample device is held until the next input sample arrives and
then is discarded. The output samples on the hold-and-sample device are
taken at times mD/I, m = 0, 1, 2, . . . . When both the input and output
sampling times coincide (i.e., when mD/I is an integer), the input to the
hold-and-sample is changed first; then the output samples the new input.
The K outputs from the K hold-and-sample devices are multiplied by
the periodically time-varying coefficients g(n, m − �m/I� I), for n = 0,
1, . . . , K − 1, and the resulting products are summed to yield y(m). The
computations at the output of the hold-and-sample devices are repeated
at the output sampling rate of Fy = (I/D)Fx.

Finally, rate conversion by a rational factor I/D can also be performed
by use of a polyphase filter having I subfilters. If we assume that the mth
sample y(m) is computed by taking the output of the imth subfilter with
input data x(n), x(n − 1), . . . , x(n − K + 1), in the delay line, the next
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sample y(m + 1) is taken from the (im+1)st subfilter after shifting lm+1
new samples in the delay lines where im+1 = (im + D)modI and lm+1 is
the integer part of (im + D)/I. The integer im+1 should be saved to be
used in determining the subfilter from which the next sample is taken.

� EXAMPLE 9.19 For the sampling rate converter designed in Example 9.15, specify the set of
time-varying coefficients {g(n, m)} used in the realization of the converter based
on the structure given in Figure 9.19. Also, specify the corresponding implemen-
tation based in polyphase filters.

Solution The coefficients of the filter are given by (9.43):

g(n, m) = h(nI + (mD)I) = h
(
nI + mD −

⌊
D

I
m
⌋

I
)

By substituting I = 5 and D = 2, we obtain

g(n, m) = h
(
5n + 2m − 5

⌊2m

5

⌋)

By evaluating g(n, m) for n = 0, 1, . . . , 5 and m = 0, 1, . . . ., 4, we obtain the
following coefficients for the time-variant filter:

g(0, m) = {h(0) h(2) h(4) h(1) h(3)}
g(1, m) = {h(5) h(7) h(9) h(6) h(8)}
g(2, m) = {h(10) h(12) h(14) h(11) h(13)}
g(3, m) = {h(15) h(17) h(19) h(16) h(18)}
g(4, m) = {h(20) h(22) h(24) h(21) h(23)}
g(5, m) = {h(25) h(27) h(29) h(26) h(28)}

A polyphase filter implementation would employ five subfilters, each of length
6. To decimate the output of the polyphase filters by a factor of D = 2 simply
means that we take every other output from the polyphase filters. Thus the first
output y(0) is taken from p0(n), the second output y(1) is taken from p2(n),
the third output is taken from p4(n), the fourth output is taken from p1(n), the
fifth output is taken from p3(n), and so on. �

9.7 PROBLEMS

P9.1 Consider the upsampler with input x(n) and output v(m) given in (9.26). Show that the
upsampler is a linear but time-varying system.

P9.2 Let x(n) = 0.9nu(n). The signal is applied to a downsampler that reduces the rate by a
factor of 2 to obtain the signal y(m).

1. Determine and plot the spectrum X(ω).
2. Determine and plot the spectrum Y (ω).
3. Show that the spectrum in part (2) is simply the DTFT of x(2n).
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P9.3 Consider a signal with spectrum

X(ω) =

{
nonzero, |ω| ≤ ω0

0, ω0 < |ω| ≤ π

1. Show that the signal x(n) can be recovered from its samples x(mD) if the sampling

frequency ωs
�
= 2π/D ≥ 2ω0.

2. Sketch the spectra of x(n) and x(mD) for D = 4.
3. Show that x(n) can reconstructed from the bandlimited interpolation

x(n) =
∞∑

k=−∞

x(kD) sinc[fc(n − kD)]; ω0 < 2πfc < ωs − ω0, fc =
1
D

P9.4 Using the function downsample, study the operation of factor-of-4 downsampling on the
following sequences. Use the stem function to plot the original and the downsampled
sequences. Experiment using the default offset value of zero and the offset value equal to 2.
Comment on any differences.

1. x1(n) = cos(0.15πn), 0 ≤ n ≤ 100
2. x2(n) = sin(0.1πn) + sin(0.4πn), 0 ≤ n ≤ 100
3. x3(n) = 1 − cos(0.25πn), 0 ≤ n ≤ 100
4. x4(n) = 0.1 n, 0 ≤ n ≤ 100
5. x5(n) = {0, 1, 2, 3, 4, 5, 4, 3, 2, 1}PERIODIC, 0 ≤ n ≤ 100

P9.5 Repeat Problem P9.4 using the factor-of-5 downsampler.

P9.6 Using the fir2 function, generate a 101-length sequence x(n) whose frequency-domain
sampled-values are 0.5 at ω = 0, 1 at ω = 0.1π, 1 at ω = 0.2, 0 at ω = 0.22π, and 0 at
ω = π.

1. Compute and plot the DTFT magnitude of x(n).
2. Downsample x(n) by a factor of 2, and plot the DTFT of the resulting sequence.
3. Downsample x(n) by a factor of 4, and plot the DTFT of the resulting sequence.
4. Downsample x(n) by a factor of 5, and plot the DTFT of the resulting sequence.
5. Comment on your results.

P9.7 Using the function decimate, study the operation of factor-of-4 decimation on the
following sequences. Use the stem function to plot the original and the decimated
sequences. Experiment, using both the default IIR and FIR decimation filters. Comment
on any differences.

1. x1(n) = sin(0.15πn), 0 ≤ n ≤ 100
2. x2(n) = cos(0.1πn) + cos(0.4πn), 0 ≤ n ≤ 100
3. x3(n) = 1 − cos(0.25πn), 0 ≤ n ≤ 100
4. x4(n) = 0.1 n, 0 ≤ n ≤ 100
5. x5(n) = {0, 1, 2, 3, 4, 5, 4, 3, 2, 1}PERIODIC, 0 ≤ n ≤ 100

P9.8 Repeat Problem P9.7 using the 4th-order IIR filter and the 15th-order FIR decimation
filters. Comment on any performance differences.

P9.9 Repeat Problem P9.7 using the factor-of-5 decimation. Comment on any differences.

P9.10 Repeat Problem P9.9 using the the 4th-order IIR filter and the 15th-order FIR decimation
filters. Comment on any differences.
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P9.11 Using the fir2 function, generate a 101-length sequence x(n) whose frequency-domain
sampled-values are 0.5 at ω = 0, 1 at ω = 0.1π, 1 at ω = 0.2, 0 at ω = 0.22π, and 0 at
ω = π.

1. Compute and plot the DTFT of x(n).
2. Decimate x(n) by a factor of 2, and plot the DTFT of the resulting sequence.
3. Decimate x(n) by a factor of 4, and plot the DTFT of the resulting sequence.
4. Decimate x(n) by a factor of 5, and plot the DTFT of the resulting sequence.
5. Comment on your results.

P9.12 Using the function upsample, study the operation of factor-of-4 upsampling on the
following sequences. Use the stem function to plot the original and the upsampled
sequences. Experiment using the default offset value of zero and the offset value
equal to 2.

1. x1(n) = sin(0.6πn), 0 ≤ n ≤ 100
2. x2(n) = sin(0.8πn) + cos(0.5πn), 0 ≤ n ≤ 100
3. x3(n) = 1 + cos(πn), 0 ≤ n ≤ 100
4. x4(n) = 0.2 n, 0 ≤ n ≤ 100
5. x5(n) = {1, 1, 1, 1, 0, 0, 0, 0, 0, 0}PERIODIC, 0 ≤ n ≤ 100

P9.13 Using the fir2 function, generate a 91-length sequence x(n) whose frequency-domain
sampled-values are 0 at ω = 0, 0.5 at ω = 0.1π, 1 at ω = 0.2, 1 at ω = 0.7π, 0.5 at
ω = 0.75π, 0 at ω = 0.8π, and 0 at ω = π.

1. Compute and plot the DTFT magnitude of x(n).
2. Upsample x(n) by a factor of 2, and plot the DTFT magnitude of the resulting

sequence.
3. Upsample x(n) by a factor of 3, and plot the DTFT magnitude of the resulting

sequence.
4. Upsample x(n) by a factor of 4, and plot the DTFT magnitude of the resulting

sequence.
5. Comment on your results.

P9.14 Using the function interp, study the operation of factor-of-4 interpolation on the
sequences of Problem P9.12. Use the stem function to plot the original and the
interpolated sequences. Experiment, using the filter length parameter values equal to 3
and 5. Comment on any differences in performance of the interpolation.

P9.15 Provide the frequency response plots of the lowpass filters used in the interpolators of
Problem P9.14.

P9.16 Repeat Problem P9.14, using the factor-of-3 interpolation.

P9.17 Provide the frequency response plots of the lowpass filters used in the interpolators of
Problem P9.16.

P9.18 Repeat Problem P9.14, using the factor-of-5 interpolation.

P9.19 Provide the frequency response plots of the lowpass filters used in the interpolators of
Problem P9.18.

P9.20 Using the fir2 function generate a 91-length sequence x(n) whose frequency-domain
sampled-values are 0 at ω = 0, 0.5 at ω = 0.1π, 1 at ω = 0.2, 1 at ω = 0.7π, 0.5 at
ω = 0.75π, 0 at ω = 0.8π, and 0 at ω = π.
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1. Compute and plot the DTFT of x(n).
2. Interpolate x(n) by a factor of 2, and plot the DTFT of the resulting sequence.
3. Interpolate x(n) by a factor of 3, and plot the DTFT of the resulting sequence.
4. Interpolate x(n) by a factor of 4, and plot the DTFT of the resulting sequence.
5. Comment on your results.

P9.21 Consider two sequences x1(n) and x2(n), which appear to be related:

x1(n) = max (10 − |n|, 0) and x2(n) = min (|n|, 10)

Use the resample function with default parameters.

1. Resample the sequence x1(n) at 3/2 times the original rate to obtain y1(m), and
provide the stem plots of both sequences.

2. Resample the sequence x2(n) at 3/2 times the original rate to obtain y2(m), and
provide the stem plots of both sequences.

3. Explain why the resampled plot of y2(n) has inaccuracies near the boundaries that
y1(n) does not have.

4. Plot the frequency response of the filter used in the resampling operation.

P9.22 Let x(n) = cos(0.1πn) + 0.5 sin(0.2πn) + 0.25 cos(0.4πn). Use the resample function with
default parameters.

1. Resample the sequence x(n) at 4/5 times the original rate to obtain y1(m), and provide
the stem plots of both sequences.

2. Resample the sequence x(n) at 5/4 times the original rate to obtain y2(m), and provide
the stem plots of both sequences.

3. Resample the sequence x(n) at 2/3 times the original rate to obtain y3(m), and provide
the stem plots of both sequences.

4. Explain which of the three output sequences retain the “shape” of the original sequence
x(n).

P9.23 Let x(n) = {0, 0, 0, 1, 1, 1, 1, 0, 0, 0}PERIODIC be a periodic sequence with period 10. Use
the resample function for the following parts to resample the sequence x(n) at 3/5 times
the original rate. Consider the length of the input sequence to be 80.

1. Use the filter length parameter L equal to zero to obtain y1(m), and provide the stem
plots of x(n) and y1(m) sequences.

2. Use the default value of the filter length parameter L to obtain y2(m), and provide the
stem plots of x(n) and y2(m) sequences.

3. Use the filter length parameter L equal to 15 to obtain y3(m), and provide the stem
plots of x(n) and y3(m) sequences.

P9.24 Using the fir2 function, generate a 101-length sequence x(n) whose frequency-domain
sampled-values are 0 at ω = 0, 0.5 at ω = 0.1π, 1 at ω = 0.2π, 1 at ω = 0.5π, 0.5 at
ω = 0.55π, 0 at ω = 0.6π, and 0 at ω = π.

1. Compute and plot the DTFT of x(n).
2. Resample x(n) by a factor of 4/3, and plot the DTFT of the resulting sequence.
3. Resample x(n) by a factor of 3/4, and plot the DTFT of the resulting sequence.
4. Resample x(n) by a factor of 4/5, and plot the DTFT of the resulting sequence.
5. Comment on your results.
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P9.25 We want to design a linear-phase FIR filter to increase the input sampling rate by a factor
of 3 using the intfilt function.

1. Assuming full bandwidth of the signal to be interpolated, determine the impulse
response of the required FIR filter. Plot its amplitude response and the log-magnitude
response in dB. Experiment with the length parameter L to obtain a reasonable
stopband attenuation.

2. Assuming that bandwidth of the signal to be interpolated is π/2, determine the
impulse response of the required FIR filter. Plot its amplitude response and the
log-magnitude response in decibels. Again, experiment with the length parameter L to
obtain a reasonable stopband attenuation.

P9.26 We want to design a linear-phase FIR filter to increase the input sampling rate by a factor
of 5 using the intfilt function.

1. Assuming full bandwidth of the signal to be interpolated, determine the impulse
response of the required FIR filter. Plot its amplitude response and the log-magnitude
response in decibels. Experiment with the length parameter L to obtain a reasonable
stopband attenuation.

2. Assuming that bandwidth of the signal to be interpolated is 4π/5, determine the
impulse response of the required FIR filter. Plot its amplitude response and the
log-magnitude response in decibels. Again, experiment with the length parameter L to
obtain a reasonable stopband attenuation.

P9.27 Using the Parks–McClellan algorithm, design an interpolator that increases the input
sampling rate by a factor of I = 2.

1. Determine the coefficients of the FIR filter that has 0.5 dB ripple in the passband and
50 dB attenuation in the stopband. Choose reasonable values for the band-edge
frequencies.

2. Provide plots of the impulse and the log-magnitude responses.
3. Determine the corresponding polyphase structure for implementing the filter.
4. Let x(n) = cos(0.4πn). Generate 100 samples of x(n), and process it using this filter to

interpolate by I = 2 to obtain y(m). Provide the stem plots of the both sequences.

P9.28 Using the Parks–McClellan algorithm, design an interpolator that increases the input
sampling rate by a factor of I = 3.

1. Determine the coefficients of the FIR filter that has 0.1 dB ripple in the passband and
40 dB attenuation in the stopband. Choose reasonable values for the band-edge
frequencies.

2. Provide plots of the impulse and the log-magnitude responses.
3. Determine the corresponding polyphase structure for implementing the filter.
4. Let x(n) = cos(0.3πn). Generate 100 samples of x(n) and process it using this filter to

interpolate by I = 3 to obtain y(m). Provide the stem plots of both sequences.

P9.29 A signal x(n) is to be interpolated by a factor of 3. It has a bandwidth of 0.4π, but we
want to preserve frequency band up to 0.3π in the interpolated signal. Using the
Parks–McClellan algorithm, we want to design such an interpolator.

1. Determine the coefficients of the FIR filter that has 0.1 dB ripple in the passband and
40 dB attenuation in the stopband.

2. Provide plots of the impulse and the log-magnitude responses.
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3. Let x(n) = cos(0.3πn) + 0.5 sin(0.4πn). Generate 100 samples of x(n), and process it
using this filter to interpolate by I = 3 to obtain y(m). Provide the stem plots of both
sequences.

P9.30 A signal x(n) is to be interpolated by a factor of 4. It has a bandwidth of 0.7π, but we
want to preserve frequency band up to 0.6π in the interpolated signal. Using the
Parks–McClellan algorithm, we want to design such an interpolator.

1. Determine the coefficients of the FIR filter that has 0.5 dB ripple in the passband and
50 dB attenuation in the stopband.

2. Provide plots of the impulse and the log-magnitude responses.
3. Let x(n) = sin(0.5πn) + cos(0.7πn). Generate 100 samples of x(n) and process it using

this filter to interpolate by I = 4 to obtain y(m). Provide the stem plots of both
sequences.

P9.31 Using the Parks–McClellan algorithm, design a decimator that downsamples an input
signal x(n) by a factor of D = 5.

1. Determine the coefficients of the FIR filter that has 0.1 dB ripple in the passband and
30 dB attenuation in the stopband. Choose reasonable values for the band-edge
frequencies.

2. Provide plots of the impulse and the log-magnitude responses.
3. Determine the corresponding polyphase structure for implementing the filter.
4. Using the fir2 function, generate a 131-length sequence x(n) whose frequency-domain

sampled-values are 1 at ω = 0, 0.9 at ω = 0.1π, 1 at ω = 0.2π, 1 at ω = 0.5π, 0.5 at
ω = 0.55π, 0 at ω = 0.6π, and 0 at ω = π. Process x(n) using this filter to decimate it
by a factor of 5 to obtain y(m). Provide the spectral plots of both sequences.

P9.32 Using the Parks–McClellan algorithm, design a decimator that downsamples an input
signal x(n) by a factor of D = 3.

1. Determine the coefficients of the FIR filter that has 0.5 dB ripple in the passband and
30 dB attenuation in the stopband. Choose reasonable values for the band-edge
frequencies.

2. Provide plots of the impulse and the log-magnitude responses.
3. Let x1(n) = sin(0.2πn) + 0.2 cos(0.5πn). Generate 500 samples of x1(n), and process it

using this to decimate by D = 3 to obtain y1(m). Provide the stem plots of both
sequences.

4. Using the fir2 function, generate a 131-length sequence x2(n) whose frequency-domain
sampled-values are 1 at ω = 0, 0.8 at ω = 0.15π, 1 at ω = 0.3π, 1 at ω = 0.4π, 0.5 at
ω = 0.45π, 0 at ω = 0.5π, and 0 at ω = π. Process x2(n), using this filter to decimate it
by a factor of 3 to obtain y2(m). Provide the spectral plots of both sequences.

P9.33 A signal x(n) is to be decimated by a factor of D = 2. It has a bandwidth of 0.4π, and we
will tolerate aliasing this frequency 0.45π in the decimated signal. Using the
Parks–McClellan algorithm, we want to design such a decimator.

1. Determine the coefficients of the FIR filter that has 0.1 dB ripple in the passband and
45 dB attenuation in the stopband.

2. Provide plots of the impulse and the log-magnitude responses.
3. Let x1(n) = cos(0.4πn) + 2 sin(0.45πn). Generate 200 samples of x1(n), and process it

using this filter to decimate by D = 2 to obtain y1(m). Provide the stem plots of both
sequences.
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4. Using the fir2 function, generate a 151-length sequence x2(n) whose frequency-domain
sampled-values are 1 at ω = 0, 0.9 at ω = 0.2π, 1 at ω = 0.4π, 0.5 at ω = 0.45π, 0 at
ω = 0.5π, and 0 at ω = π. Process x2(n), using this filter to decimate it by a factor of 2
to obtain y2(m). Provide the spectral plots of both sequences.

P9.34 A signal x(n) is to be decimated by a factor of D = 3. It has a bandwidth of 0.25π, and we
will tolerate aliasing this frequency 0.3π in the decimated signal. Using the
Parks–McClellan algorithm, we want to design such a decimator.

1. Determine the coefficients of the FIR filter that has 0.1 dB ripple in the passband and
40 dB attenuation in the stopband.

2. Provide plots of the impulse and the log-magnitude responses.
3. Let x1(n) = cos(0.2πn) + 2 sin(0.3πn). Generate 300 samples of x1(n), and process it

using this filter to decimate by D = 3 to obtain y1(m). Provide the stem plots of both
sequences.

4. Using the fir2 function, generate a 151-length sequence x2(n) whose frequency-domain
sampled-values are 1 at ω = 0, 1 at ω = 0.1π, 1 at ω = 0.25π, 0.5 at ω = 0.3π, 0 at
ω = 0.35π, and 0 at ω = π. Process x2(n), using this filter to decimate it by a factor of
3 to obtain y2(m). Provide the spectral plots of both sequences.

P9.35 Design a sampling rate converter that reduces the sampling rate by a factor of 2/5.

1. Using the Parks–McClellan algorithm, determine the coefficients of the FIR filter that
has 0.1 dB ripple in the passband and 30 dB attenuation in the stopband. Choose
reasonable values for the band-edge frequencies.

2. Provide plots of the impulse and the log-magnitude responses.
3. Specify the sets of the time-varying coefficients g(m, n) and the corresponding

coefficients in the polyphase filter realization.
4. Let x(n) = sin(0.35πn) + 2 cos(0.45πn). Generate 500 samples of x(n) and process it

using this filter to resample by 2/5 to obtain y(m). Provide the stem plots of both
sequences.

P9.36 Design a sampling rate converter that increases the sampling rate by a factor of 7/4.

1. Using the Parks–McClellan algorithm, determine the coefficients of the FIR filter that
has 0.1 dB ripple in the passband and 40 dB attenuation in the stopband. Choose
reasonable values for the band-edge frequencies.

2. Provide plots of the impulse and the log-magnitude responses.
3. Specify the sets of the time-varying coefficients g(m, n) and the corresponding

coefficients in the polyphase filter realization.
4. Let x(n) = 2 sin(0.35πn) + cos(0.95πn). Generate 500 samples of x(n) and process it,

using this filter to resample by 7/4 to obtain y(m). Provide the stem plots of both
sequences.

P9.37 A signal x(n) is to be resampled by a factor of 3/2. It has a total bandwidth of 0.8π, but
we want to preserve frequencies only up to 0.6π and require that the band up to 0.75π be
free of aliasing in the resampled signal.

1. Using the Parks–McClellan algorithm, determine the coefficients of the FIR filter that
has 0.5 dB ripple in the passband and 50 dB attenuation in the stopband.

2. Provide plots of the impulse and the log-magnitude responses.
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3. Using the fir2 function, generate a 101-length sequence x(n) whose frequency-domain
sampled-values are 0.7 at ω = 0, 1 at ω = 0.3π, 1 at ω = 0.7π, 0.5 at ω = 0.75π, 0 at
ω = 0.8π, and 0 at ω = π. Process x(n) using this filter to resample it by 3/2 to obtain
y(m). Provide the spectral plots of both sequences.

P9.38 A signal x(n) is to be resampled by a factor of 4/5. It has a total bandwidth of 0.8π, but
we want to preserve frequencies only up to 0.5π and require that the band up to 0.75π be
free of aliasing in the resampled signal.

1. Using the Parks–McClellan algorithm, determine the coefficients of the FIR filter that
has 0.1 dB ripple in the passband and 40 dB attenuation in the stopband.

2. Provide plots of the impulse and the log-magnitude responses.
3. Using the fir2 function, generate a 101-length sequence x(n) whose frequency-domain

sampled-values are 0.7 at ω = 0, 1 at ω = 0.3π, 1 at ω = 0.7π, 0.5 at ω = 0.75π, 0 at
ω = 0.8π, and 0 at ω = π. Process x(n), using this filter to resample it by 4/5 to obtain
y(m). Provide the spectral plots of both sequences.

P9.39 A signal x(n) is to be resampled by a factor of 5/2. It has a total bandwidth of 0.8π, but
we want to preserve frequencies only up to 0.7π and require that the band up to 0.75π be
free of aliasing in the resampled signal.

1. Using the Parks–McClellan algorithm, determine the coefficients of the FIR filter that
has 0.5 dB ripple in the passband and 50 dB attenuation in the stopband.

2. Provide plots of the impulse and the log-magnitude responses.
3. Using the fir2 function, generate a 101-length sequence x(n) whose frequency-domain

sampled-values are 0.7 at ω = 0, 1 at ω = 0.3π, 1 at ω = 0.7π, 0.5 at ω = 0.75π, 0 at
ω = 0.8π, and 0 at ω = π. Process x(n) using this filter to resample it by a 5/2 to
obtain y(m). Provide the spectral plots of both sequences.

P9.40 A signal x(n) is to be resampled by a factor of 3/8. It has a total bandwidth of 0.5π, but
we want to preserve frequencies only up to 0.3π and require that the band up to 0.35π be
free of aliasing in the resampled signal.

1. Using the Parks–McClellan algorithm, determine the coefficients of the FIR filter that
has 0.1 dB ripple in the passband and 40 dB attenuation in the stopband.

2. Provide plots of the impulse and the log-magnitude responses.
3. Using the fir2 function, generate a 101-length sequence x(n) whose frequency-domain

sampled-values are 1 at ω = 0, 1 at ω = 0.25π, 1 at ω = 0.5π, 0.5 at ω = 0.55π, 0 at
ω = 0.6π, and 0 at ω = π. Process x(n) using this filter to resample it by 3/8 to obtain
y(m). Provide the spectral plots of both sequences.
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C H A P T E R 10
Round-Off Effects
in Digital Filters

In the latter part of Chapter 6, we discussed the finite-precision num-
ber representations for the purpose of implementing filtering operations
on digital hardware. In particular, we focused on the process of number
quantization, the resulting error characterizations, and the effects of fil-
ter coefficient quantization on filter specifications and responses. In this
chapter, we further extend the effects of finite-precision numerical effects
to the filtering aspects in signal processing.

We begin by discussing analog-to-digital (A/D) conversion noise us-
ing the number representations and quantization error characteristics de-
veloped in Chapter 6. We then analyze the multiplication and addition
quantization (collectively known as arithmetic round-off error) models.
The effects of these errors on filter output are discussed as two topics:
correlated errors called limit cycles and uncorrelated round-off noise.

10.1 ANALYSIS OF A/D QUANTIZATION NOISE

From the quantizer characteristics obtained in Chapter 6, it is obvious
that the quantized value Q[x] is a nonlinear operation on the value x.
Hence the exact analysis of the finite word-length effects in digital filters
is generally difficult and one has to consider less ideal analysis techniques
that work well in practice.

One such technique is the statistical modeling technique. It converts
the nonlinear analysis problem into a linear one and allows us to examine
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QUANTIZERx(n) x(n) x(n) + e(n)Q[x (n)]

e(n)

⇒

FIGURE 10.1 Statistical model of a quantizer

output-error characteristics. In this technique, we assume that the quan-
tized value Q[x] is a sum of the exact value x and the quantization error e,
which is assumed to be a random variable. When x(n) is applied as an
input sequence to the quantizer, the error e(n) is assumed to be a random
sequence. We then develop a statistical model for this random sequence
to analyze its effects through a digital filter.

For the purpose of analysis, we assume that the quantizer employs
fixed-point two’s-complement number format representation. Using the
results given previously, we can extend this analysis to other formats as
well.

10.1.1 STATISTICAL MODEL
We model the quantizer block on the input as a signal-plus-noise
operation—that is, from (6.46),

Q[x(n)] = x(n) + e(n) (10.1)

where e(n) is a random sequence that describes the quantization error se-
quence and is termed the quantization noise. This is shown in Figure 10.1.

Model assumptions For the model in (10.1) to be mathematically
convenient and hence practically useful, we have to assume reasonable
statistical properties for the sequences involved. That these assumptions
are practically reasonable can be ascertained using simple MATLAB ex-
amples, as we shall see. We assume that the error sequence, e(n) has the
following characteristics:1

1. The sequence e(n) is a sample sequence from a stationary random
process {e(n)}.

2. This random process {e(n)} is uncorrelated with sequence x(n).
3. The process {e(n)} is an independent process (i.e., the samples are

independent of each other).
4. The probability density function (pdf), fE(e), of sample e(n) for each

n is uniformly distributed over the interval of width ∆ = 2−B , which
is the quantizer resolution.

1The review of random variables, processes, and the associated terminology is given
in Chapter 13.
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These assumptions are reasonable in practice if the sequence x(n) is suf-
ficiently random to traverse many quantization steps in going from time
n to n + 1.

10.1.2 ANALYSIS USING MATLAB
To investigate the statistical properties of the error samples, we will have
to generate a large number of these samples and plot their distribution
using a histogram (or a probability bar graph). Furthermore, we have to
design the sequence x(n) so that its samples do not repeat; otherwise, the
error samples will also repeat, which will result in an inaccurate analy-
sis. This can be guaranteed either by choosing a well-defined aperiodic
sequence or a random sequence.

We will quantize x(n) using B-bit rounding operation. A similar im-
plementation can be developed for the truncation operation. Since all
three error characteristics are exactly the same under the rounding op-
eration, we will choose the sign-magnitude format for ease in implemen-
tation. After quantization, the resulting error samples e(n) are uniformly
distributed over the [−∆

2 , ∆
2 ] interval. Let e1(n) be the normalized error

given by

e1(n)
�
=

e(n)
∆

= e(n) 2B ⇒ e1(n) ∈ [−1/2, 1/2] (10.2)

Then e1(n) is uniform over the interval [−1
2 ,+ 1

2 ], as shown in Figure 10.2a.
Thus the histogram interval will be uniform across all B-bit values, which
will make its computation and plotting easier. This interval will be divided
into 128 bins for the purpose of plotting.

To determine the sample independence, we consider the histogram of
the sequence

e2(n)
�
=

e1(n) + e1(n − 1)
2

(10.3)

which is the average of two consecutive normalized error samples. If
e1(n) is uniformly distributed between [−1/2, 1/2], then, for sample
independence, e2(n) must have a triangle-shaped distribution between
[−1/2, 1/2], as shown in Figure 10.2b. We will again generate a 128-
bin histogram for e2(n). These steps are implemented in the following
MATLAB function.

f1(n) f2(n)

e1(n) e2(n)
−1/2(a) (b)1/2 −1/2 1/2

1 2

FIGURE 10.2 Probability distributions of the normalized errors e1(n) and e2(n)
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function [H1,H2,Q, estat] = StatModelR(xn,B,N);
% Statistical Model (Rounding) for A/D Quantization error and its Distribution
% ------------- -------------------------------------------------------------
% [H1,H2,Q] = StatModelR(xn,B,N);
% OUT: H1 = normalized histogram of e1
% H2 = normalized histogram of e2
% Q = normalized histogram bins
% estat = row vector: [[e1avg,e1std,e2avg,e2std]
% IN: B = bits to quantize
% N = number of samples of x(n)
% xn = samples of the sequence
% Plot variables
bM = 7; DbM = 2ˆbM; % Bin parameter
M = round((DbM)/2); % Half number of bins

bins = [-M+0.5:1:M-0.5]; % Bin values from -M to M
Q = bins/(DbM); % Normalized bins

% Quantization error analysis
xq = (round(xn*(2ˆB)))/(2ˆB); % Quantized to B bits
e1 = xq-xn; clear xn xq; % Quantization error
e2 = 0.5*(e1(1:N-1)+e1(2:N)); % Average of two adj errors

e1avg = mean(e1); e1std = std(e1); % Mean & std dev of the error e1
e2avg = mean(e2); e2std = std(e2); % Mean & std dev of the error e2
estat = [e1avg,e1std,e2avg,e2std];

% Probability distribution of e1
e1 = floor(e1*(2ˆ(B+bM))); % Normalized e1 (int between -M & M)
e1 = sort([e1,-M-1:1:M]); %
H1 = diff(find(diff(e1)))-1; clear e1; % Error histogram
if length(H1) == DbM+1

H1(DbM) = H1(DbM)+H1(DbM+1);
H1 = H1(1:DbM);

end
H1 = H1/N; % Normalized histogram
% Probability distribution of e2
e2 = floor(e2*(2ˆ(B+bM))); % Normalized e2 (int between -M & M)
e2 = sort([e2,-M-1:1:M]); %
H2 = diff(find(diff(e2)))-1; clear e2; % Error histogram
if length(H2) == DbM+1

H2(DbM) = H2(DbM)+H2(DbM+1);
H2 = H2(1:DbM);

end
H2 = H2/N; % Normalized histogram

To validate the model assumptions, we consider the following two ex-
amples. In the first example, an aperiodic sinusoidal sequence is quantized
to B bits, and in the second example, a random sequence is quantized to B
bits. The resulting quantization errors are analyzed for their distribution
properties and for their sample independence for various values of B.
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FIGURE 10.3 A/D quantization error distribution for the sinusoidal signal in
Example 10.1, B = 2 bits

Through these examples, we hope to learn how small error e must be (or
equivalently, how large B must be) for the above assumptions to be valid.

� EXAMPLE 10.1 Let x(n) = 1
3{sin(n/11) + sin(n/31) + cos(n/67)}. This sequence is not peri-

odic, and hence its samples never repeat using infinite-precision representation.
However, since the sequence is of sinusoidal nature, its continuous envelope is
periodic and the samples are continuously distributed over the fundamental
period of this envelope. Determine the error distributions for B = 2 and 6 bits.

Solution To minimize statistical variations, the sample size must be large. We choose
500,000 samples. The following MATLAB script computes the distributions for
B = 2 bits.

clear; close all;
% Example parameters
B = 2; N = 500000; n = [1:N];
xn = (1/3)*(sin(n/11)+sin(n/31)+cos(n/67)); clear n;
% Quantization error analysis
[H1,H2,Q, estat]] = StatModelR(xn,B,N); % Compute histograms
H1max = max(H1); H1min = min(H1); % Max and Min of H1
H2max = max(H2); H2min = min(H2); % Max and Min of H2

The plots of the resulting histogram are shown in Figure 10.3. Clearly, even
though the error samples appear to be uniformly distributed, the samples
are not independent. The corresponding plots for B = 6 bits are shown in
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FIGURE 10.4 Quantization error distribution for the sinusoidal signal in
Example 10.1, B = 6 bits

Figure 10.4, from which we observe that the quantization error sequence ap-
pears to satisfy the model assumptions for B ≥ 6 bits. �

� EXAMPLE 10.2 Let x(n) be an independent and identically distributed random sequence whose
samples are uniformly distributed over the [−1, 1] interval. Determine the error
distributions for B = 2 and 6 bits.

Solution We again choose 500,000 samples to minimize any statistical variations. The
following MATLAB fragment computes the distributions for B = 2 bits.

clear; close all;
% Example parameters
B = 2; N = 500000; xn = (2*rand(1,N)-1);
% Quantization error analysis
[H1,H2,Q, estat]] = StatModelR(xn,B,N); % Compute histograms
H1max = max(H1); H1min = min(H1); % Max and Min of H1
H2max = max(H2); H2min = min(H2); % Max and Min of H2

The plots of the resulting histogram are shown in Figure 10.5. The correspond-
ing plots for B = 6 bits are shown in Figure 10.6. From these plots, we observe
that even for B = 2 bits the quantization error samples are independent and
uniformly distributed. �
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FIGURE 10.5 A/D quantization error distribution for the random signal in
Example 10.2, B = 2 bits
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FIGURE 10.6 Quantization error distribution for the random signal in Exam-
ple 10.2, B = 6 bits
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Since practical signals processed using a DSP chip are typically ran-
dom in nature (or can be modeled as such), we conclude from these two
examples that the statistical model, with its stated assumptions, is a very
good model.

10.1.3 STATISTICS OF A/D QUANTIZATION NOISE
We now develop a second-order statistical description of the error sequence
e(n) for both the truncation and rounding operations.

10.1.4 TRUNCATION
From (6.57), the pdf fET(e) of eT(n) is uniform over [−∆, 0], as shown in
Figure 10.7a. Then the average of eT(n) is given by

meT

�
= E[eT(n)] = −∆/2 (10.4)

and the variance is

σ2
eT

�
= E

[
(eT(n) − meT)2

]
=
∫ 0

−∆
(e − ∆/2)2 fET(e) de

=
∫ ∆/2

−∆/2
e2
(

1
∆

)
de =

∆2

12
(10.5)

Using ∆ = 2−B , we obtain

σ2
eT

=
2−2B

12
or σeT =

2−B

2
√

3
(10.6)

Rounding From (6.59), the pdf fER(e) of eR(n) is uniform over
[−∆/2, ∆/2], as shown in Figure 10.7b. Then the average of eR(n) is
given by

meR

�
= [EeR] = 0 (10.7)

fT(e) fR(e)

e

1/∆
1/∆

−∆/2−∆ −∆/2 ∆/2
e

0 0

(a) (b)

FIGURE 10.7 Probability density functions: (a) truncation and (b) rounding
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and the variance is

σ2
eR

�
= E

[
(eR(n) − meR)2

]
=
∫ ∆/2

−∆/2
e2 fER(e) de =

∫ ∆/2

−∆/2
e2
(

1
∆

)
de

=
∆2

12
(10.8)

Using (6.45), we obtain

σ2
eR

=
2−2B

12
or σeR =

2−B

2
√

3
(10.9)

Since the samples of the sequence eR(n) are assumed to be independent
of each other, the variance of [eR(n) + eR(n − 1)]/2 is given by

var
[
eR(n) + eR(n − 1)

2

]
=

1
4

(
2−2B

12
+

2−2B

12

)
=

2−2B

24
=

1
2
σ2

eR

(10.10)
or the standard deviation is σeR/

√
2.

From the model assumptions and (10.6) or (10.9), the covariance of
the error sequence (which is an independent sequence) is given by

E[e(m)e(n)]
�
= Ce(m − n)

�
= Ce(�) =

2−2B

12
δ (�) (10.11)

where �
�
= m − n is called the lag variable. Such an error sequence is also

known as a white noise sequence.

10.1.5 MATLAB IMPLEMENTATION
In MATLAB, the sample mean and standard deviation are computed
using the functions mean and std, respectively. The last argument of the
function StatModelR is a vector containing sample means and standard
deviations of unnormalized errors e(n) and [e(n)+e(n−1)]/2. Thus these
values can be compared with the theoretical values obtained from the
statistical model.

� EXAMPLE 10.3 The plots in Example 10.1 also indicate the sample means and standard devi-
ations of the errors e(n) and [e(n) + e(n − 1)]/2. For B = 2, these computed
values are shown in Figure 10.3. Since e(n) is uniformly distributed over the
interval [−2−3, 2−3], its mean value is 0, and so is the mean of [e(n)+e(n−1)]/2.
The computed values are 3.4239 × 10−5 and 3.4396 × 10−5, respectively, which
agree fairly well with the model. The standard deviation of e(n), from (10.9), is
0.072169, while that from the top plot in Figure 10.3 is 0.072073, which again
agrees closely with the model. The standard deviation of the average of the two
consecutive samples, from (10.10), is 0.051031, and from the bottom plot in
Figure 10.3 it is 0.063851, which clearly does not agree with the model. Hence
the samples of e(n) for B = 2 are not independent. This was confirmed by the
bottom plot in Figure 10.3.
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Similarly, for B = 6 computed statistical values are shown in Figure 10.4.
The computed values of the two means are −4.1044 × 10−6, which agree very
well with the model. The standard deviation of e(n), from (10.9), is 0.0045105,
while that from the top plot in Figure 10.4 is 0.0045076, which again agrees
closely with the model. The standard deviation of the average of the two con-
secutive samples, from (10.10), is 0.0031894, while from the bottom plot in
Figure 10.4 it is 0.00318181, which clearly agrees with the model. Hence the
samples of e(n) for B = 6 are independent. This was also confirmed by the
bottom plot in Figure 10.4. �

Similar calculations can be carried out for the signal in Example 10.2.
The details are left to the reader.

10.1.6 A/D QUANTIZATION NOISE THROUGH DIGITAL FILTERS
Let a digital filter be described by the impulse response, h(n), or the fre-
quency response, H(ejω). When a quantized input, Q[x(n)] = x(n)+e(n),
is applied to this system, we can determine the effects of the error sequence
e(n) on the filter output as it propagates through the filter, assuming
infinite-precision arithmetic implementation in the filter. We are generally
interested in the mean and variance of this output-noise sequence, which
we can obtain using linear system theory concepts. Details of these results
are given in Section 13.5.

Referring to Figure 10.8, let the output of the filter be ŷ(n). Using
LTI properties and the statistical independence between x(n) and e(n),
the output ŷ(n) can be expressed as the sum of two components. Let y(n)
be the (true) output due to x(n) and let q(n) be the response due to e(n).
Then we can show that q(n) is also a random sequence with mean

mq
�
= E[q(n)] = me

∞∑
−∞

h(n) = me H(ej0) (10.12)

where the term H(ej0) is termed the DC gain of the filter. For truncation,
meT = −∆/2, which gives

mqT = −∆
2

H(ej0) (10.13)

For rounding, meR = 0 or
mqR = 0 (10.14)

x(n) = x(n) + e(n) y(n) = y(n) + q(n)h(n), H(e jw)ˆ ˆ

FIGURE 10.8 Noise through digital filter
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We can also show that the variance of q(n), for both the truncation and
rounding, is given by

σ2
q = σ2

e

∞∑
−∞

|h(n)|2 =
σ2

e

2π

∫ π

−π

|H(ejω)|2 dω (10.15)

The variance gain from the input to the output (also known as the nor-
malized output variance) is the ratio

σ2
q

σ2
e

=
∞∑

−∞
|h(n)|2 =

1
2π

∫ π

−π

|H(ejω)|2 dω (10.16)

For a real and stable filter, using the substitution z = ejω, the integral in
(10.16) can be further expressed as a complex contour integral

1
2π

∫ π

−π

|H(ejω)|2 dω =
1

2πj

∮

UC
H(z)H(z−1)z−1dz (10.17)

where UC is the unit circle and can be computed using residues (or the
inverse Z-transform) as

1
2π

∫ π

−π

|H(ejω)|2 dω =
∑

[Res of H(z)H(z−1)z−1 inside UC] (10.18a)

= Z−1 [H(z)H(z−1)
]∣∣

n=0 (10.18b)

10.1.7 MATLAB IMPLEMENTATION
Computation of the variance-gain for the A/D quantization noise can be
carried out in MATLAB using (10.16) and (10.18). For FIR filters, we can
perform exact calculations using the time-domain expression in (10.16).
In the case of IIR filters, exact calculations can only be done using (10.18)
in special cases, as we shall see (fortunately, this works for most practical
filters). The approximate computations can always be done using the
time-domain expression.

Let the FIR filter be given by the coefficients {bk}M−1
0 . Then using

the time-domain expression in (10.16), the variance-gain is given by

σ2
q

σ2
e

=
M−1∑
k=0

|bk|2 (10.19)

Let an IIR filter be given by the system function

H(z) =
∑N−1

�=0 b�z
−�

1 +
∑N−1

k=1 akz−k
(10.20)

with impulse response h(n). If we assume that the filter is real, causal, and
stable and has only simple poles, then using the partial fraction expansion,
we can write

H(z) = R0 +
N−1∑
k=1

Rk

z − pk
(10.21)
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where R0 is the constant term and Rk’s are the residues at the pole
locations pk. This expansion can be computed using the residue function.
Note that both poles and the corresponding residues are either real-valued
or occur in complex-conjugate pairs. Then using (10.18a), we can show
that (see [68] and also Problem P10.3)

σ2
q

σ2
e

= R2
0 +

N−1∑
k=1

N−1∑
�=1

RkR∗
�

1 − pkp∗
�

(10.22)

The variance-gain expression in (10.22) is applicable for most practical
filters since rarely do they have multiple poles. The approximate value of
the variance-gain for IIR filters is given by

σ2
q

σ2
e

�
K−1∑
k=0

|h(n)|2 , K � 1 (10.23)

where K is chosen so that the impulse response values (magnitudewise)
are almost zero beyond K samples. The following MATLAB function,
VarGain, computes variance-gain using (10.19) or (10.22).

function Gv = VarGain(b,a)
% Computation of variance-gain for the output noise process
% of digital filter described by b(z)/a(z)
% Gv = VarGain(b,a)
a0 = a(1); a = a/a0; b = b/a0; M = length(b); N = length(a);
if N == 1 % FIR Filter

Gv = sum(b.*b);
return

else % IIR Filter
[R,p,P] = residue(b,a);
if length(P) > 1

error(’*** Variance Gain Not computable ***’);
elseif length(P) == 1

Gv = P*P;
else

Gv = 0;
end
Rnum = R*R’; pden = 1-p*p’;
H = Rnum./pden; Gv = Gv + real(sum(H(:)));

end

It should be noted that the actual output noise variance is obtained by
multiplying the A/D quantization noise variance by the variance-gain.

� EXAMPLE 10.4 Consider an eighth-order IIR filter with poles at pk = r ej2πk/8, k = 0, . . . , 7.
If r is close to 1, then the filter has four narrowband peaks. Determine the
variance-gain for this filter when r = 0.9 and r = 0.99.
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Solution The following MATLAB script illustrates calculations for r = 0.9, which imple-
ments exact as well as approximate approaches.

% Filter Parameters
N = 8; r = 0.9; b = 1; pl = r*exp(j*2*pi*[0:N-1]/N); a = real(poly(pl));

% Variance-gain (Exact)
Vg = VarGain(b,a)
Vg =

1.02896272593178
% Variance-gain (approximate)
x = [1,zeros(1,10000)]; % Unit sample sequence
h = filter(b,a,x); % Impulse response
VgCheck = sum(h.*h)
VgCheck =

1.02896272593178

Clearly, both approaches give the same variance-gain, which for r = 0.9 is about
3% above unity. For r = 0.99 the calculations are

% Filter Parameters
N = 8; r = 0.99; b = 1; pl = r*exp(j*2*pi*[0:N-1]/N); a = real(poly(pl));
% Variance-gain (Exact)
Vg = VarGain(b,a)
Vg =

6.73209233071894

The variance-gain is more than 673%, which means that when poles are close
to the unit circle, the filter output can be very noisy. �

10.2 ROUND-OFF EFFECTS IN IIR DIGITAL FILTERS

With our insight into the quantizer operation and its simpler statistical
model, we are now ready to delve into the analysis of finite word-length
effects in both IIR and FIR digital filters. We have already studied the
effects of input signal quantization and filter coefficient quantization on
filter behavior. We will now turn our attention to the effects of arithmetic
operation quantization on filter output responses (in terms of signal-to-
noise ratios). For this study, we will consider both fixed-point and floating-
point arithmetic. We first consider the effects on IIR filters since, due to
feedback paths, the results are more complicated—yet more interesting—
than those in FIR filters. The effects on FIR filters are studied in the next
section.
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We will restrict ourselves to the rounding operation of the quan-
tizer due to its superior statistical qualities (no bias or average value).
From (6.59), we know that, for the rounding operation, the quantizer
error, eR, has the same characteristics across all three number representa-
tion formats. Hence for MATLAB simulation purposes, we will consider
the sign-magnitude format because it is easy to program and simulate
for arithmetic operation. However, in practice, two’s-complement format
number representation has advantages over the others in terms of hard-
ware implementation.

Digital filter implementation requires arithmetic operations of mul-
tiplication and addition. If two B-bit fractional numbers are multiplied,
the result is a 2B-bit fractional number that must be quantized to B bits.
Similarly, if two B-bit fractional numbers are added, the sum could be
more than 1, which results in an overflow (which in itself is a nonlinear
characteristic), or the sum must be corrected using a saturation strategy,
which is also nonlinear. Thus a finite word-length implementation of the
filter is a highly nonlinear filter and must be analyzed carefully for any
meaningful results.

In this section, we will consider two approaches to deal with errors due
to finite word-length representation. The first type of error can occur when
error samples become correlated with each other due to the nonlinearity
of the quantizer. This is called limit-cycle behavior, and it can exist only
in IIR filters. We will analyze this problem using the nonlinear quantizer
model rather than the statistical model of the quantizer. In the second
type of error, we assume that more nonlinear effects in the quantizer have
been suppressed. Then, using the statistical model of the quantizer, we
develop a quantization noise model for IIR filters that is more useful in
predicting the finite word-length effects.

10.2.1 LIMIT CYCLES
Digital filters are linear systems, but when quantizers are incorporated
in their implementation, they become nonlinear systems. For nonlinear
systems, it is possible to have an output sequence even when there is
no input. Limit cycles is one such behavior that creates an oscillatory
periodic output that is highly undesirable.

DEFINITION 1 Limit cycle
A zero-input limit cycle is a nonzero periodic output sequence pro-

duced by nonlinear elements or quantizers in the feedback loop of a dig-
ital filter. �
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There are two types of limit cycles. The granular limit cycles are due
to nonlinearities in multiplication quantization and are of low amplitude.
The overflow limit cycles are a result of overflow in addition and can have
large amplitudes.

10.2.2 GRANULAR LIMIT CYCLES
This type of limit cycle can easily be demonstrated with a simple round-
ing quantizer following a multiplication. We illustrate with the following
example.

� EXAMPLE 10.5 Consider a simple first-order IIR filter given by

y(n) = α y(n − 1) + x(n); y(−1) = 0, n ≥ 0 (10.24)

Let α = − 1
2 ; then this is a highpass filter, since its pole is near z = −1.

Determine the output y(n) when x(n) = 7
8δ(n), assuming a 3-bit quantizer in

the multiplier.

Solution After multiplication by α, we have to quantize the result. Let the output due
to this quantization be ŷ(n). Then the actual implementable digital filter is

ŷ(n) = Q
[
−1

2
ŷ(n − 1)

]
+ x(n); ŷ(−1) = 0, n ≥ 0 (10.25)

We assume that the input in (10.24) is quantized and that there is no overflow
due to addition. Let B = 3 (i.e., we have 3 fraction bits and 1 sign bit), and
let x(n) = 7

8δ(n). Now α = − 1
2 is represented by 1�110 in two’s-complement

format. Hence the output sequence is obtained as

ŷ(0) = x(0) = +
7
8

: 0�111

ŷ(1) = Q [α ŷ(0)] = Q
[
−1

2

(
+

7
8

)]
= Q

[
− 7

16

]
= −1

2
: 1�100

ŷ(2) = Q [α ŷ(1)] = Q
[
−1

2

(
−1

2

)]
= Q

[
+

1
4

]
= +

1
4

: 0�010

ŷ(3) = Q [α ŷ(2)] = Q
[
−1

2

(
+

1
4

)]
= Q

[
−1

8

]
= −1

8
: 1�111

ŷ(4) = Q [α ŷ(3)] = Q
[
−1

2

(
−1

8

)]
= Q

[
+

1
16

]
= +

1
8

: 0�001

ŷ(5) = Q [α ŷ(4)] = Q
[
−1

2

(
+

1
8

)]
= Q

[
− 1

16

]
= −1

8
: 1�111

...
...

...
...

...

(10.26)
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Thus ŷ(n) = ± 1
8 for n ≥ 5. The desired output y(n) is

y(n) =
{7

8
, − 7

16
,

7
32

, − 7
64

,
7

128
, · · · , → 0

}
(10.27)

Hence the error sequence is

e(n) = ŷ(n) − y(n) =
{

0, − 1
16

,
1
32

, − 1
64

,
9

128
, · · · , → ±1

8

}
(10.28)

This shows that the error e(n) slowly builds up to ± 1
8 . Hence the error is

asymptotically periodic with period 2. �

From Example 10.5, it is clear that, in the steady state, the system
has poles on the unit circle and hence the nonlinear system has effectively
become a linear system [37]. This implies that, effectively, for the system
in (10.24)

Q [αŷ(n − 1)] =
{

ŷ(n − 1), α > 0
−ŷ(n − 1), α < 0 (10.29)

Also due to the rounding operation, the quantization error is bounded by
±∆/2, where ∆ = 2−B is the quantization step, or

|Q [αŷ(n − 1)] − αŷ(n − 1)| ≤ ∆
2

(10.30)

From (10.29) and (10.30), we conclude that

|ŷ(n − 1)| ≤ ∆
2(1 − |α|) (10.31)

which is the amplitude range of limit-cycle oscillations and is called a dead
band. For the system in Example 10.5, B = 3 and α = − 1

2 . Hence the
dead-band range is ±1

8 , which agrees with (10.31). If the output ŷ(n − 1)
gets trapped in this band when the input is zero, the filter exhibits the
granular limit cycle. From (10.29), the period of the oscillation is either
1 or 2.

Analysis using MATLAB In our previous MATLAB simulations, we
did not worry about the quantization in multiplication or addition oper-
ations because the emphasis was on either signal quantization or on filter
coefficient quantization. The important operation that we have to consider
is the arithmetic overflow characteristics. We assume that the represented
numbers are in fractional two’s-complement format. Then in practice, two
overflow characteristics are used: a two’s-complement overflow, which is a
modulo (periodic) function, and a saturation, which is a limiting function.
These characteristics are shown in Figure 10.9.
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(a) Two’s-Complement Overflow (b) Saturation

y y
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xx

FIGURE 10.9 Overflow characteristics used in Qfix

To simulate these two effects, we provide the function y = Qfix(x,B,
’Qmode’,’Omode’). This function performs a fixed-point two’s-
complement format quantization using (B+1)-bit representation so that
the resulting number y is between −1 ≤ y < 1. The quantization mode,
Qmode, is either a rounding or a truncation operation. The overflow char-
acteristic is provided in Omode. Using this function, we can study both
types of limit cycles.

function [y] = QFix(x,B,Qmode,Omode)
% Fixed-point Arithmetic using (B+1)-bit Representation
% -----------------------------------------------------
% [y] = QFix(x,B,Qmode,Omode)
% y: decimal equivalent of quantized x with values in [-1,1)
% x: a real number array
% B: Number of fractional bits
% Qmode: quantizer mode
% ’round’: Two’s-complement rounding characteristics
% ’trunc’: Two’s complement truncation characteristics
% Omode: overflow mode
% ’satur’: Saturation limiter
% ’twosc’: Two’s-complement overflow
% Quantization operation
if strcmp(lower(Qmode), ’round’);

y = round(x.*(2ˆB));
elseif strcmp(lower(Qmode), ’trunc’);

y = floor(x.*(2ˆB));
else

error(’Use Qmode = "round" or "trunc"’);
end;
y = y*(2ˆ(-B)); % (B+1)-bit representation
% Overflow operation
if strcmp(lower(Omode), ’satur’);

y = min(y,1-2ˆ(-B)); y = max(-1,y); % Saturation
elseif strcmp(lower(Omode), ’twosc’);

y = 2*(mod(y/2-0.5,1)-0.5); % Overflow
else error(’Use Omode = "satur" or "twosc"’);
end;
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� EXAMPLE 10.6 In this example, simulate the results for the system given in Example 10.5
using the Qfix function with B = 3 bits. In addition, also examine limit-cycle
behavior for the truncation operation in the multiplier and for the case when
the system is a lowpass filter with coefficient α = 0.5.

Solution MATLAB script:

% Highpass filter, rounding operation in multiplier
a = -0.5; yn1 = 0; m = 0:10; y = [yn1, zeros(1,length(m))];
x = 0.875*impseq(m(1),m(1)-1,m(end));
for n = m+2

yn1 = y(n-1);
y(n) = QFix(a*yn1,3,’round’,’satur’) + x(n);

end
% Plotting commands follow
% Lowpass filter, rounding operation in multiplier
a = 0.5; yn1 = 0; m = 0:10; y = [yn1, zeros(1,length(m))];
x = 0.875*impseq(m(1),m(1)-1,m(end));
for n = m+2

yn1 = y(n-1);
y(n) = QFix(a*yn1,3,’round’,’satur’) + x(n);

end
% Plotting commands follow
% Highpass filter, Truncation operation in multiplier
a = -0.5; yn1 = 0; m = 0:10; y = [yn1, zeros(1,length(m))];
x = 0.875*impseq(m(1),m(1)-1,m(end));
for n = m+2

yn1 = y(n-1);
y(n) = QFix(a*yn1,3,’trunc’,’satur’) + x(n);

end
% Plotting commands follow

The resulting plots are shown in Figure 10.10. The output signal in the left
plot agrees with that in Example 10.5 and has an asymptotic period of two
samples. The middle plot for α = 0.5 (lowpass filter) shows that the limit cycle
has a period of one sample with amplitude of 1

8 . Finally, the right plot shows
that the limit cycles vanish for the truncation operation. This behavior for the
truncation operation is also exhibited for lowpass filters. �

In the case of second-order and higher-order digital filters, granular
limit cycles not only exist but also are of various types. These cycles in
second-order filters can be analyzed, and dead-band as well as frequency
of oscillations can be estimated. For example, if the recursive all-pole filter
is implemented with rounding quantizers in the multipliers as

ŷ(n) = Q[a1ŷ(n − 1)] + Q[a2ŷ(n − 2)] + x(n) (10.32)
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FIGURE 10.10 Granular limit cycles in Example 10.6

where ŷ(n) is the quantized output, then using the analysis similar to that
of the 1-order case, the dead-band region is given by

ŷ(n − 2) ≤ ∆
2(1 − |a2|)

(10.33)

with a1 determining the frequency of oscillations. For more details, see
Proakis and Manolakis [79]. We provide the following example to illustrate
granular limit cycles in second-order filters using 3-bit quantizers.

� EXAMPLE 10.7 Consider the second-order recursive filter

y(n) = 0.875y(n − 1) − 0.75y(n − 2) + x(n) (10.34)

with zero initial conditions. This filter has two complex-conjugate poles and
hence is a bandpass filter. Let the input be x(n) = 0.375δ(n). Analyze the limit
cycle behavior using a 3-bit quantizer.

Solution In the filter implementation, the coefficient products are quantized, which
results in

ŷ(n) = Q[0.875ŷ(n − 1)] − Q[0.75ŷ(n − 2)] + x(n) (10.35)

where ŷ(n) is the quantized output. We simulate (10.35) in MATLAB using
both the rounding and truncation operations.

% Bandpass filter
a1 = 0.875; a2 = -0.75;
% Rounding operation in multipliers
yn1 = 0; yn2 = 0;
m = 0:20; y = [yn2,yn1,zeros(1,length(m))];
x = 0.375*impseq(m(1),m(1)-2,m(end));
for n = m+3

yn1 = y(n-1); yn2 = y(n-2);
y(n) = QFix(a1*yn1,3,’round’,’satur’)+QFix(a2*yn2,3,’round’,’satur’)+x(n);

end
% Plotting commands follow
% Truncation operation in multipliers
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FIGURE 10.11 Granular limit cycles in Example 10.7

yn1 = 0; yn2 = 0;
m = 0:20; y = [yn2,yn1,zeros(1,length(m))];
x = 0.375*impseq(m(1),m(1)-2,m(end));
for n = m+3

yn1 = y(n-1); yn2 = y(n-2);
y(n) = QFix(a1*yn1,3,’trunc’,’satur’)+QFix(a2*yn2,3,’trunc’,’satur’)+x(n);

end
% Plotting commands follow

The resulting plots are shown in Figure 10.11. The round-off limit cycles have a
period of six samples and amplitude of 0.25, which agrees with (10.33). Unlike
in the case of first-order filters, the limit cycles for the second-order exist even
when truncation is used in the quantizer. �

10.2.3 OVERFLOW LIMIT CYCLES
This type of limit cycle is also a zero-input behavior that gives an os-
cillatory output. It is due to overflow in the addition even if we ignore
multiplication or product quantization in the filter implementation. This
is a more serious limit cycle because the oscillations can cover the entire
dynamic range of the quantizer. It can be avoided in practice by using
the saturation characteristics instead of overflow in the quantizer. In the
following example, we simulate both granular and overflow limit cycles in
a second-order filter, in addition to infinite-precision implementation.

� EXAMPLE 10.8 To obtain overflow in addition, we will consider the second-order filter with
large coefficient values and initial conditions (magnitude-wise) excited by a
zero input:

y(n) = 0.875y(n − 1) − 0.875y(n − 1); y(−1) = −0.875, y(−2) = 0.875
(10.36)

The overflow in the addition is obtained by placing the quantizer after the
additions as

ŷ(n) = Q[0.875ŷ(n − 1) − 0.875ŷ(n − 1)]; ŷ(−1) = −0.875, ŷ(−2) = 0.875
(10.37)
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where ŷ(n) is the quantized output. We first simulate the infinite-precision op-
eration of (10.36) and compare its output with the granular limit-cycle imple-
mentation in (10.35) and with the overflow limit-cycle in (10.37). We use the
rounding operation. The details are in the following MATLAB script.

M = 100; B = 3; A = 1-2ˆ(-B);
a1 = A; a2 = -A; yn1 = -A; yn2 = A;
m = 0:M; y = [yn2,yn1,zeros(1,length(m))];
% Infinite precision
for n = m+3

yn1 = y(n-1); yn2 = y(n-2);
y(n) = a1*yn1 + a2*yn2;

end
% Plotting commands follow
% Granular limit cycle
for n = m+3

yn1 = y(n-1); yn2 = y(n-2);
y(n) = QFix(a1*yn1,B,’round’,’satur’)+QFix(a2*yn2,B,’round’,’satur’);
y(n) = QFix(y(n),B,’round’,’satur’);

end
% Plotting commands follow
% Overflow limit cycle
for n = m+3

yn1 = y(n-1); yn2 = y(n-2);
y(n) = a1*yn1 + a2*yn2;
y(n) = QFix(y(n),B,’round’,’twosc’);

end
% Plotting commands follow

The resulting plots are shown in Figure 10.12. As expected, the infinite-precision
implementation has no limit cycles. The granular limit cycles are of smaller
amplitudes. Clearly, the overflow limit cycles have large amplitudes spanning
the −1 to 1 range of the quantizers. �
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FIGURE 10.12 Comparison of limit cycles in Example 10.8
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As shown in these examples, the limit-cycle behaviors of many differ-
ent filters can be studied for different quantizer characteristics using the
MATLAB function QFix.

10.2.4 MULTIPLICATION QUANTIZATION ERROR
A multiplier element in the filter implementation can introduce additional
quantization errors since multiplication of two B-bit fractional numbers
results in a 2B-bit fraction and must be quantized to a B-bit fraction.
Consider a multiplier in fixed-point arithmetic with B = 8. The number
1√
3

is represented as 0.578125 in decimal. The square of 0.578125 rounded
to 8 bits is 0.3359375 (which should not be confused with 1/3 rounded to
8 bits, which is 0.33203125). The additional error in the squaring opera-
tion is

0.3359375 − (0.578125)2 = 0.001708984375

This additional error is termed as the multiplication quantization error. Its
statistically equivalent model is similar to that of the A/D quantization
error model, as shown in Figure 10.13.

Statistical model Consider the B-bit quantizer block following the
multiplier element shown in Figure 10.13a. The sequence x(n) and the con-
stant c are quantized to B fractional bits prior to multiplication (as would
be the case in a typical implementation). The multiplied sequence {c x(n)}
is quantized to obtain y(n). We want to replace the quantizer by a simpler
linear system model shown in Figure 10.13b, in which y(n) = c x(n)+e(n),
where e(n) is a multiplication quantization error. For analysis purposes
we assume that the conditions on e(n) are similar to those for the A/D
quantization error:

1. The random signal e(n) is uncorrelated with the sequence x(n) for
rounding operation (or two’s-complement truncation operation) in the
quantizer.

2. The signal e(n) is an independent process (i.e., the samples are inde-
pendent of each other).

3. The probability density function (pdf) fE(e) of e(n) for each n is uni-
formly distributed over the interval of width ∆ = 2−B , which is the
quantizer resolution.

Qx(n) x(n) cx(n) + e(n)Q[cx (n)]

e(n)

c c
⇒

(a) Quantizer (b) Linear System Model

FIGURE 10.13 Linear system model for multiplication quantization error
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We will emphasize the rounding operation for the rest of this section.
Based on the above model assumptions, the results given in (10.7), (10.9),
and (10.10) are also applicable for the multiplication quantization error
e(n).

We offer the following two MATLAB examples to illustrate this
model. A more thorough investigation of this error can be found in
Rabiner and Gold [83].

� EXAMPLE 10.9 Consider the sequence given in Example 10.1, which is repeated here:

x(n) =
1
3

[sin(n/11) + sin(n/31) + cos(n/67)]

This signal is multiplied by c = 1/
√

2, quantized to B bits, and the resulting
multiplication is quantized to B bits with rounding. Using the StatModelR
function and 500,000 samples, compute and analyze normalized errors e1(n)
and e2(n), defined in (10.2) and (10.3), respectively.

Solution The following MATLAB script computes error distribution, for B = 6 bits.

clear; close all;
% Example parameters
B = 6; N = 500000; n = [1:N]; bM = 7;
xn = (1/3)*(sin(n/11)+sin(n/31)+cos(n/67)); clear n;
c = 1/sqrt(2);
% Signal and coefficient quantization
xq = (round(xn*(2ˆB)))/(2ˆB); c = (round(c*(2ˆB)))/(2ˆB);
cxq = c*xq; % Multiplication of constant and signal
% Quantization error analysis
[H1,H2,Q, estat] = StatModelR(cxq,B,N);
H1max = max(H1); H1min = min(H1); % Max and min of H1
H2max = max(H2); H2min = min(H2); % Max and min of H2

The plots of the resulting histogram are shown in Figure 10.14. For the sinu-
soidal signal, when B = 6 bits, the error samples are not uniformly distributed
and the samples are not independent. The means of e(n) and [e(n)+e(n−1)]/2
are small. Their standard deviations are 0.0045105 and 0.0031059, which do
not agree with (10.10). The corresponding plots for B = 12 bits are shown in
Figure 10.15, from which we observe that the quantization error sequence ap-
pears to satisfy the model assumptions for B ≥ 12 bits. The means of e(n) and
[e(n) + e(n − 1)]/2 are very small, and their standard deviations agree closely
with (10.10). �

� EXAMPLE 10.10 Let x(n) be an independent and identically distributed random sequence whose
samples are uniformly distributed over the [−1, 1] interval. Using 500,000 sam-
ples to minimize any statistical variations, analyze normalized errors.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Round-Off Effects in IIR Digital Filters 541

−0.5 −0.375 −0.25 −0.125 0 0.125 0.25 0.375 0.5
0

1/128

2/128

3/128

4/128
SAMPLE SIZE N = 500000
 ROUNDED TO B = 6 BITS
         MEAN = 1.7026e–006

MIN PROB BAR HEIGHT = 0
MAX PROB BAR HEIGHT = 0.017902
              SIGMA = 0.0045105

−0.5 −0.375 −0.25 −0.125 0 0.125 0.25 0.375 0.5
0

1/128

2/128

3/128

4/128
SAMPLE SIZE N = 500000
 ROUNDED TO B = 6 BITS
         MEAN = 1.6953e–006

MIN PROB BAR HEIGHT = 0
MAX PROB BAR HEIGHT = 0.017606
              SIGMA = 0.0031059

D
is

tr
ib

ut
io

n 
of

 e
1

Normalized Error e2 

Normalized Error e1 

D
is

tr
ib

ut
io

n 
of

 e
2

FIGURE 10.14 Multiplication quantization error distribution for the sinusoidal
signal in Example 10.9, B = 6 bits
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FIGURE 10.15 Multiplication quantization error distribution for the sinusoidal
signal in Example 10.9, B = 12 bits
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Solution The following MATLAB script computes the distributions for B = 6 bits.

clear; close all;
% Example parameters
B = 6; N = 500000; xn = (2*rand(1,N)-1); bM = 7; c = 1/sqrt(2);
% Signal and coefficient quantization
xq = (round(xn*(2ˆB)))/(2ˆB); c = (round(c*(2ˆB)))/(2ˆB);
cxq = c*xq; % Multiplication of constant and signal
% Quantization error analysis
[H1,H2,Q, estat] = StatModelR(cxq,B,N);
H1max = max(H1); H1min = min(H1); % Max and min of H1
H2max = max(H2); H2min = min(H2); % Max and min of H2

The plots of the resulting histogram are shown in Figure 10.16. Even for B = 6
bits, the error samples appear to be uniformly distributed (albeit in discrete
fashion) and are independent of each other. The corresponding plots for B = 12
bits are shown in Figure 10.17. It is clear for B = 12 bits that the quantization
error samples are independent and uniformly distributed. Readers should verify
the statistics of these errors given in (10.7), (10.9), and (10.10). �

From these two examples, we conclude that the statistical model for
the multiplication quantization error, with its stated assumptions, is a
very good model for random signals when the number of bits in the quan-
tizer is large enough.

10.2.5 STATISTICAL ROUND-OFF NOISE—FIXED-POINT ARITHMETIC
In this and the next section, we will consider the round-off effects on IIR
filters using the multiplication quantization error model developed in the
previous section. Since we emphasize the rounding operation, this model
is also known as a round-off noise model. We will limit ourselves to the
first- and second-order filters since practical realizations involve first- or
second-order sections.

First-order filter Consider the first-order filter shown in Figure 10.18a.
When a quantizer Q[·] is introduced after the multiplier, the resulting
filter model is shown in Figure 10.18b, which is a nonlinear system. When
Q [·] is a quantizer based on the round-off characteristics, then its effect is
to add a zero-mean, stationary white noise sequence e(n) at the multiplier
output as shown in Figure 10.18c.

Let q(n) be the response due to e(n), and let he(n) be the noise
impulse response (i.e., between e(n) and q(n)). For the system in
Figure 10.18c,

he(n) = h(n) = αnu(n) (10.38)

Using (10.12) and (10.7), the mean of q(n) is

mq = me

∞∑
0

he(n) = 0 (10.39)
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FIGURE 10.16 Multiplication quantization error distribution for the random
signal in Example 10.10, B = 6 bits
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FIGURE 10.17 Multiplication quantization error distribution for the random
signal in Example 10.10, B = 12 bits
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FIGURE 10.18 First-order IIR filter: (a) structure, (b) structure with quantizer,
(c) round-off noise model

Similarly, using (10.15), the variance of q(n) is

σ2
q = σ2

e

( ∞∑
0

|he(n)|2
)

(10.40)

Substituting σ2
e = 2−2B/12 for rounding and he(n) from (10.38), we

obtain

σ2
q =

2−2B

12

( ∞∑
0

|αn|2
)

=
2−2B

12

∞∑
0

(
|α|2
)n

=
2−2B

12 (1 − |α|2) (10.41)

which is the output noise power due to rounding following the multipli-
cation.

However, we also have to prevent a possible overflow following the
adder. Let y1(n) be the signal at the output of the adder in Figure 10.18a,
which in this case is equal to y(n). Now the upper bound on y1(n) is

|y1(n)| = |y(n)| =

∣∣∣∣∣
∞∑
0

h(k) x(n − k)

∣∣∣∣∣ ≤
∞∑
0

|h(k)| |x(n − k)| (10.42)

Let the input sequence be bounded by Xmax (i.e., |x(n)| ≤ Xmax). Then

|y1(n)| ≤ Xmax

∞∑
0

|h(k)| (10.43)

Since y1(n) is represented by B fraction bits, we have |y1(n)| ≤ 1. The
condition (10.43) can be satisfied by requiring

Xmax =
1∑∞

0 |h(k)| =
1

1/ (1 − |α|) = 1 − |α| (10.44)

Thus to prevent overflow, x(n) must satisfy

− (1 − |α|) ≤ x(n) ≤ (1 − |α|) (10.45)

Thus the input must be scaled before it is applied to the filter as shown
in Figure 10.19.
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FIGURE 10.19 Scaled first-order IIR filter: (a) structure with quantizer, (b)
round-off noise model

Signal-to-noise ratio We will now compute the finite word-length
effect in terms of the output signal-to-noise ratio (SNR). We assume
that there is no overflow at the output by properly scaling x(n). Let
x(n) be a stationary white sequence, uniformly distributed between
[− (1 − |α|) , (1 − |α|)]. Then

mx = 0 and σ2
x =

(1 − |α|)2

3
(10.46)

Therefore, y(n) is also a stationary random sequence with mean my = 0
and

σ2
y = σ2

x

∞∑
0

|h(n)|2 =
(1 − |α|)2

3
1

1 − |α|2 =
(1 − |α|)2

3 (1 − |α|2) (10.47)

Using (10.41) and (10.47), the output SNR is

SNR
�
=

σ2
y

σ2
q

=
(1 − |α|)2

3 (1 − |α|2)
12
(
1 − |α|2

)
2−2B

= 4
(
22B
)
(1 − |α|)2 = 22(B+1) (1 − |α|)2

(10.48)

or the SNR in dB is

SNRdB
�
= 10 log10(SNR) = 6.02 + 6.02B + 20 log10(1 − |α|) (10.49)

Let δ = 1 − |α|, which is the distance of the pole from the unit circle.
Then

SNRdB = 6.02 + 6.02B + 20 log10(δ) (10.50)

which is a very informative result. First, it shows that the SNR is directly
proportional to B and increases by about 6 dB for each additional bit
added to the word length. Second, the SNR is also directly proportional
to the distance δ. The smaller the δ (or nearer the pole to the unit circle),
the smaller is the SNR, which is a consequence of the filter characteristics.
As an example, if B = 6 and δ = 0.05, then SNR = 16.12 dB, and if
B = 12 and δ = 0.1, then SNR = 58.26 dB.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



546 Chapter 10 ROUND-OFF EFFECTS IN DIGITAL FILTERS

10.2.6 ANALYSIS USING MATLAB
To analyze the properties of the round-off errors in IIR filters, we will
simulate them using the MATLAB function QFix with quantization mode
’round’ and overflow mode ’satur’. If proper scaling to avoid overflow is
performed, then only the multiplier output needs to be quantized at each
n without worrying about the overflow. However, we will still saturate
the final sum to avoid any unforeseen problems. In previous simulations,
we could perform the quantization operations on vectors (i.e., perform
parallel processing). Since IIR filters are recursive filters and since each
error is fed back into the system, vector operation is generally not possi-
ble. Hence the filter output will be computed sequentially from the first
to the last sample. For a large number of samples, this implementation
will slow the execution speed in MATLAB since MATLAB is optimized
for vector calculations. However, for newer fast processors, the execution
time is within a few seconds. These simulation steps are detailed in the
following example.

� EXAMPLE 10.11 Consider the model given in Figure 10.19b. We will simulate this model in
MATLAB and investigate its output error characteristics. Let a = 0.9, which
will be quantized to B bits. The input signal is uniformly distributed over
the [−1, +1] interval and is also quantized to B bits prior to filtering. The
scaling factor Xmax is computed from (10.44). Using 100,000 signal samples
and B = 6 bits, the following MATLAB script computes the true output y(n),
the quantized output ŷ(n), the output error q(n), and the output SNR.

close all; clc;

% Example Parameters
B = 6; % # of fractional bits
N = 100000; % # of samples
xn = (2*rand(1,N)-1); % Input sequence - uniform distribution
a = 0.9; % Filter parameter
Xm = 1-abs(a); % Scaling factor

% Local variables
bM = 7; DbM = 2ˆbM; % Bin parameter
BB = 2ˆB; % Useful factor in quantization
M = round(DbM/2); % Half number of bins

bins = [-M+0.5:1:M-0.5]; % Bin values from -M to M
Q = bins/DbM; % Normalized bins

YTN = 2ˆ(-bM); % Ytick marks interval
YLM = 4*YTN; % Yaxis limit

% Quantize the input and the filter coefficients
xn = QFix(Xm*xn,B,’round’,’satur’); % Scaled input quant to B bits
a = QFix(a,B,’round’,’satur’); % a quantized to B bits
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% Filter output without multiplication quantization
yn = filter(1,[1,-a],xn); % Output using filter routine

% Filter output with multiplication quantization
yq = zeros(1,N); % Initialize quantized output array

yq(1) = xn(1); % Calculation of the first sample yq(1)
for I = 2:N;

A1Y = QFix(a*yq(I-1),B,’round’,’satur’); % Quantization of a*y(n-1)
yq(I) = QFix(A1Y+xn(I),B,’round’,’satur’); % I-th sample yq(I)

end

% Output Error Analysis
en = yn-yq; % Output error sequence

varyn = var(yn); varen = var(en); % Signal and noise power
eemax = max(en); eemin = min(en); % Maximum and minimum of the error
enmax = max(abs([eemax,eemin])); % Absolute maximum range of the error
enavg = mean(en); enstd = std(en); % Mean and std dev of the error

en = round(en*(2ˆbM)/(2*enmax)+0.5); % Normalized en (integer between -M & M)
en = sort([en,-M:1:(M+1)]); %
H = diff(find(diff(en)))-1; % Error histogram
H = H/N; % Normalized histogram

Hmax = max(H); Hmin = min(H); % Max and min of the normalized histogram

% Output SNRs
SNR_C = 10*log10(varyn/varen); % Computed SNR
SNR_T = 6.02 + 6.02*B + 20*log10(Xm); % Theoretical SNR

The part of the script not shown above also computes and plots the normal-
ized histogram of the output error and prints the statistical values in the plot,
as shown in Figure 10.20. The error appears to have a Gaussian distribution,
which is to be expected. The exact value of the output SNR is 22.14 dB, which
agrees with the computed value of 22.21 dB. Similar results done for B = 12
bits are shown in Figure 10.21. Again, the simulation results agree with the
model results. �

Second-order filter Similar analysis can be done for second-order
filters with poles near the unit circle. Let the two poles be at complex
locations rejθ and re−jθ. Then the system function of the filter is given by

H(z) =
1

(1 − rejθz−1)(1 − re−jθz−1)
=

1
1 − 2r cos(θ) z−1 + r2z−2

(10.51)
with impulse response

h(n) =
rn sin{(n + 1)θ}

sin(θ)
u(n) (10.52)

The difference equation from (10.51) is given by

y(n) = x(n)−a1y(n−1)−a2y(n−2); a1 = −2r cos(θ), a2 = r2 (10.53)
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FIGURE 10.20 Multiplication quantization effects in the first-order IIR filter in
Example 10.11, B = 6 bits

which requires two multiplications and two additions, as shown in
Figure 10.22a. Thus there are two noise sources and two possible lo-
cations for overflow. The round-off noise model for quantization following
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FIGURE 10.21 Multiplication quantization effects in the first-order IIR filter in
Example 10.11, B = 12 bits
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FIGURE 10.22 Second-order IIR filter: (a) structure, (b) round-off noise model,
(c) simplified model, (d) scaled simplified model

the two multipliers is shown in Figure 10.22b, where the responses q1(n)
and q2(n) are due to noise sources e1(n) and e2(n), respectively. We can
combine two noise sources into one. However, to avoid overflow, we have
to scale signals at the input of each adder, which can complicate this
consolidation of sources.

In modern DSP chips, the intermediate results of multiply-add op-
erations are stored in a multiply-accumulate (MAC) unit that has a
double-precision register to accumulate sums. The final sum (which
for Figure 10.22b is at the output of the top adder) is quantized to
obtain ŷ(n). This implementation not only reduces the total multipli-
cation quantization noise but also makes the resulting analysis easier.
Assuming this modern implementation, the resulting simplified model is
shown in Figure 10.22c, where e(n) is the single noise source that is uni-
formly distributed between [−2−(B+1), 2−(B+1)] and q(n) is the response
due to e(n). Note that e(n) �= e1(n)+e2(n) and that q(n) �= q1(n)+q2(n).
The only overflow that we have to worry about is at the output of the
top adder, which can be controlled by scaling the input sequence x(n)
as shown in Figure 10.22d. Now the round-off noise analysis can be car-
ried out in a fashion similar to that of the first-order filter. The details,
however, are more involved due to the impulse response in (10.52).
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Signal-to-noise ratio Referring to Figure 10.22d, the noise impulse
response he(n) is equal to h(n). Hence the output round-off noise power
is given by

σ2
q = σ2

e

∞∑
n=0

|h(n)|2 =
2−2B

12

∞∑
n=0

|h(n)|2 (10.54)

Since x(n) is quantized, we have |x(n)| ≤ 1. It is then scaled by Xmax to
avoid overflow in the adder. Hence the output signal power is given by

σ2
y = X2

maxσ
2
x

∞∑
n=0

|h(n)|2 =
X2

max

3

∞∑
n=0

|h(n)|2 (10.55)

assuming that x(n) is uniformly distributed over [−1,+1]. Hence the out-
put SNR is given by

SNR =
σ2

y

σ2
q

= 4
(
22B
)
X2

max = 22(B+1)X2
max (10.56)

or
SNRdB = 6.02 + 6.02B + 20 log10 Xmax (10.57)

Following (10.43), (10.44), and (10.45), the scaling factor Xmax is given
by

Xmax =
1∑∞

n=0 |h(n)| (10.58)

which is not easy to compute. However, lower and upper bounds on Xmax
are easy to obtain. From (10.52), the upper bound on the denominator of
(10.58) is given by

∞∑
n=0

|h(n)| =
1

sin θ

∞∑
n=0

rn| sin[(n + 1)θ]| ≤ 1
sin θ

∞∑
n=0

rn =
1

(1 − r) sin θ

(10.59)
or the lower bound on Xmax is given by

Xmax ≥ (1 − r) sin θ (10.60)

The lower bound on the denominator of (10.58) is obtained by noting that

|H(ejω)| =

∣∣∣∣∣
∞∑

n=0

h(n)e−jω

∣∣∣∣∣ ≤
∞∑

n=0

|h(n)|

Now from (10.51), the magnitude |H(ejω)| is given by

|H(ejω)| =
∣∣∣∣

1
1 − 2r cos(θ)e−jω + r2e−j2ω

∣∣∣∣
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which has the maximum value at the resonant frequency ω = θ, which
can be easily obtained. Hence

∞∑
n=0

|h(n)| ≥
∣∣H(ejθ)

∣∣ = 1
(1 − r)

√
1 + r2 − 2r cos(2θ)

(10.61)

or the upper bound on Xmax is given by

Xmax ≤ (1 − r)
√

1 + r2 − 2r cos(2θ) (10.62)

Substituting (10.60) and (10.62) in (10.56), the output SNR is upper and
lower bounded by

22(B+1)(1−r)2 sin2 θ ≤ SNR ≤ 22(B+1)(1−r)2(1+r2 −2r cos 2θ) (10.63)

Substituting 1 − r = δ � 1 and after some simplification, we obtain

22(B+1)δ2 sin2 θ ≤ SNR ≤ 4
(
22(B+1)

)
δ2 sin2 θ (10.64)

or the difference between the upper and lower SNR bounds is about 6 dB.
Once again, the output SNR is directly proportional to B and δ. Fur-
thermore, it also depends on the angle θ. Some of these observations are
investigated in Example 10.12.

10.2.7 ANALYSIS USING MATLAB
We will again simulate round-off errors using the MATLAB function QFix
with quantization mode ’round’ and overflow mode ’satur’. Since a
MAC architecture is assumed, we do not have to quantize the intermediate
results and worry about overflow. Only the final sum needs to be quantized
with saturation. These operations are also simulated in sequential fashion,
which has an impact on execution speed. The simulation steps for the
second-order filter are detailed in the following example.

� EXAMPLE 10.12 Consider the model given in Figure 10.22d. We will simulate this model in
MATLAB and investigate its output error characteristics. Let r = 0.9 and
θ = π/3, from which filter parameters are computed and quantized to B bits.
The input signal is uniformly distributed over the [−1, +1] interval and is also
quantized to B bits prior to filtering. The scaling factor Xmax is determined
using (10.58), which can be obtained in MATLAB by computing the impulse
response for a sufficiently large number of samples. Using 100,000 signal samples
and B = 6 bits, the following MATLAB script computes the true output SNR,
the computed SNR, and the lower and upper bounds of the SNR.
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close all; clc;

% Example Parameters
B = 12; % # of fractional bits
N = 100000; % # of samples
xn = (2*rand(1,N)-1); % Input sequence - Uniform
r = 0.9; theta = pi/3;% Pole locations

% Computed Parameters
p1 = r*exp(j*theta); % Poles
p2 = conj(p1); %
a = poly([p1,p2]); % Filter parameters
hn = filter(1,a,[1,zeros(1,1000)]); % Imp res
Xm = 1/sum(abs(hn)); % Scaling factor
Xm_L = (1-r)*sin(theta); % Lower bound
Xm_U = (1-r)*sqrt(1+r*r-2*r*cos(2*theta)); % Upper bound

% Local variables
bM = 7; DbM = 2ˆbM; % Bin parameter
BB = 2ˆB; % Useful factor in quantization
M = round(DbM/2); % Half number of bins

bins = [-M+0.5:1:M-0.5]; % Bin values from -M to M
Q = bins/DbM; % Normalized bins

YTN = 2ˆ(-bM); % Ytick marks interval
YLM = 4*YTN; % Yaxis limit

% Quantize the input and the filter coefficients
xn = QFix(Xm*xn,B,’round’,’satur’); % Scaled input quant B bits
a = QFix(a,B,’round’,’satur’); % a quantized to B bits

a1 = a(2); a2 = a(3);

% Filter output without multiplication quantization
yn = filter(1,a,xn); % output using filter routine

% Filter output with multiplication quantization
yq = zeros(1,N); % Initialize quantized output array

yq(1) = xn(1); % sample yq(1)
yq(2) = QFix((xn(2)-a1*yq(1)),B,’round’,’satur’); % sample yq(2)
for I = 3:N;

yq(I) = xn(I)-a1*yq(I-1)-a2*yq(I-2); % Unquantized sample
yq(I) = QFix(yq(I),B,’round’,’satur’); % Quantized sample

end

% Output Error Analysis
en = yn-yq; % Output error sequence

varyn = var(yn); varen = var(en); % Signal and noise power
eemax = max(en); eemin = min(en); % Maximum and minimum of the error
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enmax = max(abs([eemax,eemin])); % Absolute maximum range of the error
enavg = mean(en); enstd = std(en); % Mean and std dev of the error

en = round(en*(2ˆbM)/(2*enmax)+0.5); % Normalized en (integer between -M & M)
en = sort([en,-M:1:(M+1)]); %
H = diff(find(diff(en)))-1; % Error histogram
H = H/N; % Normalized histogram

Hmax = max(H); Hmin = min(H); % Max and Min of the normalized histogram

% Output SNRs
SNR_C = 10*log10(varyn/varen); % Computed SNR
SNR_T = 6.02 + 6.02*B + 20*log10(Xm); % Theoretical SNR
SNR_L = 6.02 + 6.02*B + 20*log10(Xm_L); % Lower SNR bound
SNR_U = 6.02 + 6.02*B + 20*log10(Xm_U); % Upper SNR bound

The part of the script not shown above also computes and plots the normalized
histogram of the output error and prints the statistical values in the plot, as
shown in Figure 10.23. The error again has a Gaussian distribution. The exact
value of the output SNR is 25.22 dB, which agrees with the computed value of
25.11 dB and lies between the lower bound of 20.89 dB and the upper bound
of 26.47 dB. Similar results done for B = 12 bits are shown in Figure 10.24.
Again, the simulation results agree with the model results. �

10.2.8 HIGHER-ORDER FILTERS
The analysis of the quantization effects in a second-order filter can
be applied directly to higher-order filters based on a parallel realization.
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FIGURE 10.23 Multiplication quantization effects in the first-order IIR filter in
Example 10.12, B = 6 bits
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FIGURE 10.24 Multiplication quantization effects in the first-order IIR filter in
Example 10.12, B = 12 bits

In this case, each second-order filter section is independent of all the other
sections, and therefore the total quantization noise power at the output
of the parallel structure is simply the linear sum of the quantization noise
powers of each of the individual sections. On the other hand, the cascade
realization is more difficult to analyze because the noise generated in any
second-order filter section is filtered by the succeeding sections. To min-
imize the total noise power at the output of the high-order filter, a
reasonable strategy is to place the sections in the order of decreasing max-
imum frequency gain. In this case, the noise power generated in the early
high-gain section is not boosted significantly by the latter sections. Using
the MATLAB techniques developed in the previous sections, it is easier
to simulate finite word-length implementations and determine the output
SNR for a given cascade structure.

10.2.9 STATISTICAL ROUND-OFF NOISE—FLOATING-POINT
ARITHMETIC

As stated in Chapter 6, the floating-point arithmetic gives an error that
is relative to the magnitude rather than an absolute error. This results in
a multiplicative noise rather than additive noise—that is, from (6.61),

Q[x(n)] = x(n) + ε(n)x(n) = x(n) {1 + ε(n)} (10.65)

with
−2−B < ε(n) ≤ 2−B (10.66)
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for a (B +1)-bit mantissa. Hence the mean of the relative error is mε = 0
and its variance is

σ2
ε =

2−2B

3
(10.67)

Since MATLAB is implemented in IEEE-754 floating-point arithmetic, all
simulations that we perform are IEEE-754 floating-point calculations. It is
difficult (if not impossible) to simulate arbitrary floating-point arithmetic
in MATLAB. Therefore, we give theoretical results only.

First-order filter Consider a first-order filter as before and shown
in Figure 10.25a. For the finite word-length analysis with floating-point
arithmetic we need quantizers after both multiplication and addition to
account for rounding off in the mantissa, as shown in Figure 10.25b. Hence
there are two noise sources in the the statistical model, as shown in Fig-
ure 10.25c, where e1(n) is the noise source in the multiplier, e2(n) is the
noise source in the adder, ĝ(n) is an adder sequence prior to quantization,
and ŷ(n) is the quantized output. Now

e1(n) = ε1(n) α ŷ(n − 1) (10.68a)

e2(n) = ε2(n) ĝ(n) (10.68b)

where ε1(n) and ε2(n) are the relative errors in the corresponding quan-
tizers. The exact analysis even for the first-order case is tedious; hence we
make a few practically reasonable approximations. If the absolute values
of the errors are small, then we have ŷ(n−1) ≈ y(n−1) and ĝ(n) ≈ y(n);
hence from (10.68a) we obtain

e1(n) ≈ α ε1(n) y(n − 1) (10.69a)

e2(n) ≈ ε2(n) y(n) (10.69b)

Furthermore, we make the following assumption about the noise sources:

1. ε1(n) and ε2(n) are white noise sources.
2. ε1(n) and ε2(n) are uncorrelated with each other.

z −1 z−1 z−1

x(n) x(n) x(n) y(n) + q(n)

e1(n)

e2(n)

g(n)

y(n − 1)

y(n) g(n)

a a a
Q

Q
ˆ y(n)ˆ g(n)ˆ

y (n − 1)ˆ y(n − 1)ˆ

(b) (c)(a)

FIGURE 10.25 First-order IIR filter: (a) structure, (b) finite word-length model
for floating-point arithmetic, (c) statistical model for floating-point arithmetic
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3. ε1(n) and ε2(n) are uncorrelated with the input x(n).
4. ε1(n) and ε2(n) are uniformly distributed between −2−B and 2−B .

Let x(n) be a zero-mean, stationary random sequence. Then y(n) is
also a zero-mean, stationary sequence. Hence from (10.69),

σ2
e1

= |α|2σ2
ε1

σ2
y (10.70a)

σ2
e2

= σ2
ε2

σ2
y (10.70b)

Let the error in the output due to e1(n) be q1(n), and let that due to
e2(n) be q2(n). Let h1(n) and h2(n) be the corresponding noise impulse
responses. Note that h1(n) = h2(n) = h(n) = αnu(n). Then the total
error q(n) is

q(n) = q1(n) + q2(n) (10.71)

with
σ2

q = σ2
q1

+ σ2
q2

(10.72)

where

σ2
q1

= σ2
e1

∞∑
0

|h1(n)|2 and σ2
q2

= σ2
e2

∞∑
0

|h2(n)|2 (10.73)

Hence using (10.72), (10.73), and (10.70),

σ2
q =

(
σ2

e1
+ σ2

e2

)( 1
1 − |α|2

)
= σ2

y

(
1

1 − |α|2

)(
|α|2σ2

ε1
+ σ2

ε2

)
(10.74)

Using σ2
ε1

= σ2
ε2

= 2−2B/3, we obtain

σ2
q = σ2

y

(
2−2B

3

)(
1 + |α|2
1 − |α|2

)
(10.75)

Therefore,

SNR =
σ2

y

σ2
q

= 3
(
22B
)(1 − |α|2

1 + |α|2

)
(10.76)

or

SNRdB = 4.77 + 6.02B + 10 log10(1 − |α|2) − 10 log10(1 + |α|2) (10.77)

which is also a very informative result. Some comments are in order.

1. The SNR in (10.76) was derived without assuming any input statistics,
Hence the result is valid for a large class of inputs including white-noise,
narrow-band, or wide-band signals. The floating-point arithmetic does
not have to worry about the scaling or limiting input values, since it
can handle a large dynamic range.
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2. Using 0 < δ = 1 − |α| � 1, the SNR in (10.77) can be put in the form

SNRdB ≈ 4.77 + 6.02B + 10 log10(δ) = O(δ) (10.78)

This is to be compared with the fixed-point result (10.50), where
SNR ≈ O(δ2). Thus the floating-point result is less sensitive to the
distance of the pole to the unit circle.

3. In floating-point arithmetic, the output noise variance, σ2
q , in (10.75) is

proportional to σ2
y. Thus, if the input signal is scaled up, so is the noise

variance since σ2
y is also scaled up. Hence the SNR remains constant.

This again should be compared with the fixed-point case (10.41), in
which σ2

q is independent of the input signal. Hence if the signal level
increases, then σ2

y increases, which increases the SNR.

Second-order filter Similar analysis can be done for the second-order
filter with poles close to the unit circle. If the poles are given by re±jθ,
then we can show that (see [71])

SNR =
σ2

y

σ2
q

≈ 3
(
22B
) 4δ sin2θ

3 + 4 cos θ
≈ O (δ) (10.79)

where δ = 1− r. This again is an approximate result that works very well
in practice. In this case again, the SNR depends on δ rather than on δ2

as in the fixed-point case.

10.3 ROUND-OFF EFFECTS IN FIR DIGITAL FILTERS

We will now turn our attention to the finite word-length effects in FIR
digital filters. As before, we will consider the fixed-point and floating-point
cases separately. We will then conclude this section with some represen-
tative examples.

10.3.1 FIXED-POINT ARITHMETIC
We will consider the effects on two realizations: direct form and cascade
form. There is no parallel form realization for FIR filters, since we do
not have a partial fraction expansion, except for the frequency-sampling
realization, which can be analyzed using IIR filter techniques. The analysis
of FIR filters is much simpler than that for IIR because there are no
feedback paths. One consequence of this is the absence of limit cycles.
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Direct-form realization Consider an FIR filter of length M (i.e.,
there are M samples in the impulse response), which is realized using the
direct form as shown in Figure 10.26a. The filter coefficients are the sam-
ples of the impulse response h(n). We have to introduce quantizers in the
vertical branches. If we use the implementation in which each multiplier
output is quantized, then we obtain the model shown in Figure 10.26b.
On the other hand, if we implement the filter in a typical DSP chip, then
the final sum is quantized, as shown in Figure 10.26c. We will separately
consider the effects of round-off noise and scaling (to avoid overflow).

Round-off noise Let the output of the filter in Figure 10.26b due to
round-off errors be ŷ(n) = y(n) + q(n). Then

q(n) =
M−1∑
k=0

ek(n) (10.80)

where ek(n) are the noise sources introduced in each vertical branch to
account for the rounding operations. Since these noise sources are all
independent and identical, the noise power in q(n) is given by

σ2
q =

M−1∑
0

σ2
ek

= M σ2
e = M

(
2−2B

12

)
=

M

3
2−2(B+1) (10.81)

In Figure 10.26c, the output due to the rounding operation is ŷ(n) =
y(n) + e(n). Hence the noise power in this case is given by

σ2
q = σ2

e =
1
3
2−2(B+1) (10.82)

which is smaller by a factor of M compared to (10.81), as expected.

Scaling to avoid overflow We assume that the fixed-point numbers
have the two’s-complement form representation, which is a reasonable
assumption. Then we will have to check only the overflow of the total sum.
Thus this analysis is the same for both implementations in Figure 10.26
and is similar to that for the IIR filter in (10.42)–(10.44). The upper-
bound on y(n) is obtained as

|y(n)| =
∣∣∣
∑

h(k) x(n − k)
∣∣∣ ≤ Xmax

∑
|h(n)| (10.83)

where Xmax is the upper-bound on x(n). To guarantee that |y(n)| ≤ 1,
we need the scaling factor Xmax on x(n) as

Xmax ≤ 1∑
|h(n)| (10.84)
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FIGURE 10.26 Direct form FIR filter: (a) structure, (b) round-off noise model
with quantizers after each multiplier, (c) round-off noise mode with one quan-
tizer after the final sum

which is the most conservative scaling factor. There are other scaling
factors, depending on the applications—for example, the narrowband
signals use

Xmax ≤ 1
max |H(ejω)|

and wideband random signals use

Xmax ≤ 1
4σx

√∑
|h(n)|2

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



560 Chapter 10 ROUND-OFF EFFECTS IN DIGITAL FILTERS

Using (10.84) and assuming that x(n) is uniformly distributed over
[−Xmax, +Xmax], the input signal power is given by

σ2
x =

X2
max

3
=

1
3 (
∑

|h(n)|)2
(10.85)

Furthermore, assuming that x(n) is also a white sequence, the output
signal power is given by

σ2
y = σ2

x

∑
|h(n)|2 =

1
3

∑
|h(n)|2

(
∑

|h(n)|)2
(10.86)

Thus the output SNR is

SNR =
σ2

y

σ2
q

=
22(B+1)

A

[ ∑
|h(n)|2

(
∑

|h(n)|)2

]
(10.87)

where A = M for the model in Figure 10.26b or A = 1 for the model in
Figure 10.26c. The corresponding SNR in dB is

SNRdB = 6.02 + 6.02B + 10 log10

( ∑
|h(n)|2

(
∑

|h(n)|)2

)
− 10 log10 A (10.88)

10.3.2 ANALYSIS USING MATLAB
This simulation in MATLAB can be done in parallel fashion since there
is no feedback path for the multiplication quantization errors. Using the
function Qfix function with ’round’ mode, we will compute the quan-
tized multiplier output. In the case of M quantizers, assuming two’s-
complement format, we will use the ’twosc’ mode for each quantizer.
Only the final sum will be quantized and saturated. In the case of one
quantizer, we need the ’satur’ mode. These simulation steps are detailed
in the following example.

� EXAMPLE 10.13 Let a fourth-order (M = 5) FIR filter be given by

H(z) = 0.1 + 0.2z−1 + 0.4z−2 + 0.2z−3 + 0.1z−4 (10.89)

which is implemented as a direct form with B = 12 fractional bit quantizers.
Compute SNRs for models in Figure 10.26b and 10.26c and verify them using
MATLAB simulations.

Solution We will need the quantities
∑

|h(n)|2 and (
∑

|h(n)|)2. These quantities should
be computed using 12-bit quantization of the filter coefficients. These values
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using the quantized numbers are
∑

|h(n)|2 = 0.2599 and (
∑

|h(n)|)2 = 1. Us-
ing (10.88), the output SNR is 65.42 dB for five multipliers and is 72.41 dB
for one multiplier. The following MATLAB script evaluates these and other
quantities.

% Example Parameters
B = 12; % # of fractional bits
N = 100000; % # of samples
xn = (2*rand(1,N)-1); % Input sequence - uniform distribution
h = [0.1,0.2,0.4,0.2,0.1]; % Filter parameters
M = length(h);

% Local variables
bM = 7; DbM = 2ˆbM; % Bin parameter
BB = 2ˆB; % Useful factor in quantization
K = round(DbM/2); % Half number of bins

bins = [-K+0.5:1:K-0.5]; % Bin values from -K to K
Q = bins/DbM; % Normalized bins

YTN = 2ˆ(-bM); % Ytick marks interval
YLM = 4*YTN; % Yaxis limit

% Quantize the input and the filter coefficients
h = QFix(h,B,’round’,’satur’); % h quantized to B bits
Xm = 1/sum(abs(h)); % Scaling factor
xn = QFix(Xm*xn,B,’round’,’satur’);% Scaled Input quant to B bits

% Filter output without multiplication quantization
yn = filter(h,1,xn); % output using filter routine

% Filter output with multi quant (5 multipliers)
x1 = [zeros(1,1),xn(1:N-1)]; x2 = [zeros(1,2),xn(1:N-2)];
x3 = [zeros(1,3),xn(1:N-3)]; x4 = [zeros(1,4),xn(1:N-4)];
h0x0 = QFix(h(1)*xn,B,’round’,’twosc’);
h1x1 = QFix(h(2)*x1,B,’round’,’twosc’);
h2x2 = QFix(h(3)*x2,B,’round’,’twosc’);
h3x3 = QFix(h(4)*x3,B,’round’,’twosc’);
h4x4 = QFix(h(5)*x4,B,’round’,’twosc’);
yq = h0x0+h1x1+h2x2+h3x3+h4x4;
yq = QFix(yq,B,’round’,’satur’);

% Output Error Analysis
qn = yn-yq; % Outout error sequence

varyn = var(yn); varqn = var(qn); % Signal and noise power
qqmax = max(qn); qqmin = min(qn); % Maximun and minimum of the error
qnmax = max(abs([qqmax,qqmin])); % Absolute maximum range of the error
qnavg = mean(qn); qnstd = std(qn); % Mean and std dev of the error
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qn = round(qn*(2ˆbM)/(2*qnmax)+0.5); % Normalized en (integer between -K & K)
qn = sort([qn,-K:1:(K+1)]); %
H = diff(find(diff(qn)))-1; % Error histogram
H = H/N; % Normalized histogram

Hmax = max(H); Hmin = min(H); % Max and Min of the normalized histogram

% Output SNRs
SNR_C = 10*log10(varyn/varqn); % Computed SNR
SNR_T = 6.02 + 6.02*B + 10*log10(sum(h.*h)/Xmˆ2) - 10*log10(M); % Theoretical SNR

% Filter output with multi quant (1 multiplier)
yq = QFix(yn,B,’round’,’satur’);

% Output Error Analysis
qn = yn-yq; % Outout error sequence

varyn = var(yn); varqn = var(qn); % Signal and noise power
qqmax = max(qn); qqmin = min(qn); % Maximun and minimum of the error
qnmax = max(abs([qqmax,qqmin])); % Absolute maximum range of the error
qnavg = mean(qn); qnstd = std(qn); % Mean and std dev of the error

qn = round(qn*(2ˆbM)/(2*qnmax)+0.5); % Normalized en (integer between -K & K)
qn = sort([qn,-K:1:(K+1)]); %
H = diff(find(diff(qn)))-1; % Error histogram
H = H/N; % Normalized histogram

Hmax = max(H); Hmin = min(H); % Max and min of the normalized histogram

% Output SNRs
SNR_C = 10*log10(varyn/varqn); % Computed SNR
SNR_T = 6.02 + 6.02*B + 10*log10(sum(h.*h)/Xmˆ2); % Theoretical SNR

The computed and theoretical SNRs as well as output error histograms for the
two models are shown in Figure 10.27. The top plot shows the histogram when
five multipliers are used. The output error has Gaussian-like distribution with
SNR equal to 65.42 dB, which agrees with the theoretical value. The bottom
plot show the histogram when one multiplier is used. As expected, the error is
uniformly distributed with SNR equal to 72.43 dB, which also agrees with the
theoretical one. �

Cascade-form realization Let the filter be realized by a cascade of
K, second-order (M = 3) sections given by

H(z) =
K∑

i=1

Hi(z) where Hi(z) = β0i + β1i z−1 + β2i z−2 (10.90)

as shown in Figure 10.28. The overall length of the filter is M = 2K + 1.
Figure 10.28 also shows the finite word-length model for the cascade form,
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FIGURE 10.27 Multiplication quantization effects for the direct form FIR filter
in Example 10.13

in which quantization noise sources, ei(n) 1 ≤ i ≤ K, at each section’s
output are incorporated. Let y(n) be the output due to input x(n), and
let q(n) be the output due to all noise sources. We make the following
reasonable assumptions:

1. The sections are implemented using the MAC (multiply-accumulate)
architecture so that there is only one independent noise source in each
section that contributes to ei(n). The other possibility of three multi-
pliers in each section is straightforward.

x(n) H1(z) H2(z) HK (z)

e1(n) e2(n) eK−1(n) eK (n)

y (n) = y (n) + q(n)ˆ

FIGURE 10.28 Cascade form FIR filter structure with noise sources inserted for
multiplication quantization
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2. The noise sources are independent of each other—that is,

ei(n) ⊥ ej(n) for i �= j

3. Each noise source is a white-noise source with σ2
ei

= 2−2B/12.

We will now consider the issues of round-off noise and scaling (to prevent
overflow) for the cascade form realization.

Round-off noise Let the noise impulse response at the output from
the ei(n) node be denoted by gi(n). Then the length of gi(n) is equal to
(M − 2i). Let qi(n) be the output noise due to ei(n). Then its power is
given by

σ2
qi

= σ2
ei

M−2i∑
0

|gi(n)|2 =
2−2B

12

M−2i∑
0

|gi(n)|2 (10.91)

Since q(n) =
∑K

i=1 qi(n), we obtain the total noise power as

σ2
q =

K∑
i=1

σ2
qi

=
2−2B

12

(
K∑

i=1

M−2i∑
n=1

|gi(n)|2
)

(10.92)

The expression
∑K

i=1
∑M−2i

n=1 |gi(n)|2 shows that the error power depends
on the order of the cascade connections. It has been shown that for the
majority of the orderings the noise power is approximately the same.

Scaling to prevent overflow From Figure 10.28, we note that one
must prevent overflow at each node. Let hk(n) be the impulse response
at each node k; then we need a scaling constant Xmax as

Xmax =
1

maxk

∑
|hk(n)|

so that |y(n)| ≤ 1. Clearly, this is a very conservative value. A better
approach is to scale the impulse responses of every section {hi(n)} so
that

∑
|hi| = 1 for each i. Hence the output of every section is limited

between −1 and +1 if the input x(n) is distributed over the same interval.
Assuming that x(n) is uniformly distributed over [−1,+1] and is white,
the output signal power is

σ2
y = σ2

x

M−1∑
0

|h(n)|2 =
1
3

M−1∑
0

|h(n)|2 (10.93)

where h(n) is the overall impulse response of the filter. Let ĝi be the
corresponding scaled impulse responses in (10.92). Now the output SNR
can be computed as either

SNR =
σ2

y

σ2
q

= 22(B+1)
∑M−1

0 |h(n)|2(∑K
i=1
∑M−2i

n=1 |ĝi(n)|2
) (10.94)
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or

SNRdB = 6.02(B+1)+10 log10

(
M−1∑

0

|h(n)|2
)

−10 log10

(
K∑

i=1

M−2i∑
n=1

|ĝi(n)|2
)

(10.95)

10.3.3 ANALYSIS USING MATLAB
Using the casfiltr function, we can compute the output of the infinite-
precision cascade structure. Using the scaling approach outlined above,
each second-order section can be scaled and used in the simulation of
quantized outputs. Again, all calculations can be done in vector fashion,
which improves the execution speed. These and other simulation steps are
detailed in the following example.

� EXAMPLE 10.14 Consider the fourth-order FIR filter given in Example 10.13. Its cascade form
realization has two sections along with a gain constant b0, which can be obtained
using the dir2cas function:

H1(z) = 1+1.4859z−1+2.8901z−2, H2(z) = 1+0.5141z−1+0.3460z−2, and b0 = 0.1
(10.96)

Note that some of these coefficients are greater than 1, which will cause problems
with coefficient quantization when only B fractional bits are used. Hence we
need to scale each section as explained. The scaled values are

Ĥ1(z) = 0.1860+0.2764z−1 +0.5376z−2, Ĥ2(z) = 0.5376+0.2764z−1 +0.1860z−2

(10.97)

and b̂0 = 1. Thus we do not need to scale the input. Now ĝ1(n) = ĥ2(n) and
ĝ2(n) = 1 in (10.94). Thus from (10.95), the output SNR is 70.96 dB, which
compares well with the one-multiplier direct form implementation (72.41 dB).
These calculations and error histogram plotting are illustrated in the following
MATLAB script.

% Example Parameters
B = 12; % # of fractional bits
N = 100000; % # of samples
xn = (2*rand(1,N)-1); % Input sequence - uniform distribution
h = [0.1,0.2,0.4,0.2,0.1]; % Filter parameters
M = length(h); % Filter length
[b0,Bh,Ah] = dir2cas(h,1); % Cascade sections
h1 = Bh(1,:); % Section-1
h2 = Bh(2,:); % Section-2
h1 = h1/sum(h1); % Scaled so Gain=1
h2 = h2/sum(h2); % Scaled so Gain=1
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% Local variables
bM = 7; DbM = 2ˆbM; % Bin parameter
BB = 2ˆB; % Useful factor in quantization
K = round(DbM/2); % Half number of bins

bins = [-K+0.5:1:K-0.5]; % Bin values from -K to K
Q = bins/DbM; % Normalized bins

YTN = 2ˆ(-bM); % Ytick marks interval
YLM = 20*YTN; % Yaxis limit
% Quantize the input and the filter coefficients
h1 = QFix(h1,B,’round’,’satur’); % h1 quantized to B bits
h2 = QFix(h2,B,’round’,’satur’); % h1 quantized to B bits
xn = QFix(xn,B,’round’,’satur’); % Input quantized to B bits
% Filter output without multiplication quantization
yn = casfiltr(b0,Bh,Ah,xn); % output using Casfiltr routine
% Filter output with multi quant (1 multiplier/section)
xq = QFix(xn,B,’round’,’satur’); % Section-1 scaled input
wn = filter(h1,1,xq); % Sec-1 unquantized output
wq = QFix(wn,B,’round’,’satur’); % Sec-1 quantized output
wq = QFix(wq,B,’round’,’satur’); % Section-2 scaled input
yq = filter(h2,1,wq); % Sec-2 unquantized output
yq = QFix(yq,B,’round’,’satur’); % Sec-2 quantized output
% Output Error Analysis

qn = yn-yq; % Outout error sequence
varyn = var(yn); varqn = var(qn); % Signal and noise power
qqmax = max(qn); qqmin = min(qn); % Maximun and minimum of the error
qnmax = max(abs([qqmax,qqmin])); % Absolute maximum range of the error
qnavg = mean(qn); qnstd = std(qn); % Mean and std dev of the error

qn = round(qn*(2ˆbM)/(2*qnmax)+0.5); % Normalized en (integer between -K & K)
qn = sort([qn,-K:1:(K+1)]); %
H = diff(find(diff(qn)))-1; % Error histogram
H = H/N; % Normalized histogram

Hmax = max(H); Hmin = min(H); % Max and min of the normalized histogram
% Output SNRs
SNR_C = 10*log10(varyn/varqn); % Computed SNR
SNR_T = 6.02*(B+1) + 10*log10(sum(h.*h)) ...

- 10*log10(1+sum(h2.*h2)); % Theoretical SNR

The plot is shown in Figure 10.29. The error distribution appears to have a
Gaussian envelope, but the error is not continuously distributed. This behavior
indicates that the output error takes only a fixed set of values, which is due
to a particular set of coefficient values. The computed SNR is 70.85 dB, which
agrees with the above theoretical value. Thus our assumptions are reasonable.�

10.3.4 FLOATING-POINT ARITHMETIC
Analysis for the floating-point arithmetic is more complicated and tedious.
Hence we will consider only the direct form realization with simplified
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FIGURE 10.29 Multiplication quantization effects for the cascade form FIR
filter in Example 10.14

assumptions. Figure 10.30 shows a direct form realization with a floating-
point arithmetic model. In this realization, {ηi(n)}, 1 ≤ i ≤ M − 1 are
the relative errors in adders and {εi(n)}, 0 ≤ i ≤ M − 1 are the relative
errors in multipliers, with |ηi| ≤ 2−2B and |εi| ≤ 2−2B .

Let A(n, k) be the gain from the kth multiplier to the output node,
which is given by

A(n, k) =

⎧
⎨
⎩

(1 + εk(n))
∏M−1

r=k (1 + ηr(n)) , k �= 0

(1 + ε0(n))
∏M−1

r=k (1 + ηr(n)) , k = 0
(10.98)

x(n)

y(n) + q(n)

1 + e0(n) 1 + e1(n)

1 + h1(n) 1 + h2(n)

1 + e2(n) 1 + e3(n) 1 + eM−2(n) 1 + eM−1(n)

1 + hM−2(n) 1 + hM−1(n)

z−1 z −1 z −1 z −1

h(0) h(1) h(2) h(3) h(M − 2) h(M − 1)

1

FIGURE 10.30 Multiplication quantization model for direct form floating-point
implementation of an FIR filter
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Let ŷ(n)
�
= y(n) + q(n) be the overall output where y(n) is the output

due to the input x(n) and q(n) is the output due to noise sources. Then

ŷ(n) =
M−1∑
k=0

A(n, k) h(k) x(n − k) (10.99)

Subtracting y(n) =
∑M−1

k=0 h(k) x(n − k) from (10.99), we obtain

q(n) =
M−1∑
k=0

{A(n, k) − 1} h(k) x(n − k) (10.100)

Now from (10.98), the average value of A(n, k) is E[A(n, k)] = 1, and the
average power of A(n, k) is

E[A2(n, k)] =
(

1 +
1
3

2−2B

)M+1−k

≈ 1 + (M + 1 − k)
2−2B

3
for small 2−2B (10.101)

Assuming that the input signal x(n) is also a white sequence with variance
σ2

x, then from (10.101) the noise power is given by

σ2
q =

(M + 1)2−2B

3
σ2

x

M−1∑
k=0

|h(k)|2
(

1 − k

M + 1

)
(10.102)

Since (1 − k
M+1 ) ≤ 1 and using σ2

y = σ2
x

∑M−1
k=0 |h(k)|2, the noise power

σ2
q is upper bounded by

σ2
q ≤ (M + 1)

2−2B

3
σ2

y (10.103)

or the SNR is lower bounded by

SNR ≥ 3
M + 1

22B (10.104)

Equation (10.104) shows that it is best to compute products in order of
increasing magnitude.

� EXAMPLE 10.15 Again consider the fourth-order FIR filter given in Example 10.13 in which
M = 5, B = 12, and h(n) = {0.1, 0.2, 0.4, 0.2, 0.1}. From (10.104), the SNR is
lower bounded by

SNRdB ≥ 10 log10

( 3
M + 1

224
)

= 69.24 dB

and the approximate value from (10.102) is 71 dB, which is comparable to the
fixed-point value of 72 dB. Note that the fixed-point results would degrade with
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less than optimum scaling (e.g., if signal amplitude were 10 dB down), whereas
the floating-point SNR would remain the same. To counter this, one could put a
variable scaling factor A on the fixed-point system, which is then getting close to
the full floating-point system. In fact, floating-point is nothing but fixed-point
with variable scaling—that is, a scaling by a power of two (or shifting) at each
multiplication and addition. �

10.4 PROBLEMS

P10.1 Let x(n) = 0.5[cos(n/17) + sin(n/23)]. For the following parts, use 500,000 samples of
x(n) and the StatModelR function.

1. Quantize x(n) to B = 2 bits, and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

2. Quantize x(n) to B = 4 bits, and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

3. Quantize x(n) to B = 6 bits, and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

P10.2 Let x(n) = 1
3 [cos(0.1πn) + sin(0.2πn) + sin(0.4πn)]. For the following parts, use 500,000

samples of x(n) and the StatModelR function.

1. Quantize x(n) to B = 2 bits, and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

2. Quantize x(n) to B = 4 bits, and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

3. Quantize x(n) to B = 6 bits, and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

P10.3 Let a real, causal, and stable IIR filter be given by

H(z) = R0 +
N−1∑
k=1

Rk

z − pk
(10.105)

where all poles are distinct. Using (10.16), (10.18a), and (10.105), show that

σ2
q

σ2
e

= R2
0 +

N−1∑
k=1

N−1∑
�=1

RkR∗
�

1 − pkp∗
�

P10.4 Consider the lowpass digital filter designed in Problem P6.39. The input to this filter is
an independent and identically distributed Gaussian sequence with zero-mean and
variance equal to 0.1.

1. Determine the variance of the filter output process using the VarGain function.
2. Determine numerically the variance of the output process by generating 500,000

samples of the input sequence. Comment on your results.

P10.5 Design an elliptic bandpass digital filter that has a lower stopband of 0.3π, a lower
passband of 0.4π, an upper passband of 0.5π, and an upper stopband of 0.65π.
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The passband ripple is 0.1 dB and the stopband attenuation is 50 dB. The input signal is
a random sequence whose components are independent and uniformly distributed between
−1 and 1.

1. Determine the variance of the filter output process using the VarGain function.
2. Determine numerically the variance of the output process by generating 500,000

samples of the input sequence. Comment on your results.

P10.6 Consider the first-order recursive system y(n) = 0.75 y(n − 1) + 0.125δ(n) with zero initial
conditions. The filter is implemented in 4-bit (including sign) fixed-point
two’s-complement fractional arithmetic. Products are rounded to 3 bits.

1. Determine and plot the first 20 samples of the output using saturation limiter for the
addition. Does the filter go into a limit cycle?

2. Determine and plot the first 20 samples of the output using two’s-complement overflow
for the addition. Does the filter go into a limit cycle?

P10.7 Repeat Problem P10.6 when products are truncated to 3 bits.

P10.8 Consider the second-order recursive system y(n) = 0.125δ(n) − 0.875 y(n − 2) with zero
initial conditions. The filter is implemented in 5-bit (including sign) fixed-point
two’s-complement fractional arithmetic. Products are rounded to 4 bits.

1. Determine and plot the first 30 samples of the output using a saturation limiter for the
addition. Does the filter go into a limit cycle?

2. Determine and plot the first 30 samples of the output using two’s-complement overflow
for the addition. Does the filter go into a limit cycle?

P10.9 Repeat Problem P10.8 when products are truncated to 4 bits.

P10.10 Let x(n) = 1
4 [sin(n/11) + cos(n/13) + sin(n/17) + cos(n/19)] and c = 0.7777. For the

following parts, use 500,000 samples of x(n) and the StatModelR function.

1. Quantize cx(n) to B = 4 bits, and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

2. Quantize cx(n) to B = 8 bits, and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

3. Quantize cx(n) to B = 12 bits, and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

P10.11 Let x(n) = be a random sequence uniformly distributed between −1 and 1, and let
c = 0.7777. For the following parts, use 500,000 samples of x(n) and the StatModelR
function.

1. Quantize cx(n) to B = 4 bits, and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

2. Quantize cx(n) to B = 8 bits, and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

3. Quantize cx(n) to B = 12 bits, and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

P10.12 Consider an LTI system with the input x(n) and output y(n)

y(n) = b0x(n) + b1x(n − 1) + a1y(n − 1) (10.106)

1. Draw the direct form I structure for the above system.
2. Let eb0(n) denote the multiplication quantization error resulting from the product

b0x(n), eb1(n − 1) from the product b1x(n − 1), and ea1(n − 1) from the product
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a1y(n − 1) in the direct form I realization. Draw an equivalent structure that contains
only one noise source.

3. Draw an equivalent system that can be used to study multiplication quantization error
for the system in (10.106). The input to this system should be the noise source in
part 2, and the output should be the overall output error q(n).

4. Using the model in part 3, determine an expression for the variance of the output error
e(n).

P10.13 Let the system be given by y(n) = a y(n − 1) + x(n). Let a = 0.7, which is quantized to B
(fractional) bits in the filter realization. Let the input sequence be x(n) = sin(n/11),
which is properly scaled to avoid overflow in the adder and quantized to B bits prior to
filtering. The multiplications in the filtering operations are also quantized to B bits.

1. Let B = 5. Generate 100,000 samples of x(n), and filter through the system with
multiplication quantization. Compute the true output, the quantized output, the
output error, and the output SNR. Plot the normalized histogram, and comment on
the results.

2. Let B = 10. Generate 100,000 samples of x(n) and filter through the system with
multiplication quantization. Compute the true output, the quantized output, the
output error, and the output SNR. Plot the normalized histogram, and comment on
the results.

P10.14 Let the system be given by y(n) = a y(n − 1) + x(n). Let a = 0.333, which is quantized to
B (fractional) bits in the filter realization. Let the input sequence be x(n) = sin(n/11),
which is properly scaled to avoid overflow in the adder and quantized to B bits prior to
filtering. The multiplications in the filtering operations are also quantized to B bits.

1. Let B = 5. Generate 100,000 samples of x(n), and filter through the system with
multiplication quantization. Compute the true output, the quantized output, the
output error, and the output SNR. Plot the normalized histogram and comment on
the results.

2. Let B = 10. Generate 100,000 samples of x(n), and filter through the system with
multiplication quantization. Compute the true output, the quantized output, the
output error, and the output SNR. Plot the normalized histogram and comment on
the results.

P10.15 Consider the second-order IIR filter given in (10.51) with r = 0.8 and θ = π/4. The input
to this filter is x(n) = sin(n/23).

1. Investigate the multiplication quantization error behavior of this filter for B = 5 bits.
Determine the true output SNR, the computed output SNR, and the upper and
lower bounds of the SNR. Plot the normalized histogram of the output error.

2. Investigate the multiplication quantization error behavior of this filter for B = 10
bits. Determine the true output SNR, the computed output SNR, and the upper and
lower bounds of the SNR. Plot the normalized histogram of the output error.

P10.16 Consider the second-order IIR filter given in (10.51) with r = 0. − 8 and θ = 2π/3. The
input to this filter is x(n) = sin(n/23).

1. Investigate the multiplication quantization error behavior of this filter for B = 5 bits.
Determine the true output SNR, the computed output SNR, and the upper and
lower bounds of the SNR. Plot the normalized histogram of the output error.
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572 Chapter 10 ROUND-OFF EFFECTS IN DIGITAL FILTERS

2. Investigate the multiplication quantization error behavior of this filter for B = 10 bits.
Determine the true output SNR, the computed output SNR, and the upper and
lower bounds of the SNR. Plot the normalized histogram of the output error.

P10.17 Consider a fifth-order FIR system given by

H(z) = 0.1 + 0.2z−1 + 0.3z−2 + 0.3z−3 + 0.2z−4 + 0.1z−5

which is implemented in a direct form using B = 10 bits. Input to the filter is a random
sequence whose samples are independent and identically distributed over [−1, 1].

1. Investigate the multiplication quantization errors when all six multipliers are used in
the implementation. Plot the normalized histogram of the output error.

2. Investigate the multiplication quantization errors when one multiplier is used in the
implementation. Plot the normalized histogram of the output error.

P10.18 Consider a fourth-order FIR system given by

H(z) = 0.1 + 0.2z−1 + 0.3z−2 + 0.2z−3 + 0.1z−4

which is implemented in a cascade form containing second-order sections. Input to the
filter is a random sequence whose samples are independent and identically distributed
over [−1, 1].

1. Investigate the multiplication quantization errors when B = 6 bits is used in the
implementation. Plot the normalized histogram of the output error.

2. Investigate the multiplication quantization errors when B = 12 bits is used in the
implementation. Plot the normalized histogram of the output error.
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C H A P T E R 11
Applications
in Adaptive
Filtering

In Chapters 7 and 8, we described methods for designing FIR and IIR dig-
ital filters to satisfy some desired specifications. Our goal was to determine
the coefficients of the digital filter that met the desired specifications.

In contrast to the filter design techniques considered in those two
chapters, there are many digital signal processing applications in which
the filter coefficients cannot be specified a priori. For example, let us con-
sider a high-speed modem that is designed to transmit data over telephone
channels. Such a modem employs a filter called a channel equalizer to com-
pensate for the channel distortion. The modem must effectively transmit
data through communication channels that have different frequency re-
sponse characteristics and hence result in different distortion effects. The
only way in which this is possible is if the channel equalizer has adjustable
coefficients that can be optimized to minimize some measure of the dis-
tortion, on the basis of measurements performed on the characteristics of
the channel. Such a filter with adjustable parameters is called an adaptive
filter—in this case, an adaptive equalizer.

Numerous applications of adaptive filters have been described in the
literature. Some of the more noteworthy applications include (1) adaptive
antenna systems, in which adaptive filters are used for beam steering and
for providing nulls in the beam pattern to remove undesired interference
[97], (2) digital communication receivers, in which adaptive filters are
used to provide equalization of intersymbol interference and for channel
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identification [81], (3) adaptive noise canceling techniques, in which an
adaptive filter is used to estimate and eliminate a noise component in
some desired signal [96, 34, 15], and (4) system modeling, in which an
adaptive filter is used as a model to estimate the characteristics of an un-
known system. These are just a few of the best-known examples on the use
of adaptive filters.

Although both IIR and FIR filters have been considered for adap-
tive filtering, the FIR filter is by far the most practical and widely used.
The reason for this preference is quite simple. The FIR filter has only
adjustable zeros, and hence it is free of stability problems associated with
adaptive IIR filters that have adjustable poles as well as zeros. We should
not conclude, however, that adaptive FIR filters are always stable. On the
contrary, the stability of the filter depends critically on the algorithm for
adjusting its coefficients.

Of the various FIR filter structures that we may use, the direct form
and the lattice form are the ones often used in adaptive filtering appli-
cations. The direct form FIR filter structure with adjustable coefficients
h(0), h(1), . . . , h(N−1) is illustrated in Figure 11.1. The FIR lattice struc-
tures are discussed in Chapter 14 and have adjustable parameters Kn,
called reflection coefficients, shown in Figure 14.15.

An important consideration in the use of an adaptive filter is the
criterion for optimizing the adjustable filter parameters. The criterion
must not only provide a meaningful measure of filter performance, but it
must also result in a practically realizable algorithm.

One criterion that provides a good measure of performance in adap-
tive filtering applications is the least-squares criterion, and its counterpart
in a statistical formulation of the problem, namely, the mean-square-error
(MSE) criterion. The least-squares (and MSE) criterion results in a qua-
dratic performance index as a function of the filter coefficients, and hence
it possesses a single minimum. The resulting algorithms for adjusting the
coefficients of the filter are relatively easy to implement.

FIGURE 11.1 Direct form adaptive FIR filter
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In this chapter, we describe a basic algorithm, called the least-mean-
square (LMS) algorithm, to adaptively adjust the coefficients of an FIR
filter. The adaptive filter structure that will be implemented is the di-
rect form FIR filter structure with adjustable coefficients h(0), h(1), . . . ,
h(N − 1), as illustrated in Figure 11.1. After we describe the LMS algo-
rithm, we apply it to several practical systems in which adaptive filters
are employed.

11.1 LMS ALGORITHM FOR COEFFICIENT ADJUSTMENT

Suppose we have an FIR filter with adjustable coefficients {h(k), 0 ≤ k ≤
N − 1}. Let {x(n)} denote the input sequence to the filter, and let the
corresponding output be {y(n)}, where

y(n) =
N−1∑
k=0

h(k)x (n − k) , n = 0, . . . , M (11.1)

Suppose that we also have a desired sequence {d(n)} with which we can
compare the FIR filter output. Then we can form the error sequence
{e(n)} by taking the difference between d(n) and y(n), that is,

e(n) = d(n) − y(n), n = 0, . . . , M (11.2)

The coefficients of the FIR filter will be selected to minimize the sum of
squared errors. Thus we have

E =
M∑

n=0

e2(n) =
M∑

n=0

[
d(n) −

N−1∑
k=0

h(k)x (n − k)

]2

(11.3)

=
M∑

n=0

d2(n) − 2
N−1∑
k=0

h(k)rdx(k) +
N−1∑
k=0

N−1∑
�=0

h(k)h (�) rxx (k − �)

where, by definition,

rdx(k) =
M∑

n=0

d(n)x (n − k) , 0 ≤ k ≤ N − 1 (11.4)

rxx(k) =
M∑

n=0

x(n)x (n + k) , 0 ≤ k ≤ N − 1 (11.5)
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We call {rdx(k)} the cross-correlation between the desired output
sequence {d(n)} and the input sequence {x(n)}, and {rxx(k)} is the
autocorrelation sequence of {x(n)}.

The sum of squared errors E is a quadratic function of the FIR filter
coefficients. Consequently, the minimization of E with respect to the filter
coefficients {h(k)} results in a set of linear equations. By differentiating
E with respect to each of the filter coefficients, we obtain

∂E
∂h(m)

= 0, 0 ≤ m ≤ N − 1 (11.6)

and hence
N−1∑
k=0

h(k)rxx (k − m) = rdx(m), 0 ≤ m ≤ N − 1 (11.7)

This is the set of linear equations that yield the optimum filter coefficients.
To solve the set of linear equations directly, we must first com-

pute the autocorrelation sequence {rxx(k)} of the input signal and the
cross-correlation sequence {rdx(k)} between the desired sequence {d(n)}
and the input sequence {x(n)}.

The LMS algorithm provides an alternative computational method for
determining the optimum filter coefficients {h(k)} without explicitly com-
puting the correlation sequences {rxx(k)} and {rdx(k)}. The algorithm is
basically a recursive gradient (steepest-descent) method that finds the
minimum of E and thus yields the set of optimum filter coefficients.

We begin with any arbitrary choice for the initial values of {h(k)}—
say, {h0(k)}. For example, we may begin with h0(k) = 0, 0 ≤ k ≤ N −1.
Then after each new input sample {x(n)} enters the adaptive FIR filter,
we compute the corresponding output—say, {y(n)}—form the error signal
e(n) = d(n) − y(n), and update the filter coefficients according to the
equation

hn(k) = hn−1(k) + � · e(n) · x (n − k) , 0 ≤ k ≤ N − 1, n = 0, 1, . . .

(11.8)

where � is called the step-size parameter, x(n − k) is the sample of the
input signal located at the kth tap of the filter at time n, and e(n)x (n − k)
is an approximation (estimate) of the negative of the gradient for the kth
filter coefficient. This is the LMS recursive algorithm for adjusting the
filter coefficients adaptively so as to minimize the sum of squared errors E .

The step-size parameter � controls the rate of convergence of the
algorithm to the optimum solution. A large value of � leads to large
step-size adjustments and thus to rapid convergence, while a small value of
� results in slower convergence. However, if � is made too large the
algorithm becomes unstable. To ensure stability, � must be chosen [81]
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to be in the range

0 < � <
1

10NPx
(11.9)

where N is the length of the adaptive FIR filter and Px is the power in
the input signal, which can be approximated by

Px ≈ 1
1 + M

M∑
n=0

x2(n) =
rxx (0)
M + 1

(11.10)

The mathematical justification of equations (11.9) and (11.10) and
the proof that the LMS algorithm leads to the solution for the optimum
filter coefficients is given in more advanced treatments of adaptive filters.
The interested reader may refer to the books by Haykin [30] and Proakis
and Manolakis [79].

11.1.1 MATLAB IMPLEMENTATION
The LMS algorithm (11.8) can easily be implemented in MATLAB.
Given the input sequence {x(n)}, the desired sequence {d(n)}, step size
�, and the desired length of the adaptive FIR filter N , we can use
(11.1), (11.2), and (11.8) to determine the adaptive filter coefficients
{h(n), 0 ≤ n ≤ N − 1} recursively. This is shown in the following func-
tion, called lms.

function [h,y] = lms(x,d,delta,N)
% LMS Algorithm for Coefficient Adjustment
% ----------------------------------------
% [h,y] = lms(x,d,delta,N)
% h = estimated FIR filter
% y = output array y(n)
% x = input array x(n)
% d = desired array d(n), length must be same as x
% delta = step size
% N = length of the FIR filter
%
M = length(x); y = zeros(1,M);
h = zeros(1,N);
for n = N:M

x1 = x(n:-1:n-N+1);
y = h * x1’;
e = d(n) - y;
h = h + delta*e*x1;

end

In addition, the lms function provides the output {y(n)} of the adaptive
filter.
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578 Chapter 11 APPLICATIONS IN ADAPTIVE FILTERING

We will apply the LMS algorithm to several practical applications
involving adaptive filtering.

11.2 SYSTEM IDENTIFICATION OR SYSTEM MODELING

To formulate the problem, let us refer to Figure 11.2. We have an un-
known linear system that we wish to identify. The unknown system may
be an all-zero (FIR) system or a pole-zero (IIR) system. The unknown
system will be approximated (modeled) by an FIR filter of length N . Both
the unknown system and the FIR model are connected in parallel and are
excited by the same input sequence {x(n)}. If {y(n)} denotes the output
of the model and {d(n)} denotes the output of the unknown system, the
error sequence is {e(n) = d(n) − y(n)}. If we minimize the sum of squared
errors, we obtain the same set of linear equations as in (11.7). Therefore,
the LMS algorithm given by (11.8) may be used to adapt the coefficients of
the FIR model so that its output approximates the output of the unknown
system.

11.2.1 PROJECT 11.1: SYSTEM IDENTIFICATION
There are three basic modules that are needed to perform this project.

1. A noise signal generator that generates a sequence of random numbers
with zero mean value. For example, we may generate a sequence of
uniformly distributed random numbers over the interval [−a, a]. Such
a sequence of uniformly distributed numbers has an average value of
zero and a variance of a2/3. This signal sequence, call it {x(n)}, will
be used as the input to the unknown system and the adaptive FIR
model. In this case, the input signal {x(n)} has power Px = a2/3. In
MATLAB this can be implemented using the rand function.

FIGURE 11.2 Block diagram of system identification or system modeling
problem
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2. An unknown system module that may be selected is an IIR filter and
implemented by its difference equation. For example, we may select an
IIR filter specified by the second-order difference equation

d(n) = a1d (n − 1) + a2d (n − 2) + x(n) + b1x (n − 1) + b2x (n − 2)

(11.11)

where the parameters {a1, a2} determine the positions of the poles and
{b1, b2} determine the positions of the zeros of the filter. These param-
eters are input variables to the program. This can be implemented by
the filter function.

3. An adaptive FIR filter module where the FIR filter has N tap coeffi-
cients that are adjusted by means of the LMS algorithm. The length
N of the filter is an input variable to the program. This can be imple-
mented using the lms function given in the previous section.

The three modules are configured as shown in Figure 11.2. From this
project, we can determine how closely the impulse response of the FIR
model approximates the impulse response of the unknown system after
the LMS algorithm has converged.

To monitor the convergence rate of the LMS algorithm, we may com-
pute a short-term average of the squared error e2(n) and plot it. That is,
we may compute

ASE(m) =
1
K

n+K∑
k=n+1

e2(k) (11.12)

where m = n/K = 1, 2, . . . . The averaging interval K may be selected
to be (approximately) K = 10N . The effect of the choice of the step-
size parameter � on the convergence rate of the LMS algorithm may be
observed by monitoring the ASE(m).

Besides the main part of the program, you should also include, as an
aside, the computation of the impulse response of the unknown system,
which can be obtained by exciting the system with a unit sample sequence
δ(n). This actual impulse response can be compared with that of the FIR
model after convergence of the LMS algorithm. The two impulse responses
can be plotted for the purpose of comparison.

11.3 SUPPRESSION OF NARROWBAND INTERFERENCE
IN A WIDEBAND SIGNAL

Let us assume that we have a signal sequence {x(n)} that consists of
a desired wideband signal sequence—say, {w(n)}—corrupted by an ad-
ditive narrowband interference sequence {s(n)}. The two sequences are
uncorrelated. This problem arises in digital communications and in signal
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580 Chapter 11 APPLICATIONS IN ADAPTIVE FILTERING

detection, where the desired signal sequence {w(n)} is a spread-spectrum
signal, while the narrowband interference represents a signal from another
user of the frequency band or some intentional interference from a jammer
who is trying to disrupt the communication or detection system.

From a filtering point of view, our objective is to design a filter that
suppresses the narrowband interference. In effect, such a filter should place
a notch in the frequency band occupied by the interference. In practice,
however, the frequency band of the interference might be unknown. More-
over, the frequency band of the interference may vary slowly in time.

The narrowband characteristics of the interference allow us to esti-
mate s(n) from past samples of the sequence x(n) = s(n) + w(n) and to
subtract the estimate from x(n). Since the bandwidth of {s(n)} is nar-
row compared to the bandwidth of {w(n)}, the samples of {s(n)} are
highly correlated. On the other hand, the wideband sequence {w(n)} has
a relatively narrow correlation.

The general configuration of the interference suppression system is
shown in Figure 11.3. The signal x(n) is delayed by D samples, where
the delay D is chosen sufficiently large so that the wideband signal com-
ponents w(n) and w(n − D), which are contained in x(n) and x(n − D),
respectively, are uncorrelated. The output of the adaptive FIR filter is the
estimate

ŝ(n) =
N−1∑
k=0

h(k)x(n − k − D) (11.13)

The error signal that is used in optimizing the FIR filter coefficients is
e(n) = x(n) − ŝ(n). The minimization of the sum of squared errors again
leads to a set of linear equations for determining the optimum coefficients.
Due to the delay D, the LMS algorithm for adjusting the coefficients
recursively becomes

hn(k) = hn−1(k) + �e(n)x(n − k − D),
k = 0, 1, . . . , N − 1
n = 1, 2, . . .

(11.14)

FIGURE 11.3 Adaptive filter for estimating and suppressing a narrowband
interference
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11.3.1 PROJECT 11.2: SUPPRESSION OF SINUSOIDAL INTERFERENCE
Three basic modules are required to perform this project.

1. A noise signal generator module that generates a wideband sequence
{w(n)} of random numbers with zero mean value. In particular, we may
generate a sequence of uniformly distributed random numbers using
the rand function as previously described in the project on system
identification. The signal power is denoted as Pw.

2. A sinusoidal signal generator module that generates a sine wave se-
quence s(n) = A sinω0n, where 0 < ω0 < π and A is the signal ampli-
tude. The power of the sinusoidal sequence is denoted as Ps.

3. An adaptive FIR filter module using the lms function, where the FIR
filter has N tap coefficients that are adjusted by the LMS algorithm.
The length N of the filter is an input variable to the program.

The three modules are configured as shown in Figure 11.4. In this
project, the delay D = 1 is sufficient, since the sequence {w(n)} is a
white noise (spectrally flat or uncorrelated) sequence. The objective is to
adapt the FIR filter coefficients and then to investigate the characteristics
of the adaptive filter.

It is interesting to select the interference signal to be much stronger
than the desired signal w(n), for example, Ps = 10Pw. Note that the
power Px required in selecting the step-size parameter in the LMS algo-
rithm is Px = Ps + Pw. The frequency response characteristic H(ejω) of
the adaptive FIR filter with coefficients {h(k)} should exhibit a resonant
peak at the frequency of the interference. The frequency response of the
interference suppression filter is Hs(ejω) = 1−H(ejω), which should then
exhibit a notch at the frequency of the interference.

It is interesting to plot the sequences {w(n)}, {s(n)}, and {x(n)}. It
is also interesting to plot the frequency responses H(ejω) and Hs(ejω)
after the LMS algorithm has converged. The short-time average squared
error ASE(m), defined by (11.12), may be used to monitor the conver-
gence characteristics of the LMS algorithm. The effect of the length of
the adaptive filter on the quality of the estimate should be investigated.

The project may be generalized by adding a second sinusoid of a differ-
ent frequency. Then H(ejω) should exhibit two resonant peaks, provided

FIGURE 11.4 Configuration of modules for experiment on interference suppres-
sion
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582 Chapter 11 APPLICATIONS IN ADAPTIVE FILTERING

the frequencies are sufficiently separated. Investigate the effect of the filter
length N on the resolution of two closely spaced sinusoids.

11.4 ADAPTIVE LINE ENHANCEMENT

In the preceding section, we described a method for suppressing a strong
narrowband interference from a wideband signal. An adaptive line en-
hancer (ALE) has the same configuration as the interference suppression
filter in Figure 11.3, except that the objective is different.

In the adaptive line enhancer, {s(n)} is the desired signal and {w(n)}
represents a wideband noise component that masks {s(n)}. The desired
signal {s(n)} may be a spectral line (a pure sinusoid) or a relatively
narrowband signal. Usually, the power in the wideband signal is greater
than that in the narrowband signal—that is, Pw > Ps. It is apparent
that the ALE is a self-tuning filter that has a peak in its frequency re-
sponse at the frequency of the input sinusoid or in the frequency band
occupied by the narrowband signal. By having a narrow bandwidth FIR
filter, the noise outside the frequency band of the signal is suppressed,
and thus the spectral line is enhanced in amplitude relative to the noise
power in {w(n)}.

11.4.1 PROJECT 11.3: ADAPTIVE LINE ENHANCEMENT
This project requires the same software modules as those used in the
project on interference suppression. Hence the description given in
the preceding section applies directly. One change is that in the ALE, the
condition is that Pw > Ps. Second, the output signal from the ALE is
{s(n)}. Repeat the project described in the previous section under these
conditions.

11.5 ADAPTIVE CHANNEL EQUALIZATION

The speed of data transmission over telephone channels is usually limited
by channel distortion that causes intersymbol interference (ISI). At data
rates below 2400 bits, the ISI is relatively small and is usually not a
problem in the operation of a modem. However, at data rates above 2400
bits, an adaptive equalizer is employed in the modem to compensate for
the channel distortion and thus to allow for highly reliable high-speed
data transmission. In telephone channels, filters are used throughout the
system to separate signals in different frequency bands. These filters cause
amplitude and phase distortion. The adaptive equalizer is basically an
adaptive FIR filter with coefficients that are adjusted by means of the
LMS algorithm to correct for the channel distortion.
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FIGURE 11.5 Application of adaptive filtering to adaptive channel equalization

A block diagram showing the basic elements of a modem transmitting
data over a channel is given in Figure 11.5. Initially, the equalizer coeffi-
cients are adjusted by transmitting a short training sequence, usually less
than 1 second in duration. After the short training period, the transmitter
begins to transmit the data sequence {a(n)}. To track the possible slow
time variations in the channel, the equalizer coefficients must continue to
be adjusted in an adaptive manner while receiving data. This is usually
accomplished, as illustrated in Figure 11.5, by treating the decisions at
the output of the decision device as correct and by using the decisions in
place of the reference {d(n)} to generate the error signal. This approach
works quite well when decision errors occur infrequently, such as less than
one error in 100 data symbols. The occasional decision errors cause only
a small misadjustment in the equalizer coefficients.

11.5.1 PROJECT 11.4: ADAPTIVE CHANNEL EQUALIZATION
The objective of this project is to investigate the performance of an
adaptive equalizer for data transmission over a channel that causes inter-
symbol interference. The basic configuration of the system to be simulated
is shown in Figure 11.6. As we observe, five basic modules are required.
Note that we have avoided carrier modulation and demodulation, which
is required in a telephone channel modem. This is done to simplify the
simulation program. However, all processing involves complex arithmetic
operations.

The five modules are as follows.

1. The data generator module is used to generate a sequence of complex-
valued information symbols {a(n)}. In particular, employ four equally
probable symbols s + js, s − js, −s + js, and −s − js, where s is a
scale factor that may be set to s = 1, or it can be an input parameter.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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FIGURE 11.6 Experiment for investigating the performance of an adaptive
equalizer

2. The channel filter module is an FIR filter with coefficients {c(n),
0 ≤ n ≤ K − 1} that simulates the channel distortion. For distortion-
less transmission, set c(0) = 1 and c(n) = 0 for 1 ≤ n ≤ K − 1. The
length K of the filter is an input parameter.

3. The noise generator module is used to generate additive noise that is
usually present in any digital communication system. If we are model-
ing noise that is generated by electronic devices, the noise distribution
should be Gaussian with zero mean. Use the randu function.

4. The adaptive equalizer module is an FIR filter with tap coefficients
{h(k), 0 < k < N − 1}, which are adjusted by the LMS algorithm.
However, due to the use of complex arithmetic, the recursive equation
in the LMS algorithm is slightly modified to

hn(k) = hn−1(k) + � e(n)x∗(n − k) (11.15)

where the asterisk denotes the complex conjugate.
5. The decision device module takes the estimate â(n) and quantizes it

to one of the four possible signal points on the basis of the following
decision rule:

Re [â(n)] > 0 and Im [â(n)] > 0 −→ 1 + j

Re [â(n)] > 0 and Im [â(n)] < 0 −→ 1 − j

Re [â(n)] < 0 and Im [â(n)] > 0 −→ −1 + j

Re [â(n)] < 0 and Im [â(n)] < 0 −→ −1 − j

The effectiveness of the equalizer in suppressing the ISI introduced
by the channel filter may be seen by plotting the following relevant
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sequences in a two-dimensional (real–imaginary) display. The data gener-
ator output {a(n)} should consist of four points with values ±1 ± j. The
effect of channel distortion and additive noise may be viewed by display-
ing the sequence {x(n)} at the input to the equalizer. The effectiveness
of the adaptive equalizer may be assessed by plotting its output {â(n)}
after convergence of its coefficients. The short-time average squared error
ASE(n) may also be used to monitor the convergence characteristics of
the LMS algorithm. Note that a delay must be introduced into the output
of the data generator to compensate for the delays that the signal encoun-
ters due to the channel filter and the adaptive equalizer. For example,
this delay may be set to the largest integer closest to (N + K)/2. Finally,
an error counter may be used to count the number of symbol errors in the
received data sequence, and the ratio for the number of errors to the total
number of symbols (error rate) may be displayed. The error rate may be
varied by changing the level of the ISI and the level of the additive noise.

It is suggested that simulations be performed for the following three
channel conditions.

a. No ISI: c(0) = 1, c(n) = 0, 1 ≤ n ≤ K − 1
b. Mild ISI: c(0) = 1, c(1) = 0.2, c(2) = −0.2, c(n) = 0, 3 ≤ n ≤ K − 1
c. Strong ISI: c(0) = 1, c(1) = 0.5, c(2) = 0.5, c(n) = 0, 3 ≤ n ≤ K − 1

The measured error rate may be plotted as a function of the signal-
to-noise ratio (SNR) at the input to the equalizer, where SNR is defined
as Ps/Pn, where Ps is the signal power, given as Ps = s2, and Pn is the
noise power of the sequence at the output of the noise generator.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



586

C H A P T E R 12
Applications in
Communications

Today MATLAB finds widespread use in the simulation of a variety of
communication systems. In this chapter, we shall focus on several applica-
tions dealing with waveform representation and coding, especially speech
coding, and with digital communications. In particular, we shall describe
several methods for digitizing analog waveforms, with specific application
to speech coding and transmission. These methods are pulse-code modula-
tion (PCM), differential PCM and adaptive differential PCM (ADPCM),
delta modulation (DM) and adaptive delta modulation (ADM), and lin-
ear predictive coding (LPC). A project is formulated involving each of
these waveform-encoding methods for simulation using MATLAB.

The last three topics treated in this chapter deal with signal-detection
applications that are usually encountered in the implementation of a re-
ceiver in a digital communication system. For each of these topics, we
describe a project that involves the implementations via simulation of the
detection scheme in MATLAB.

12.1 PULSE-CODE MODULATION

Pulse-code modulation is a method for quantizing an analog signal for
the purpose of transmitting or storing the signal in digital form. PCM is
widely used for speech transmission in telephone communications and for
telemetry systems that employ radio transmission. We shall concentrate
our attention on the application of PCM to speech signal processing.
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Speech signals transmitted over telephone channels are usually limited
in bandwidth to the frequency range below 4 kHz. Hence the Nyquist rate
for sampling such a signal is less than 8 kHz. In PCM, the analog speech
signal is sampled at the nominal rate of 8 kHz (samples per second), and
each sample is quantized to one of 2b levels and represented digitally by
a sequence of b bits. Thus the bit rate required to transmit the digitized
speech signal is 8000 b bits per second.

The quantization process may be modeled mathematically as

s̃(n) = s(n) + q(n) (12.1)

where s̃(n) represents the quantized value of s(n) and q(n) represents the
quantization error, which we treat as an additive noise. Assuming that a
uniform quantizer is used and the number of levels is sufficiently large,
the quantization noise is well characterized statistically by the uniform
probability density function

p(q) =
1
∆

, −∆
2

≤ q ≤ ∆
2

(12.2)

where the step size of the quantizer is ∆ = 2−b. The mean square value
of the quantization error is

E(q2) =
∆2

12
=

2−2b

12
(12.3)

Measured in decibels, the mean square value of the noise is

10 log
(

∆2

12

)
= 10 log

(
2−2b

12

)
= −6b − 10.8 dB (12.4)

We observe that the quantization noise decreases by 6 dB/bit used
in the quantizer. High-quality speech requires a minimum of 12 bits per
sample and hence a bit rate of 96,000 bits per second (bps) or 96 kbps.

Speech signals have the characteristic that small signal amplitudes
occur more frequently than large signal amplitudes. However, a uniform
quantizer provides the same spacing between successive levels through-
out the entire dynamic range of the signal. A better approach is to use
a nonuniform quantizer, which provides more closely spaced levels at the
low signal amplitudes and more widely spaced levels at the large signal
amplitudes. For a nonuniform quantizer with b bits, the resulting quan-
tization error has a mean square value that is smaller than that given
by (12.4). A nonuniform quantizer characteristic is usually obtained by
passing the signal through a nonlinear device that compresses the signal
amplitude, followed by a uniform quantizer. For example, a logarithmic
compressor employed in United States and Canadian telecommunications
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systems, called a µ-law compressor, has an input-output magnitude char-
acteristic of the form

y =
ln (1 + µ|s|)
ln(1 + µ)

sgn(s); |s| ≤ 1, |y| ≤ 1 (12.5)

where s is the normalized input, y is the normalized output, sgn (·) is the
sign function, and µ is a parameter that is selected to give the desired
compression characteristic.

In the encoding of speech waveforms, the value of µ = 255 has been
adopted as a standard in the United States and Canada. This value results
in about a 24 dB reduction in the quantization noise power relative to uni-
form quantization. Consequently, an 8-bit quantizer used in conjunction
with a µ = 255 logarithmic compressor produces the same quality speech
as a 12-bit uniform quantizer with no compression. Thus the compressed
PCM speech signal has a bit rate of 64 kbps.

The logarithmic compressor standard used in European telecommu-
nication systems is called A-law and is defined as

y =

⎧
⎪⎪⎨
⎪⎪⎩

1 + ln(A|s|)
1 + lnA

sgn(s), 1
A ≤ |s| ≤ 1

A|s|
1 + lnA

sgn(s), 0 ≤ |s| ≤ 1
A

(12.6)

where A is chosen as 87.56. Although (12.5) and (12.6) are different
nonlinear functions, the two compression characteristics are very similar.
Figure 12.1 illustrates these two compression functions. Note their strong
similarity.

FIGURE 12.1 Comparison of µ-law and A-law nonlinearities
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In the reconstruction of the signal from the quantized values, the
decoder employs an inverse logarithmic relation to expand the signal
amplitude. For example, in µ-law the inverse relation is given by

|s| =
(1 + µ)|y| − 1

µ
; |y| ≤ 1, |s| ≤ 1 (12.7)

The combined compressor-expander pair is termed a compander.

12.1.1 PROJECT 12.1: PCM
The purpose of this project is to gain an understanding of PCM compres-
sion (linear to logarithmic) and PCM expansion (logarithmic to linear).
Write the following three MATLAB functions for this project:

1. a µ-law compressor function to implement (12.5) that accepts a zero-
mean normalized (|s| ≤ 1) signal and produces a compressed zero-mean
signal with µ as a free parameter that can be specified,

2. a quantizer function that accepts a zero-mean input and produces an
integer output after b-bit quantization that can be specified, and

3. a µ-law expander to implement (12.7) that accepts an integer input
and produces a zero-mean output for a specified µ parameter.

For simulation purposes, generate a large number of samples (10,000
or more) of the following sequences: (a) a sawtooth sequence, (b) an expo-
nential pulse train sequence, (c) a sinusoidal sequence, and (d) a random
sequence with small variance. Care must be taken to generate nonperiodic
sequences by choosing their normalized frequencies as irrational numbers
(i.e., sample values should not repeat). For example, a sinusoidal sequence
can be generated using

s(n) = 0.5 sin(n/33), 0 ≤ n ≤ 10,000

From our discussions in Chapter 2, this sequence is nonperiodic, yet it
has a periodic envelope. Other sequences can also be generated in a sim-
ilar fashion. Process these signals through the above µ-law compressor,
quantizer, and expander functions as shown in Figure 12.2, and compute

FIGURE 12.2 PCM project
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the signal-to-quantization noise ratio (SQNR) in dB as

SQNR = 10 log10

( ∑N
n=1 s2(n)∑N

n=1 (s(n) − sq(n))2

)

For different b-bit quantizers, systematically determine the value of µ
that maximizes the SQNR. Also plot the input and output waveforms,
and comment on the results.

12.2 DIFFERENTIAL PCM (DPCM)

In PCM, each sample of the waveform is encoded independently of all
the other samples. However, most signals, including speech, sampled at
the Nyquist rate or faster exhibit significant correlation between succes-
sive samples. In other words, the average change in amplitude between
successive samples is relatively small. Consequently, an encoding scheme
that exploits the redundancy in the samples will result in a lower bit rate
for the speech signal.

A relatively simple solution is to encode the differences between
successive samples rather than the samples themselves. Since differences
between samples are expected to be smaller than the actual sampled am-
plitudes, fewer bits are required to represent the differences. A refinement
of this general approach is to predict the current sample based on the
previous p samples. To be specific, let s(n) denote the current sample of
speech, and let ŝ(n) denote the predicted value of s(n), defined as

ŝ(n) =
p∑

i=1

a (i) s (n − i) (12.8)

Thus ŝ(n) is a weighted linear combination of the past p samples, and
the a (i) are the predictor (filter) coefficients. The a (i) are selected to
minimize some function of the error between s(n) and ŝ(n).

A mathematically and practically convenient error function is the sum
of squared errors. With this as the performance index for the predictor,
we select the a (i) to minimize

Ep
�
=

N∑
n=1

e2(n)=
N∑

n=1

[
s(n) −

p∑
i=1

a (i) s (n − i)

]2

(12.9)

=rss (0) − 2
p∑

i=1

a (i) rss (i) +
p∑

i=1

p∑
j=1

a (i) a (j) rss (i − j)
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where rss (m) is the autocorrelation function of the sampled signal se-
quence s(n), defined as

rss (m) =
N∑

i=1

s (i) s (i + m) (12.10)

Minimization of Ep with respect to the predictor coefficients {ai(n)} re-
sults in the set of linear equations, called the normal equations,

p∑
i=1

a (i) rss (i − j) = rss (j) , j = 1, 2, . . . , p (12.11)

or in the matrix form,

Ra = r =⇒ a = R−1r (12.12)

where R is the autocorrelation matrix, a is the coefficient vector, and r
is the autocorrelation vector. Thus the values of the predictor coefficients
are established.

Having described the method for determining the predictor coeffi-
cients, let us now consider the block diagram of a practical DPCM system,
shown in Figure 12.3. In this configuration, the predictor is implemented
with the feedback loop around the quantizer. The input to the predictor
is denoted as s̃(n), which represents the signal sample s(n) modified by
the quantization process, and the output of the predictor is

̂̃s =
p∑

i=1

a (i) s̃ (n − i) (12.13)

The difference
e(n) = s(n) − ̂̃s(n) (12.14)

is the input to the quantizer, and ẽ(n) denotes the output. Each value of
the quantized prediction error ẽ(n) is encoded into a sequence of binary

FIGURE 12.3 Block diagram of a DPCM transcoder: (a) encoder, (b) decoder
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digits and transmitted over the channel to the receiver. The quantized
error ẽ(n) is also added to the predicted value ̂̃s(n) to yield s̃(n).

At the receiver, the same predictor that was used at the transmitting
end is synthesized, and its output ̂̃s(n) is added to ẽ(n) to yield s̃(n). The
signal s̃(n) is the desired excitation for the predictor and also the desired
output sequence from which the reconstructed signal s̃ (t) is obtained by
filtering, as shown in Figure 12.3b.

The use of feedback around the quantizer, as described, ensures that
the error in s̃(n) is simply the quantization error q(n) = ẽ(n) − e(n)
and that there is no accumulation of previous quantization errors in the
implementation of the decoder. That is,

q(n) = ẽ(n) − e(n) = ẽ(n) − s(n) + ̂̃s(n) = s̃(n) − s(n) (12.15)

Hence s̃(n) = s(n) + q(n). This means that the quantized sample s̃(n)
differs from the input s(n) by the quantization error q(n) indepen-
dent of the predictor used. Therefore, the quantization errors do not
accumulate.

In the DPCM system illustrated in Figure 12.3, the estimate or pre-
dicted value s̃(n) of the signal sample s(n) is obtained by taking a linear
combination of past values s̃ (n − k) , k = 1, 2, . . . , p, as indicated by
(12.13). An improvement in the quality of the estimate is obtained by
including linearly filtered past values of the quantized error. Specifically,
the estimate of s(n) may be expressed as

̂̃s(n) =
p∑

i=1

a (i) s̃ (n − i) +
m∑

i=1

b (i) ẽ (n − i) (12.16)

where b (i) are the coefficients of the filter for the quantized error sequence
ẽ(n). The block diagram of the encoder at the transmitter and the decoder
at the receiver are shown in Figure 12.4. The two sets of coefficients
a (i) and b (i) are selected to minimize some function of the error e(n) =
s̃(n) − s(n), such as the sum of squared errors.

By using a logarithmic compressor and a 4-bit quantizer for the error
sequence e(n), DPCM results in high-quality speech at a rate of 32 kbps,
which is a factor of 2 lower than logarithmic PCM.

12.2.1 PROJECT 12.2: DPCM
The objective of this project is to gain understanding of the DPCM encod-
ing and decoding operations. For simulation purposes, generate correlated
random sequences using a pole-zero signal model of the form

s(n) = a (1) s (n − 1) + b0x(n) + b1x (n − 1) (12.17)

where x(n) is a zero-mean unit variance Gaussian sequence. This can be
done using the filter function. The sequences developed in Project 12.1
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FIGURE 12.4 DPCM modified by the linearly filtered error sequence

can also be used for simulation. Develop the following three MATLAB
modules for this project:

1. a model predictor function to implement (12.12), given the input signal
s(n);

2. a DPCM encoder function to implement the block diagram of
Figure 12.3a, which accepts a zero-mean input sequence and produces a
quantized b-bit integer error sequence, where b is a free parameter; and

3. a DPCM decoder function of Figure 12.3b, which reconstructs the
signal from the quantized error sequence.

Experiment with several p-order prediction models for a given signal
and determine the optimum order. Compare this DPCM implementation
with the PCM system of Project 12.1 (at the end of the chapter) and
comment on the results. Extend this implementation to include an mth-
order moving average filter as indicated in (12.16).

12.3 ADAPTIVE PCM AND DPCM (ADPCM)

In general, the power in a speech signal varies slowly with time. PCM
and DPCM encoders, however, are designed on the basis that the speech
signal power is constant, and hence the quantizer is fixed. The efficiency
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and performance of these encoders can be improved by having them adapt
to the slowly time-variant power level of the speech signal.

In both PCM and DPCM, the quantization error q(n) resulting from a
uniform quantizer operating on a slowly varying power level input signal
will have a time-variant variance (quantization noise power). One im-
provement that reduces the dynamic range of the quantization noise is
the use of an adaptive quantizer.

Adaptive quantizers can be classified as feedforward or feedback. A
feedforward adaptive quantizer adjusts its step size for each signal sample,
based on a measurement of the input speech signal variance (power). For
example, the estimated variance, based as a sliding window estimator, is

σ̂2
n+1 =

1
M

n+1∑
k=n+1−M

s2 (k) (12.18)

Then the step size for the quantizer is

∆ (n + 1) = ∆(n)σ̂n+1 (12.19)

In this case, it is necessary to transmit ∆ (n + 1) to the decoder in order
for it to reconstruct the signal.

A feedback-adaptive quantizer employs the output of the quantizer in
the adjustment of the step size. In particular, we may set the step size as

∆ (n + 1) = α(n)∆(n) (12.20)

where the scale factor α(n) depends on the previous quantizer output.
For example, if the previous quantizer output is small, we may select
α(n) < 1 in order to provide for finer quantization. On the other hand,
if the quantizer output is large, then the step size should be increased
to reduce the possibility of signal clipping. Such an algorithm has been
successfully used in the encoding of speech signals. Figure 12.5 illustrates
such a (3-bit) quantizer in which the step size is adjusted recursively
according to the relation

∆ (n + 1) = ∆(n) · M(n)

where M(n) is a multiplication factor whose value depends on the quan-
tizer level for the sample s(n) and ∆(n) is the step size of the quantizer for
processing s(n). Values of the multiplication factors optimized for speech
encoding have been given by [39]. These values are displayed in Table 12.1
for 2-, 3-, and 4-bit quantization for PCM and DPCM.

In DPCM, the predictor can also be made adaptive. Thus in ADPCM,
the coefficients of the predictor are changed periodically to reflect the
changing signal statistics of the speech. The linear equations given by
(12.11) still apply, but the short-term autocorrelation function of s(n),
rss (m) changes with time.
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FIGURE 12.5 Example of a quantizer with an adaptive step size ([39])

TABLE 12.1 Multiplication factors for adaptive step-size adjustment ([39])

PCM DPCM
2 3 4 2 3 4

M(1) 0.60 0.85 0.80 0.80 0.90 0.90
M(2) 2.20 1.00 0.80 1.60 0.90 0.90
M(3) 1.00 0.80 1.25 0.90
M(4) 1.50 0.80 1.70 0.90
M(5) 0.80 1.20
M(6) 0.80 1.60
M(7) 0.80 2.00
M(8) 0.80 2.40

12.3.1 ADPCM STANDARD
Figure 12.6 illustrates, in block diagram form, a 32 kbps ADPCM en-
coder and decoder that has been adopted as an international (CCITT)
standard for speech transmission over telephone channels. The ADPCM
encoder is designed to accept 8-bit PCM compressed signal samples at
64 kbps, and by means of adaptive prediction and adaptive 4-bit quanti-
zation to reduce the bit rate over the channel to 32 kbps. The ADPCM
decoder accepts the 32 kbps data stream and reconstructs the signal
in the form of an 8-bit compressed PCM at 64 kbps. Thus we have a
configuration shown in Figure 12.7, where the ADPCM encoder/decoder
is embedded into a PCM system. Although the ADPCM encoder/decoder
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FIGURE 12.6 ADPCM block diagram

could be used directly on the speech signal, the interface to the PCM
system is necessary in practice in order to maintain compatibility with
existing PCM systems that are widely used in the telephone network.

The ADPCM encoder accepts the 8-bit PCM compressed signal and
expands it to a 14-bit-per-sample linear representation for processing. The
predicted value is subtracted from this 14-bit linear value to produce a
difference signal sample that is fed to the quantizer. Adaptive quantiza-
tion is performed on the difference signal to produce a 4-bit output for
transmission over the channel.

Both the encoder and decoder update their internal variables, based
only on the ADPCM values that are generated. Consequently, an ADPCM

FIGURE 12.7 ADPCM interface to PCM system
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decoder, including an inverse adaptive quantizer, is embedded in the
encoder so that all internal variables are updated, based on the same
data. This ensures that the encoder and decoder operate in synchronism
without the need to transmit any information on the values of internal
variables.

The adaptive predictor computes a weighted average of the last six
dequantized difference values and the last two predicted values. Hence
this predictor is basically a two-pole (p = 2) and six-zero (m = 6) filter
governed by the difference equation given by (12.16). The filter coefficients
are updated adaptively for every new input sample.

At the receiving decoder and at the decoder that is embedded in
the encoder, the 4-bit transmitted ADPCM value is used to update the
inverse adaptive quantizer, whose output is a dequantized version of the
difference signal. This dequantized value is added to the value generated
by the adaptive predictor to produce the reconstructed speech sample.
This signal is the output of the decoder, which is converted to compressed
PCM format at the receiver.

12.3.2 PROJECT 12.3: ADPCM
The objective of this project is to gain familiarity with, and understanding
of, ADPCM and its interface with a PCM encoder/decoder (transcoder).
As described, the ADPCM transcoder is inserted between the PCM com-
pressor and the PCM expander as shown in Figure 12.7. Use the already
developed MATLAB PCM and DPCM modules for this project.

The input to the PCM-ADPCM transcoder system can be supplied
from internally generated waveform data files, just as in the case of the
PCM project. The output of the transcoder can be plotted. Compar-
isons should be made between the output signal from the PCM-ADPCM
transcoder with the signal from the PCM transcoder (PCM Project 12.1),
and with the original input signal.

12.4 DELTA MODULATION (DM)

Delta modulation may be viewed as a simplified form of DPCM in which
a two-level (1-bit) quantizer is used in conjunction with a fixed first-
order predictor. The block diagram of a DM encoder-decoder is shown in
Figure 12.8. We note that

̂̃s(n) = s̃ (n − 1) = ̂̃s (n − 1) + ẽ (n − 1) (12.21)

Since
q(n) = ẽ(n) − e(n) = ẽ(n) −

[
s(n) − ̂̃s(n)

]
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FIGURE 12.8 Block diagram of a delta modulation system

it follows that
̂̃s(n) = s (n − 1) + q (n − 1) (12.22)

Thus the estimated (predicted) value of s(n) is really the previous sam-
ple s (n − 1) modified by the quantization noise q (n − 1). We also note
that the difference equation in (12.21) represents an integrator with an
input ẽ(n). Hence an equivalent realization of the one-step predictor is an
accumulator with an input equal to the quantized error signal ẽ(n). In gen-
eral, the quantized error signal is scaled by some value—say, ∆1—which is
called the step size. This equivalent realization is illustrated in Figure 12.9.
In effect, the encoder shown in Figure 12.9 approximates a waveform s (t)

FIGURE 12.9 An equivalent realization of a delta modulation system
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by a linear staircase function. In order for the approximation to be rela-
tively good, the waveform s (t) must change slowly relative to the sampling
rate. This requirement implies that the sampling rate must be several (a
factor of at least 5) times the Nyquist rate. A lowpass filter is usually
incorporated into the decoder to smooth out discontinuities in the recon-
structed signal.

12.4.1 ADAPTIVE DELTA MODULATION (ADM)
At any given sampling rate, the performance of the DM encoder is limited
by two types of distortion, as shown in Figure 12.10. One is called slope-
overload distortion. It is due to the use of a step size ∆1 that is too small to
follow portions of the waveform that have a steep slope. The second type
of distortion, called granular noise, results from using a step size that is too
large in parts of the waveform having a small slope. The need to minimize
both of these two types of distortion results in conflicting requirements in
the selection of the step size ∆1.

An alternative solution is to employ a variable size that adapts itself
to the short-term characteristics of the source signal. That is, the step size
is increased when the waveform has a steep slope and decreased when the
waveform has a relatively small slope.

A variety of methods can be used to set adaptively the step size in
every iteration. The quantized error sequence ẽ(n) provides a good indica-
tion of the slope characteristics of the waveform being encoded. When the
quantized error ẽ(n) is changing signs between successive iterations, this
is an indication that the slope of the waveform in the locality is relatively
small. On the other hand, when the waveform has a steep slope, successive
values of the error ẽ(n) are expected to have identical signs. From these ob-
servations, it is possible to devise algorithms that decrease or increase the
step size, depending on successive values of ẽ(n). A relatively simple rule
devised by [38] is to vary adaptively the step size according to the relation

∆(n) = ∆ (n − 1) K ẽ(n)ẽ(n−1), n = 1, 2, . . . (12.23)

FIGURE 12.10 Two types of distortion in the DM encoder
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FIGURE 12.11 An example of a delta modulation system with adaptive step size

where K ≥ 1 is a constant that is selected to minimize the total distortion.
A block diagram of a DM encoder-decoder that incorporates this adaptive
algorithm is illustrated in Figure 12.11.

Several other variations of adaptive DM encoding have been inves-
tigated and described in the technical literature. A particularly effective
and popular technique first proposed by [27] is called continuously variable
slope delta modulation (CVSD). In CVSD, the adaptive step-size param-
eter may be expressed as

∆(n) = α∆ (n − 1) + k1 (12.24)

if ẽ(n), ẽ (n − 1), and ẽ(n − 2) have the same sign; otherwise,

∆(n) = α∆ (n − 1) + k2 (12.25)

The parameters α, k1, and k2 are selected such that 0 < α < 1 and
k1 > k2 > 0. For more discussion on this and other variations of adaptive
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DM, the interested reader is referred to the papers by Jayant [39] and
Flanagan et al. [15] and to the extensive references contained in these
papers.

12.4.2 PROJECT 12.4: DM AND ADM
The purpose of this project is to gain an understanding of delta modula-
tion and adaptive delta modulation for coding of waveforms. This project
involves writing MATLAB functions for the DM encoder and decoder as
shown in Figure 12.9, and for the ADM encoder and decoder shown in
Figure 12.11. The lowpass filter at the decoder can be implemented as a
linear-phase FIR filter. For example, a Hanning filter that has the impulse
response

h(n) =
1
2

[
1 − cos

(
2πn

N − 1

)]
, 0 ≤ n ≤ N − 1 (12.26)

may be used, where the length N may be selected in the range 5 ≤ N ≤ 15.
The input to the DM and ADM systems can be supplied from the

waveforms generated in Project 12.1 except that the sampling rate should
be higher by a factor of 5 to 10. The output of the decoder can be plotted.
Comparisons should be made between the output signal from the DM and
ADM decoders and the original input signal.

12.5 LINEAR PREDICTIVE CODING (LPC) OF SPEECH

The linear predictive coding (LPC) method for speech analysis and syn-
thesis is based on modeling the vocal tract as a linear all-pole (IIR) filter
having the system function

H (z) =
G

1 +
p∑

k=1

ap (k) z−k

(12.27)

where p is the number of poles, G is the filter gain, and {ap (k)} are the
parameters that determine the poles. There are two mutually exclusive
excitation functions to model voiced and unvoiced speech sounds. On a
short-time basis, voiced speech is periodic with a fundamental frequency
F0, or a pitch period 1/F0, which depends on the speaker. Thus voiced
speech is generated by exciting the all-pole filter model by a periodic
impulse train with a period equal to the desired pitch period. Unvoiced
speech sounds are generated by exciting the all-pole filter model by the
output of a random-noise generator. This model is shown in Figure 12.12.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



602 Chapter 12 APPLICATIONS IN COMMUNICATIONS

FIGURE 12.12 Block diagram model for the generation of a speech signal

Given a short-time segment of a speech signal, usually about 20 ms
or 160 samples at an 8 kHz sampling rate, the speech encoder at the
transmitter must determine the proper excitation function, the pitch pe-
riod for voiced speech, the gain parameter G, and the coefficients ap (k).
A block diagram that illustrates the speech encoding system is given in
Figure 12.13. The parameters of the model are determined adaptively
from the data and encoded into a binary sequence and transmitted to the
receiver. At the receiver, the speech signal is synthesized from the model
and the excitation signal.

The parameters of the all-pole filter model are easily determined from
the speech samples by means of linear prediction. To be specific, the
output of the FIR linear prediction filter is

ŝ(n) = −
p∑

k=1

ap (k) s (n − k) (12.28)

FIGURE 12.13 Encoder and decoder for LPC
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and the corresponding error between the observed sample s(n) and the
predicted value ŝ(n) is

e(n) = s(n) +
p∑

k=1

ap (k) s (n − k) (12.29)

By minimizing the sum of squared errors, that is,

E =
N∑

n=0

e2(n) =
N∑

n=0

[
s(n) +

p∑
k=1

ap (k) s (n − k)

]2

(12.30)

we can determine the pole parameters {ap (k)} of the model. The result
of differentiating E with respect to each of the parameters and equating
the result to zero is a set of p linear equations

p∑
k=1

ap (k) rss (m − k) = −rss (m) , m = 1, 2, . . . , p (12.31)

where rss (m) is the autocorrelation of the sequence s(n) defined as

rss (m) =
N∑

n=0

s(n)s (n + m) (12.32)

The linear equation (12.31) can be expressed in matrix form as

Rssa = −rss (12.33)

where Rss is a p× p autocorrelation matrix, rss is a p× 1 autocorrelation
vector, and a is a p × 1 vector of model parameters. Hence

a = −R−1
ss rss (12.34)

These equations can also be solved recursively and most efficiently, with-
out resorting to matrix inversion, by using the Levinson–Durbin algorithm
[54]. However, in MATLAB it is convenient to use the matrix inversion.
The all-pole filter parameters {ap (k)} can be converted to the all-pole
lattice parameters {Ki} (called the reflection coefficients) using the
MATLAB function dir2latc developed in Chapter 6.

The gain parameter of the filter can be obtained by noting that its
input-output equation is

s(n) = −
p∑

k=1

ap (k) s (n − k) + Gx(n) (12.35)

where x(n) is the input sequence. Clearly,

Gx(n) = s(n) +
p∑

k=1

ap (k) s (n − k) = e(n)
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Then

G2
N−1∑
n=0

x2(n) =
N−1∑
n=0

e2(n) (12.36)

If the input excitation is normalized to unit energy by design, then

G2 =
N−1∑
n=0

e2(n) = rss (0) +
p∑

k=1

ap (k) rss (k) (12.37)

Thus G2 is set equal to the residual energy resulting from the least-squares
optimization.

Once the LPC coefficients are computed, we can determine whether
the input speech frame is voiced, and if so, what the pitch is. This is
accomplished by computing the sequence

re(n) =
p∑

k=1

ra (k) rss (n − k) (12.38)

where ra (k) is defined as

ra (k) =
p∑

i=1

ap (i) ap (i + k) (12.39)

which is the autocorrelation sequence of the prediction coefficients.
The pitch is detected by finding the peak of the normalized sequence
re(n)/re (0) in the time interval that corresponds to 3 to 15 ms in the
20 ms sampling frame. If the value of this peak is at least 0.25, the frame
of speech is considered voiced with a pitch period equal to the value of
n = Np, where re (Np) /re (0) is a maximum. If the peak value is less than
0.25, the frame of speech is considered unvoiced and the pitch is zero.

The values of the LPC coefficients, the pitch period, and the type of
excitation are transmitted to the receiver, where the decoder synthesizes
the speech signal by passing the proper excitation through the all-pole
filter model of the vocal tract. Typically, the pitch period requires 6 bits,
and the gain parameter may be represented by 5 bits after its dynamic
range is compressed logarithmically. If the prediction coefficients were to
be coded, they would require between 8 to 10 bits per coefficient for accu-
rate representation. The reason for such high accuracy is that relatively
small changes in the prediction coefficients result in a large change in
the pole positions of the filter model. The accuracy requirements are less-
ened by transmitting the reflection coefficients {Ki}, which have a smaller
dynamic range—that is, |Ki| < 1. These are adequately represented by
6 bits per coefficient. Thus for a tenth-order predictor, the total number
of bits assigned to the model parameters per frame is 72. If the model
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parameters are changed every 20 µsec, the resulting bit rate is 3,600 bps.
Since the reflection coefficients are usually transmitted to the receiver, the
synthesis filter at the receiver is implemented as an all-pole lattice filter,
described in Chapter 6.

12.5.1 PROJECT 12.5: LPC
The objective of this project is to analyze a speech signal through an
LPC coder and then to synthesize it through the corresponding PLC
decoder. Use several .wav sound files (sampled at 8000 sam/sec rate),
which are available in MATLAB for this purpose. Divide speech signals
into short-time segments (with lengths between 120 and 150 samples) and
process each segment to determine the proper excitation function (voiced
or unvoiced), the pitch period for voiced speech, the coefficients {ap (k)}
(p ≤ 10), and the gain G. The decoder that performs the synthesis is an
all-pole lattice filter whose parameters are the reflection coefficients that
can be determined from {ap (k)}. The output of this project is a syn-
thetic speech signal that can be compared with the original speech signal.
The distortion effects due to LPC analysis/synthesis may be assessed
qualitatively.

12.6 DUAL-TONE MULTIFREQUENCY (DTMF) SIGNALS

DTMF is the generic name for push-button telephone signaling that is
equivalent to the Touch Tone system in use within the Bell System. DTMF
also finds widespread use in electronic mail systems and telephone banking
systems in which the user can select options from a menu by sending
DTMF signals from a telephone.

In a DTMF signaling system, a combination of a high-frequency tone
and a low-frequency tone represent a specific digit or the characters *
and #. The eight frequencies are arranged as shown in Figure 12.14, to
accommodate a total of 16 characters, 12 of which are assigned as shown,
while the other four are reserved for future use.

DTMF signals are easily generated in software and detected by means
of digital filters, also implemented in software, that are tuned to the eight
frequency tones. Usually, DTMF signals are interfaced to the analog world
via a codec (coder/decoder) chip or by linear A/D and D/A converters.
Codec chips contain all the necessary A/D and D/A, sampling, and fil-
tering circuitry for a bidirectional analog/digital interface.

The DTMF tones may be generated either mathematically or from
a look-up table. In a hardware implementation (e.g., in a digital signal
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FIGURE 12.14 DTMF digits

processor), digital samples of two sine waves are generated mathemati-
cally, scaled, and added together. The sum is logarithmically compressed
and sent to the codec for conversion to an analog signal. At an 8 kHz
sampling rate, the hardware must output a sample every 125 ms. In this
case, a sine look-up table is not used, because the values of the sine wave
can be computed quickly without using the large amount of data mem-
ory that a table look-up would require. For simulation and investigation
purposes, the look-up table might be a good approach in MATLAB.

At the receiving end, the logarithmically compressed, 8-bit digital
data words from the codec are received and logarithmically expanded to
their 16-bit linear format. Then the tones are detected to decide on the
transmitted digit. The detection algorithm can be a DFT implementa-
tion using the FFT algorithm or a filter bank implementation. For the
relatively small number of tones to be detected, the filter bank implemen-
tation is more efficient. We now describe the use of the Goertzel algorithm
to implement the eight tuned filters.

Recall from the discussion in Chapter 5 that the DFT of an N -point
data sequence {x(n)} is

X (k) =
N−1∑
n=0

x(n)Wnk
N , k = 0, 1, . . . , N − 1 (12.40)

If the FFT algorithm is used to perform the computation of the DFT,
the number of computations (complex multiplications and additions) is
N log2 N . In this case, we obtain all N values of the DFT at once.
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However, if we desire to compute only M points of the DFT, where
M < log2 N , then a direct computation of the DFT is more efficient. The
Goertzel algorithm, which is now described, is basically a linear filtering
approach to the computation of the DFT and provides an alternative to
direct computation.

12.6.1 THE GOERTZEL ALGORITHM
The Goertzel algorithm exploits the periodicity of the phase factors {W k

N}
and allows us to express the computation of the DFT as a linear filtering
operation. Since W−kN

N = 1, we can multiply the DFT by this factor. Thus

X (k) = W−kN
N X (k) =

N−1∑
m=0

x (m) W
−k(N−m)
N (12.41)

We note that (12.41) is in the form of a convolution. Indeed, if we define
the sequence yk(n) as

yk(n) =
N−1∑
m=0

x (m) W
−k(n−m)
N (12.42)

then it is clear that yk(n) is the convolution of the finite-duration input
sequence x(n) of length N with a filter that has an impulse response

hk(n) = W−kn
N u(n) (12.43)

The output of this filter at n = N yields the value of the DFT at the
frequency ωk = 2πk/N . That is,

X (k) = yk(n)|n=N (12.44)

as can be verified by comparing (12.41) with (12.42).
The filter with impulse response hk(n) has the system function

Hk (z) =
1

1 − W−k
N z−1

(12.45)

This filter has a pole on the unit circle at the frequency ωk = 2πk/N .
Thus the entire DFT can be computed by passing the block of input data
into a parallel bank of N single-pole filters (resonators), where each filter
has a pole at the corresponding frequency of the DFT.

Instead of performing the computation of the DFT as in (12.42), via
convolution, we can use the difference equation corresponding to the filter
given by (12.45) to compute yk(n) recursively. Thus we have

yk(n) = W−k
N yk (n − 1) + x(n), yk (−1) = 0 (12.46)
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FIGURE 12.15 Realization of two-pole resonator for computing the DFT

The desired output is X (k) = yk(N). To perform this computation, we
can compute once and store the phase factor W−k

N .
The complex multiplications and additions inherent in (12.46) can

be avoided by combining the pairs of resonators possessing complex con-
jugate poles. This leads to two-pole filters with system functions of the
form

Hk (z) =
1 − W k

Nz−1

1 − 2 cos (2πk/N) z−1 + z−2 (12.47)

The realization of the system illustrated in Figure 12.15 is described by
the difference equations

vk(n) = 2 cos
2πk

N
vk (n − 1) − vk(n − 2) + x(n) (12.48)

yk(n) = vk(n) − W k
Nvk (n − 1) (12.49)

with initial conditions vk (−1) = vk (−2) = 0. This is the Goertzel algo-
rithm.

The recursive relation in (12.48) is iterated for n = 0, 1, . . . , N , but the
equation in (12.49) is computed only once, at time n = N . Each iteration
requires one real multiplication and two additions. Consequently, for a real
input sequence x(n), this algorithm requires N +1 real multiplications to
yield not only X (k) but also, due to symmetry, the value of X (N − k).

We can now implement the DTMF decoder by use of the Goertzel
algorithm. Since there are eight possible tones to be detected, we require
eight filters of the type given by (12.47), with each filter tuned to one of
the eight frequencies. In the DTMF detector, there is no need to compute
the complex value X (k); the magnitude |X(k)| or the magnitude-squared
value |X(k)|2 will suffice. Consequently, the final step in the computation
of the DFT value involving the numerator term (feedforward part of the
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filter computation) can be simplified. In particular, we have

|X(k)|2 = |yk(N)|2 =
∣∣vk(N) − W k

Nvk (N − 1)
∣∣2 (12.50)

= v2
k(N) + v2

k (N − 1) −
(

2 cos
2πk

N

)
vk(N)vk (N − 1)

Thus complex-valued arithmetic operations are completely eliminated in
the DTMF detector.

12.6.2 PROJECT 12.6: DTMF SIGNALING
The objective of this project is to gain an understanding of the DTMF
tone generation software and the DTMF decoding algorithm (the Goertzel
algorithm). Design the following MATLAB modules:

1. a tone generation function that accepts an array containing dial-
ing digits and produces a signal containing appropriate tones (from
Figure 12.14) of 0.5 sec duration for each digit at 8 kHz sampling
frequency,

2. a dial-tone generator generating samples of (350 + 440) Hz frequency
at 8 kHz sampling interval for a specified amount of duration, and

3. a decoding function to implement (12.50) that accepts a DTMF signal
and produces an array containing dialing digits.

Generate several dialing list arrays containing a mix of digits and
dial tones. Experiment with the tone generation and detection modules
and comment on your observations. Use MATLAB’s sound generation
capabilities to listen to the tones and to observe the frequency components
of the generated tones.

12.7 BINARY DIGITAL COMMUNICATIONS

Digitized speech signals that have been encoded via PCM, ADPCM,
DM, and LPC are usually transmitted to the decoder by means of digital
modulation. A binary digital communications system employs two signal
waveforms—say, s1(t) = s(t) and s2(t) = −s(t)—to transmit the binary
sequence representing the speech signal. The signal waveform s(t), which
is nonzero over the interval 0 ≤ t ≤ T , is transmitted to the receiver if the
data bit is a 1, and the signal waveform −s(t), 0 ≤ t ≤ T is transmitted
if the data bit is a 0. The time interval T is called the signal interval, and
the bit rate over the channel is R = 1/T bits per second. A typical signal
waveform s(t) is a rectangular pulse—that is, s(t) = A, 0 ≤ t ≤ T—which
has energy A2T .
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In practice, the signal waveforms transmitted over the channel are
corrupted by additive noise and other types of channel distortions that
ultimately limit the performance of the communications system. As a
measure of performance, we normally use the average probability of error,
which is often called the bit error rate.

12.7.1 PROJECT 12.7: BINARY DATA COMMUNICATIONS SYSTEM
The purpose of this project is to investigate the performance of a binary
data communications system on an additive noise channel by means of
simulation. The basic configuration of the system to be simulated is shown
in Figure 12.16. Five MATLAB functions are required.

1. A binary data generator module that generates a sequence of indepen-
dent binary digits with equal probability.

2. A modulator module that maps a binary digit 1 into a sequence of
M consecutive +1’s, and maps a binary digit 0 into a sequence of M
consecutive −1’s. Thus the M consecutive +1’s represent a sampled
version of the rectangular pulse.

3. A noise generator that generates a sequence of uniformly distributed
numbers over the interval (−a, a). Each noise sample is added to a
corresponding signal sample.

4. A demodulator module that sums the M successive outputs of the
noise corrupted sequence +1’s or −1’s received from the channel. We
assume that the demodulator is time synchronized so that it knows the
beginning and end of each waveform.

5. A detector and error-counting module. The detector compares the out-
put of the modulator with zero and decides in favor of 1 if the output
is greater than zero and in favor of zero if the output is less than zero.
If the output of the detector does not agree with the transmitted bit
from the transmitter, an error is counted by the counter. The error rate
depends on the ratio (called signal-to-noise ratio) of the size of M to
the additive noise power, which is Pn = a2/3.

The measured error rate can be plotted for different signal-to-noise
ratios, either by changing M and keeping Pn fixed or vice versa.

FIGURE 12.16 Model of binary data communications system
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12.8 SPREAD-SPECTRUM COMMUNICATIONS

Spread-spectrum signals are often used in the transmission of digital data
over communication channels that are corrupted by interference due to
intentional jamming or from other users of the channel (e.g., cellular tele-
phones and other wireless applications). In applications other than com-
munications, spread-spectrum signals are used to obtain accurate range
(time delay) and range rate (velocity) measurements in radar and navi-
gation. For the sake of brevity, we shall limit our discussion to the use of
spread spectrum for digital communications. Such signals have the char-
acteristic that their bandwidth is much greater than the information rate
in bits per second.

In combatting intentional interference (jamming), it is important to
the communicators that the jammer who is trying to disrupt their com-
munication does not have prior knowledge of the signal characteristics. To
accomplish this, the transmitter introduces an element of unpredictability
or randomness (pseudo-randomness) in each of the possible transmitted
signal waveforms, which is known to the intended receiver, but not to the
jammer. As a consequence, the jammer must transmit an interfering sig-
nal without knowledge of the pseudo-random characteristics of the desired
signal.

Interference from other users arises in multiple-access communica-
tions systems in which a number of users share a common communications
channel. At any given time, a subset of these users may transmit informa-
tion simultaneously over a common channel to corresponding receivers.
The transmitted signals in this common channel may be distinguished
from one another by superimposing a different pseudo-random pattern,
called a multiple-access code, in each transmitted signal. Thus a particular
receiver can recover the transmitted data intended for it by knowing the
pseudo-random pattern—that is, the key used by the corresponding trans-
mitter. This type of communication technique, which allows multiple users
to simultaneously use a common channel for data transmission, is called
code division multiple access (CDMA).

The block diagram shown in Figure 12.17 illustrates the basic el-
ements of a spread-spectrum digital communications system. It differs

FIGURE 12.17 Basic spread-spectrum digital communications system
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from a conventional digital communications system by the inclusion of
two identical pseudo-random pattern generators, one that interfaces with
the modulator at the transmitting end and a second that interfaces with
the demodulator at the receiving end. The generators generate a pseudo-
random or pseudo-noise (PN) binary-valued sequence (±1’s), which is
impressed on the transmitted signal at the modulator and removed from
the received signal at the demodulator.

Synchronization of the PN sequence generated at the demodula-
tor with the PN sequence contained in the incoming received signal is
required in order to demodulate the received signal. Initially, prior to the
transmission of data, synchronization is achieved by transmitting a short
fixed PN sequence to the receiver for purposes of establishing synchro-
nization. After time synchronization of the PN generators is established,
the transmission of data commences.

12.8.1 PROJECT 12.8: BINARY SPREAD-SPECTRUM
COMMUNICATIONS

The objective of this project is to demonstrate the effectiveness of a PN
spread-spectrum signal in suppressing sinusoidal interference. Let us con-
sider the binary communication system described in Project 12.7, and let
us multiply the output of the modulator by a binary (±1) PN sequence.
The same binary PN sequence is used to multiply the input to the demod-
ulator and thus to remove the effect of the PN sequence in the desired
signal. The channel corrupts the transmitted signal by the addition of a

FIGURE 12.18 Block diagram of binary PN spread-spectrum system for simula-
tion experiment
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wideband noise sequence {w(n)} and a sinusoidal interference sequence
of the form i(n) = A sinω0n, where 0 < ω0 < π. We may assume that
A ≥ M , where M is the number of samples per bit from the modula-
tor. The basic binary spread spectrum-system is shown in Figure 12.18.
As can be observed, this is just the binary digital communication system
shown in Figure 12.16, to which we have added the sinusoidal interference
and the PN sequence generators. The PN sequence may be generated by
using a random number generator to generate a sequence of equally prob-
able ±1’s.

Execute the simulated system with and without the use of the PN
sequence, and measure the error rate under the condition that A ≥ M
for different values of M , such as M = 50, 100, 500, 1000. Explain the
effect of the PN sequence on the sinusoidal interference signal. Thus ex-
plain why the PN spread-spectrum system outperforms the conventional
binary communication system in the presence of the sinusoidal jamming
signal.
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C H A P T E R 13
Random
Processes

The main focus in the first ten chapters was on characterizing, process-
ing, and filtering deterministic signals—that is, signals defined using exact
mathematical expressions or through their Fourier spectra. In the real
world, there are signals that cannot be completely described as deter-
ministic or that have random fluctuations (or variations) around known
waveforms. Speech signals, audio signals, video signals, and so on, fall
under the first category, while noisy signals, received radar signals, and
communication signals fall under the second category. Such signals are
known as random processes or random signals and can be thought of as a
collection or ensemble of sample signals with associated probabilistic de-
scription. Therefore, we need a statistical approach to characterize them
and to process them.

In Chapters 14 and 15, we will consider the processing of random
signals. Although linear filtering of a sample waveform from the ensemble
of the process is akin to convolution operation in the time domain or
filtering in the frequency domain, the emphasis will be on estimating
parameters from observations, detecting signals in noisy environments
and designing optimal filters for satisfying a given optimality criteria.

In this chapter, we provide an overview of various analytical concepts
to define randomness of measurements or waveform variations and pro-
vide sound techniques to calculate the response of linear filters to random
signals. We begin with the relevant probability theory of random vari-
ables by defining probability functions and statistical averages, and con-
tinue with pairs of random variables. We extend these concepts to random
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signals, describe them in terms of second-order statistics, and then delve
into stationary and ergodic processes, correlations, and power spectra.
We also show how this theory can be applied to processing of random sig-
nals through an LTI system using both the time and frequency domains.
Finally, we discuss a few representative random processes, including Gaus-
sian, Markov, white noise, and filtered noise processes.

13.1 RANDOM VARIABLE

When we make measurements of certain variables over a collection of
objects—for example, height in meters or weight in kilograms of a
population—we obtain numbers that fluctuate over a range of values.
Such measurements are called random measurements, the act of measure-
ment is called a random experiment, and the variables are termed random
variables. Even if we consider repeating the same random experiment—
say, rolling a six-sided die—again and again, the outcomes vary and
cannot be predicted. In the context of signal processing, the value of a
noisy signal at each instant cannot be determined precisely and hence
must be considered as a random value.

Even though the numerical outcomes of these random experiments
vary widely every time we repeat them, there appears to be some pattern
of their relative likelihood of obtaining these values. Such patterns can be
understood and quantified using probability measure. For example, if we
toss a fair coin, we will not know if the outcome of the toss is a head or
a tail. But if we repeat this toss a large number of times, we will observe
that the total number of head/tail outcomes are approximately equal.

13.1.1 PROBABILITY FUNCTIONS
Consider a random variable under measurement such as a noisy voltage
source. We will use capital letters such as X to denote a random variable
and lowercase x to denote its measured value. Thus x is a value on a real
line R. We divide this line into small intervals of length ∆x and count the
number of voltage values, say, Nx, that fall into ∆x at each x. If N is the
total number of times we measure the random voltage X, then Nx/N is
the approximate probability of observing voltage value x and

(
Nx/N

)
/∆x

is approximately the probability density of the random variable X at x. We
will denote this probability density function (pdf) as fX(x) and formally
define it by

fX(x) = lim
∆x → 0
N → ∞

(
Nx

N∆x

)
(13.1)
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The probability that the random voltage X takes values over the range
x1 < X < x2 is given by integrating fX(x) dx over the interval, or

Pr
{
x1 < X < x2

}
=
∫ x2

x1

fX(x) dx (13.2)

The pdf has to satisfy important properties for it to be a valid function.
It cannot be negative or imaginary, and every measurement must yield
some real value signifying

∫ ∞

−∞
fX(x) dx = 1 (13.3)

Another useful probability function is the cumulative distribution
function (CDF), which is the probability that the random variable X takes
a value less than or equal to some specified value x. It is denoted by FX(x)
and is defined as

FX(x) =
∫ x

−∞
fX(u) du (13.4)

This function also has to satisfy properties such as non-negativeness with
increasing x and, from (13.4), and (13.3),

FX(−∞) = 0, FX(∞) = 1 (13.5)

Discrete Random Variable So far, we described a continuous random
variable that assumes values in a continuous range over R. If the random
variable X takes a set of discrete values

{
xi

}
with probabilities pi, i =

1, 2, . . . such that
∑

i pi = 1, then the random variable X is called a discrete
random variable. In this case, we can obtain its pdf using impulse functions
and CDF using step functions:

fX(x) =
∑

i

piδ(x − xi) (13.6a)

FX(x) =
∑

i

piu(x − xi) (13.6b)

Finally, we note that, in the general case, a random variable can take a
continuous range of values as well as a discrete set of values. Such a ran-
dom variable is called a mixed random variable. The pdf description using
impulse functions is sufficient to describe any type of random variable.

Histogram as a pdf Approximation Given N observations of a ran-
dom variable X, we have denoted Nx as the number of values of X that
fall into the small interval ∆x at x = xi. Then the plot of Nx vs. x is
called the histogram of the observed values and the plot of the ratio

PX(x) =
Nx

N∆x
(13.7)
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vs. x is called the normalized histogram and is a good approximation
of the pdf fX(x) of X from (13.1). MATLAB provides a function, Nx =
histc(x,edges), that provides counts in Nx, given observed values x and
bin edges. Using this function, we can design a MATLAB function, which
we will call pdf1, that computes the pdf as a normalized histogram from
the observed values. It is shown below and its use is given in Example 13.1.

function [Px,xc] = pdf1(x,xmin,xmax,M)
% pdf1: Normalized Histogram as 1-D Probability Density
% Function (pdf)
% [Px,xc] = pdf1(x,xmin,xmax,M)
% Px: normalized histogram over the range [xmin, xmax]
% xc: histogram bin centers
% x: data (observation) values
% xmin: minimun range value
% xmax: maximum range value
% M: number of bins
N = length(x); % Observation count
edges = linspace(xmin,xmax,M); % Histogram boundaries
Dx = (xmax-xmin)/(M-1); % Delta_x
xc = [xmin,edges(1:M-1)+Dx/2,xmax]; % Bin centers
edges = [-inf,edges,inf]; % Augment boundaries
Nx = histc(x,edges); Nx = Nx(1:end-1); % Histogram
Px = Nx/(N*Dx); % Normalized Histogram
end

� EXAMPLE 13.1 In Section 13.1.3, we will discuss the pdf of a random variable that is sinu-
soidally distributed. In this random variable, the observed values are taken
from a sine waveform over one complete cycle. Thus, to demonstrate use of the
pdf1 function, consider the signal

x(t) = sin(2πt), 0 ≤ t ≤ 1

We will take large samples of this waveform and consider them as the observed
values for computing and plotting the normalized histogram. The following
MATLAB script illustrates the approach.

>> N = 1000000; % Number of observations
>> n = 0:1:N; % Time index
>> x = sin(2*pi*n/N); % Observations
>> [Px,xc] = pdf1(x,-1,1,100); % Normalized Histogram
>> plot(xc(2:end-1),Px(2:end-1),’linewidth’,1);
>> axis([-1.1,1.1,0,3.5]);
>> xlabel(’Range of {\itx}’,’fontsize’,9);
>> ylabel(’Relative Histogram’,’fontsize’,9);
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Approximation of pdf by Normalized Histogram

FIGURE 13.1 Normalized histogram of sinusoidally distributed samples

>> set(gca,’xtick’,[-1,0,1],’ytick’,[0,1/pi,1,2,3,4]); grid;
>> title(’Approximation of pdf by Normalized Histogram’,...

’fontsize’,10,’fontweight’,’bold’);

The resulting histogram is shown in Figure 13.1, which agrees with the pdf of
the sinusoidal distribution shown in Figure 13.6, which will be derived later.�

13.1.2 STATISTICAL AVERAGES
As explained in the discussion leading up to (13.1), the pdf completely
describes the random variable X in a probabilistic sense. However, in
practice it is not always possible to obtain such a function when we
have measurements from an arbitrary random quantity. The pdf contains
much more information about the random variable than we actually need
in practice. A random variable can also be described by characteristic
numbers called moments. These moments are computed using statisti-
cal averaging and form a countable (or discrete) set, whereas the pdf is
uncountable (or continuous).

The analytic calculation of averages is facilitated by the pdf. Assume
that we want to calculate the statistical average of the random variable X
from a large number of measurements. We denote this average by E

[
X
]
,

which means “the expectation of X.” Again we divide the real line R into
fine intervals of width dx. Then for a large number of measurements,
the quantity fX(x) dx corresponds to the probability of dx containing the
value x. Thus in the limit as the number of observations become very
large, the average of X is given by

E
[
X
]

=
∫ ∞

−∞
xfX(x) dx (13.8)
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In a similar fashion, we can calculate the average of some function of the
random variable X, such as a power Xn or an exponential exp(X), from a
large number of measurements. Let g(x) be such a function of x. Then its
average is given by

E
[
g(X)

]
=
∫ ∞

−∞
g(x)fX(x) dx (13.9)

The averages of positive powers, g(X) = E
[
Xn
]
, are particularly use-

ful. These averages are the moments of X referred to above. We will denote
these moments by ξX(n), given by

ξX(n) =
∫ ∞

−∞
xnfX(x) dx (13.10)

Clearly, ξX(0) = 1, while the first moment

ξX(1)
�
=µX =

∫ ∞

−∞
xfX(x) dx (13.11)

is the statistical average or mean of X. The second moment

ξX(2) =
∫ ∞

−∞
x2fX(x) dx (13.12)

is the mean-squared value of X. If X represents a random voltage, then
µX represents the average (or dc) value and ξX(2) represents the average
total power consumed across unit impedance.

Another useful set of statistical averages is the set of central moments
of X, defined by

MX(n)
�
= E

[
(X − µX)n] =

∫ ∞

−∞
(x − µX)nfX(x) dx (13.13)

Clearly, MX(0) = 1 and MX(1) = 0. The second central moment MX(2) is
the most important one and is called the variance of the random variable
distribution. It is denoted by σ2

X and related to the mean µX and the
mean-squared value ξX(2) by

σ2
X = MX(2) =

∫ ∞

−∞
(x − µX)2fX(x) dx = ξX(2) − µ2

X (13.14)

The square root of the variance is called the standard deviation or the
root-mean-squared (rms) value and gives the average spread of random
measurements from their mean value. Again, if X represents a random
voltage, then σ2

X represents the average ac power consumed across unit
impedance.
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13.1.3 RANDOM VARIABLE MODELS
Although a random variable is completely described by its pdf, it is not
always possible to know this function for every random measurement. In
Example 13.1, we showed how to approximate a pdf using normalized
histogram given a set of measurements. Another approach is to assume a
particular form (or shape) for the pdf based on how the random measure-
ments are created. These forms are called models, and there are several
such models that are used in practice. We will consider the following three
models used often in Chapters 14 and 15.

Uniform Distribution
In this model, a random variable X is uniformly distributed (or equally
likely) over a finite range of a ≤ x ≤ b and is denoted by U(a, b). Its pdf
is given by

fX(x) =

⎧
⎨
⎩

1
b − a

, a ≤ x ≤ b,

0, otherwise,
∼ U(a, b) (13.15)

and its CDF is given by

FX(x) =

⎧
⎪⎪⎨
⎪⎪⎩

0, x < a
x − a

b − a
, a ≤ x ≤ b

0, x > b

(13.16)

These probability functions are shown in Figure 13.2. The mean of the
uniform distribution is given by

µX =
∫ b

a

x

b − a
dx =

a + b

2
(13.17)

while the mean-squared value is given by

ξX(2) =
∫ b

a

x2

b − a
dx =

b2 + ab + a2

3
(13.18)

Hence the variance is given by

σ2
X = ξX(2) − µ2

X =
(b − a)2

12
(13.19)

The case of a = 0 and b = 1 is called the standard uniform distribution,
denoted by U(0, 1).

MATLAB Implementation MATLAB provides the function x=rand
(N,1), which generates a column vector containing N standard uniform
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FIGURE 13.2 Uniform distribution: (a) pdf, (b) CDF

random numbers each of which is uniform over the interval [0, 1]. These
numbers are independent of each other; that is, generation of each one of
them does not affect the occurrence of any other (this concept is discussed
in Section 13.2.1). To obtain the uniformly distributed random numbers
according to (13.15), we make a simple change of variable X = (b−a)Y+a
where Y is U(0, 1):

>> x = (b-a)*rand(N,1)+a;

The uniform distribution is useful in generating random sinusoidal
waveforms with uniformly distributed phase angles.

Gaussian Distribution
This is a very popular distribution model in many applications. In this
model, the distribution has two parameters, µ and σ, and is denoted by
N(µ, σ2). Its pdf is given by

fX(x) =
1

σ
√

2π
e−(x−µ)2/2σ2 ∼ N(µ, σ2) (13.20)

and the CDF is given by

FX(x) =
1
2

[
1 + erf

(
x − µ√

2σ2

)]
(13.21)

where
erf(x) =

2√
π

∫ x

0
e−λ2

dλ (13.22)

is called the error function, which is extensively tabulated since the above
integral does not have a closed-form expression. It is available in MATLAB
as the erf(x) function. The Gaussian probability functions are shown in
Figure 13.3.

The mean of the Gaussian distribution is given by the parameter µ,
while its variance is given by the parameter σ2—that is,

µX = µ and σ2
X = σ2 (13.23)
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FIGURE 13.3 Gaussian distribution: (a) pdf, (b) CDF

Thus the Gaussian distribution is completely described by its first two
moments. It should be noted that although X takes values over the entire
real line R, these values are mostly concentrated around its mean µ with
spread given by σ. The case of µ = 0 and σ2 = 1 is the normalized
distribution, or Normal distribution, denoted by N(0, 1), although the
terms “Gaussian” and “Normal” are used synonymously in the literature.

MATLAB Implementation MATLAB provides the function x =
randn(N,1), which generates a column vector containing N independent
and Normally distributed random numbers with mean 0 and variance 1.
To obtain arbitrary Gaussian distributed random numbers with mean µ
and variance σ2, we make a simple change of variable X = σY + µ where
Y is Normal:

>> x = sigma*randn(N,1)+mu;

Transformation of a Random Variable
In signal processing, we perform operations on random signals. This means
that we transform random signal values, which are random variables, into
other ones using a function or transformation. In a simple operation,
one random variable with known pdf is mapped into another one, and
we wish to calculate the pdf of the transformed random variable. Let
X be the given random variable with pdf fX(x), and let Y be the new
random variable obtained through the function Y = g(X). We wish to
determine the pdf fY(y). If the transformation function g(·) is invertible,

then we have x = g−1(y)
�
= h(y) and fY(y) dy = fX(x) dx. Then by direct

substitution, we have

fY(y) dy = fX(x) dx = fX
(
h(y)

)
h′(y) dy (13.24)

where h′(y) = dh(y)/ dy is the derivative of the inverse function. Hence

fY(y) = fX
(
h(y)

)
h′(y) (13.25)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Random Variable 623

If g(x) is not invertible, then h(y) has multiple values and we sum the
right-hand side of (13.25) over all the multiple values. Another approach,
using uniformly distributed random number, is illustrated in the following
example.

� EXAMPLE 13.2 Uniformly distributed random numbers in the range (0, 1) can be used to
generate other random numbers with the prescribed probability distribution
function. Consider a random variable Y that has a linear pdf given by

fY(y) =

{
1
2y, 0 ≤ y ≤ 2
0, otherwise

(13.26)

with CDF

FY(y) =

⎧
⎪⎨

⎪⎩

0, y < 0
1
4y2, 0 ≤ y ≤ 2
1, y > 2

(13.27)

These functions are shown in Figure 13.4.
Since the range of FY(y) is the interval (0, 1), we begin by generating a

uniformly distributed random variable X in the range (0, 1) and set

FY(y) = 1
4y2 = x ⇒ y = 2

√
x (13.28)

Thus we generate a random variable Y with the linear pdf shown in
Figure 13.4(a). This can be verified using the pdf1 function as shown below.
The plot of the resulting pdf is shown in Figure 13.5.

>> N = 1000000; x = rand(N,1); % Uniform distribution
>> y = 2*sqrt(x); % Transformed random variable
>> [Py,yc] = pdf1(y,0,2,100); % Normalized Histogram
>> plot(yc,Py,’linewidth’,1); axis([-0.1,2.1,0,1.1]);
>> % Plotting commands follow

�

Sinusoidal Distribution
One application of random variable transformation is in obtaining the
sinusoidal distribution, which is useful in many communication signals. It
was mentioned in Example 13.1. Let

X = A sin(Θ) (13.29)

fY(y) FY(y)

(a)
0 2 0

11

2
yy

(b)

FIGURE 13.4 Linear distribution: (a) pdf, (b) CDF
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FIGURE 13.5 Normalized histogram of linearly distributed samples

where the random variable Θ is uniformly distributed between 0 and 2π
radians. Then X is said to be sinusoidally distributed with amplitude A.
The pdf of Θ is given by

fΘ(θ) =

{
1
2π , 0 ≤ θ < 2π

0, otherwise
(13.30)

Since g(Θ) = A sin(Θ) in (13.29), the inverse function is given by

Θ = h(X) = sin−1
(

X
A

)
(13.31)

with

h′(x) =
1√

A2 − x2
(13.32)

Also the h(X) function is not unique and has two values for θ for each
value of x in the range −A ≤ x ≤ A. Hence we must add two contributions
of the right-hand side in (13.25) to obtain

fX(x) =

⎧
⎨
⎩

1
π
√

A2 − x2
, −A ≤ x ≤ A

0, otherwise
(13.33)

The corresponding CDF is given by

FX(x) =
∫ x

−A

dλ

π
√

A2 − λ2
=

1
π

[π

2
+ sin−1

( x

A

)]
(13.34)

These functions are shown in Figure 13.6.
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FIGURE 13.6 Sinusoidal distribution: (a) pdf, (b) CDF

The mean of X, using the symmetry of its pdf, is given by

µX = ξX(1) =
∫ A

−A

xdx

π
√

A2 − x2
= 0 (13.35)

and the variance, which is also its mean-squared value, is given by

σ2
X = ξX(2) =

∫ A

−A

x2 dx

π
√

A2 − x2
=

A2

2
(13.36)

MATLAB Implementation It is easy to generate sinusoidally dis-
tributed random numbers by first generating uniformly distributed num-
bers and then transforming them using (13.29). Assuming previously de-
fined A and N , the following MATLAB fragment generates sinusoidally
distributed random numbers.

>> theta = 2*pi*rand(N,1);
>> x = A*sin(theta);

13.1.4 ESTIMATION OF THE MEAN OF RANDOM VARIABLE
Suppose we have N statistically independent observations x1, x2, . . ., xN

of a random variable X. We wish to estimate the mean value of X from
the N observations. The estimate of the mean value is denoted by µ̂X and
is computed as

µ̂X =
1
N

N∑
n=1

xk (13.37)

Because µ̂X is a sum of random variables, it is also a random variable. We
note that the expected value of the estimate µ̂X is

E
[
µ̂X

]
=

1
N

N∑
n=1

E
[
xk

]
=

1
N

(
µX
)
N = µX (13.38)
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where µX is the actual mean of X. Thus the estimate µ̂X is said to be
unbiased.

The variance of the the estimate µ̂X is a measure of the spread or
dispersion of µ̂X relative to its mean value. The variance of µ̂X is denoted
by σ2

µ̂ and is given by

σ2
µ̂ = E

[
(µ̂X − µX)2

]
= E

[
µ̂2

X

]
− 2E

[
µ̂X

]
µX + µ2

X

= E
[
µ̂2

X

]
− µ2

X (13.39)

But the E
[
µ̂2

X

]
is

E
[
µ̂2

X

]
=

1
N2

N∑
n=1

N∑
k=1

E
[
xnxk

]
=

σ2
X

N
+ µ2

X (13.40)

where σ2
X is the actual variance of X. Therefore, the variance of µ̂X is

σ2
µ̂ =

σ2
X

N
(13.41)

Note that as N → ∞, the variance of the estimate tends to zero. Thus
the estimate µ̂X is said to be consistent.

MATLAB Implementation The built-in MATLAB function mean(X)
computes the average or mean value of the elements in the array X. If X is
a matrix, then mean(X) contains the mean value of each column of X. This
function implements the estimate given in (13.37). Similarly, the var(X)
computes the variance of the values in X.

� EXAMPLE 13.3 Generate 10 samples of a random variable X that is uniformly distributed in the
interval [0, 2]. Compute the estimate µ̂X of the mean value of X, and compare
the result with the true mean value, µX = 1, of X. Repeat this experiment 100
times, and compute and plot the resulting estimates. Also compute the mean
value and the variance of the estimates, and compare the result with the true
mean value of X.

Solution The following MATLAB script shows the generation of random variables and
estimation of mean as well as its display from 10 samples.

>> a = 0; b = 2; % Uniform random variable parameters
>> mu_X = (a+b)/2; % True mean value
>> N = 10; % Number of values
>> x = (b-a)*rand(N,1)+a; % Random data values
>> mu_hat = mean(x); % Mean estimate
>> disp([’True Mean value of X is: ’,num2str(mu_X,2)]);
True Mean value of X is: 1
>> disp([’ Estimated Mean is: ’,num2str(mu_hat,2)]);

Estimated Mean is: 0.94
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The above script indicates that the estimated mean is very close to the true
mean even for 10 samples. The following script repeats the above experiment
100 times and computes as well as plots the results.

>> M = 100; % Number of experiments
>> x = (b-a)*rand(N,M)+a; % M experiments, each N values
>> mu_hat = mean(x); % Mean estimate of each column
>> mean_muhat = mean(mu_hat); % Mean of the estimates
>> var_muhat = var(mu_hat); % Variance of the estimates
>> disp([’ Mean value of the estimate is: ’,...

num2str(mean_muhat,2)]);
Mean value of the estimate is: 1

>> disp([’Estimated variance of the estimate is: ’,...
num2str(var_muhat,2)]);
Variance of the estimate is: 0.034

>> disp([’ True variance of the estimate is: ’,...
num2str(var_mutrue,2)]);

True variance of the estimate is: 0.033
% Plotting commands follow

This shows that the mean of the estimates is equal to the true mean and that its
variance is very small and close to the true variance. The plot of the estimates
is shown in Figure 13.7. �

Experiment Number
0 20 40 60 80 100

V
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0.5

1

1.5
Estimated Mean Values

FIGURE 13.7 The estimated means in Example 13.3 are denoted by asterisks.
The horizontal dashed line represents the plot of µ̂X, and the horizontal solid
line is the true mean of the uniform random variable.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



628 Chapter 13 RANDOM PROCESSES

13.2 A PAIR OF RANDOM VARIABLES

So far, we discussed one random variable as a model to describe a single
value of a random signal (say, at some fixed time). This description was
in terms of a density function that gave probabilistic information as to
relative numbers of occurrence at different amplitudes and in terms of
statistical averages such as means and variances. The latter description
also allowed us to relate average signal power quantities to moments.

However, we also want to know how fast or slow these random quan-
tities may be changing over time—that is, their frequency of change. This
is important for frequency-selective operations like filtering. Since one
random variable cannot provide this time (or frequency) dependent infor-
mation, we have to consider two random values separated by some finite
time. This leads us to the case of a pair of random variables and the
statistical knowledge afforded by them. It turns out that this additional
statistical information is sufficient for many practical applications.

13.2.1 JOINT PROBABILITY FUNCTIONS
The generalization of one random variable to two random variables leads
to the extension of the one-dimensional real line R to the two-dimensional
real plane R

2. Let (X,Y) be a pair of random variables. Then it is obvious
to note that the pair (X,Y) takes values in a small area ∆x∆y around
(x, y) when X takes values in ∆x around x and Y takes values in ∆y
around y. Thus, analogous to one random variable, we define the joint
probability density function fXY(x, y) as the limiting value of relative num-
ber of occurrences Nxy/N in ∆x∆y when the number of observations N
approach infinity, or

fXY(x, y)
�
= lim

∆x, ∆y → 0
N → ∞

(
Nxy

N∆x∆y

)
(13.42)

The joint cumulative distribution function is then the probability of the
semi-infinite quarter-plane

{
X ≤ x,Y ≤ y

}
and is given by

FXY(x, y) =
∫ x

λ=−∞

∫ y

ν=−∞
fXY(λ, ν) dλ dν (13.43)

or

fXY =
∂2FXY(x, y)

∂x∂y
(13.44)

The probability that X falls in the range
{
x1 ≤ X ≤ x2

}
and Y falls in

the range
{
y1 ≤ Y ≤ y2

}
is given by

Pr
{
x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2

}
=
∫ x2

x1

∫ y2

y1

fXY(x, y) dxdy (13.45)
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Once again, the above joint probability functions must satisfy axiomatic
properties such as non-negativity, nondecreasing monotonicity (for joint
CDF), and

FXY(−∞,−∞) = FXY(−∞, y) = FXY(x,−∞) = 0 (13.46a)

FXY(∞,∞) =
∫ ∞

−∞

∫ ∞

∞
fXY(x, y) dxdy = 1 (13.46b)

Marginal Probability Functions
These functions define probabilities of one random variable without re-
gard to the other one and are the same as those for one random variable
but defined using the joint functions. Thus we have two such marginal
distributions,

FX(x) = FXY(x,∞) =
∫ x

λ=−∞

(∫ ∞

−∞
fXY(λ, y) dy

)
dλ =

∫ x

−∞
fX(λ) dλ

(13.47a)

FY(y) = FXY(∞, y) =
∫ y

ν=−∞

(∫ ∞

−∞
fXY(x, ν) dx

)
dν =

∫ y

−∞
fY(ν) dν

(13.47b)

and from (13.47) two marginal densities,

fX(x) =
∫ ∞

−∞
fXY(x, y) dy (13.48a)

fY(y) =
∫ ∞

−∞
fXY(x, y) dx (13.48b)

Conditional Probability Functions
As opposed to the marginal functions, these functions for one random
variable are defined based on the observation or knowledge of the value
of the other random variable and are also very useful in practice. The
conditional pdf of X conditioned on the observation of Y = y is denoted
by fX|Y(x|y) and is defined as

fX|Y(x|y)
�
=

fXY(x, y)
fY(y)

(13.49)

Similarly, we have conditional pdf of Y given X as

fY|X(y|x)
�
=

fXY(x, y)
fX(x)

(13.50)

From (13.49) and (13.50), we obtain

fXY(x, y) = fX|Y(x|y)fY(y) = fY|X(y|x)fX(x) (13.51)
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and from (13.51), we obtain

fX|Y(x|y) =
fY|X(y|x)fX(x)

fY(y)
(13.52a)

fY|X(y|x) =
fX|Y(x|y)fY(y)

fX(x)
(13.52b)

The results in (13.52) are known as Bayes rules and are useful in detection
and estimation theory.

Statistical Independence
Although the marginal probability functions for random variable X were
obtained without regard to Y, the occurrence of Y can still affect the
occurrence of X. On the other hand, if the conditional pdf of X given
Y does not depend on Y and reduces to the marginal pdf of X or vice
versa, we will say that random variables X and Y are statistically (or
mutually) independent, or independent for short. Thus when X and Y are
independent, we have

fX|Y(x|y) = fX(x) and fY|X(y|x) = fY(y) (13.53)

Hence from (13.49) or (13.50),

fXY(x, y) = fX(x)fY(y) (13.54)

Similarly, we can also show a similar relationship for cumulative distribu-
tion functions when X and Y are independent, that is,

FXY(x, y) = FX(x)FY(y) (13.55)

Histogram as a Joint pdf Approximation Given observations of N
random variable pairs (XY), let Nxy denote the number of pairs that fall
into the small area ∆xy at (x, y). Then the three-dimensional plot of
Nxy vs. (x, y) is a two-variable histogram of the observed values, and the
three-dimensional plot of the ratio

PXY(x, y)
�
=

Nxy

N∆xy
(13.56)

vs. (x, y) is the normalized histogram and is a good approximation to the
joint pdf fXY(x, y). MATLAB provides a function, Nxy = hist3([x,y],
nbins), that provides counts in Nxy given observed pairs [x,y] and an
nbins(1)×nbins(2) grid of bins. Using this function, one can design a
MATLAB function, which we will call pdf2, that computes the pdf as a
normalized histogram from the observed pairs. The design of this function
is left as an exercise.
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Scatter-plot as a pdf Plot Another visual depiction of the joint pdf
is obtained by using a scatter-plot which is a two-dimensional picture.
It is obtained by plotting (x, y) pairs as dots in the plane. Dot density
indicates value of the pdf; higher density means higher value and vice
versa. The scatter-plot shape also gives the approximate support of the
pdf. Its use is illustrated in Example 13.5.

Transformations of Pairs of Random Variables
We have discussed the transformation of one random variable into another
and calculations of its pdf. In a similar fashion a somewhat more involved
signal processing operation would transform two random variables with
known joint pdf into either one or two new random variables. An applica-
tion of the first operation would be the case of a signal in additive noise
and that of the second one would be converting cartesian coordinates into
polar coordinates. In each case we are interested in obtaining the density
functions of the new random variables.

One Function Let fXY(x, y) be the joint pdf of a pair of random vari-
ables (X,Y) and let W = g(X,Y) be the new random variable. There are
several approaches to determine the pdf of W. One easy to understand
approach is to first determine the CDF of W using the function g(·, ·) and
then differentiate it to obtain its pdf. Toward this, the CDF of W can be
expressed in terms of X and Y as

FW(w) = Pr
{
W ≤ w

}
= Pr

{
g(X,Y) ≤ w

}

=
∫∫

g(x,y)≤w

fXY(x, y) dxdy (13.57)

where the inequality g(X,Y) ≤ w defines a region in the (x, y) plane over
which integration is performed. The pdf of W is now given by

fW(w) =
d

dw

⎛
⎜⎝

∫∫

g(x,y)≤w

fXY(x, y) dxdy

⎞
⎟⎠ (13.58)

Although elegant in its simplicity, the integral, depending on the joint pdf
and the function g(·, ·), may or may not be analytically tractable.

One particularly important application of this approach is when the
transformation is just the sum of two random variables, for example the
signal plus noise case. Let W = X + Y. Then from (13.57)

FW(w) =
∫∫

x+y≤w

fXY(x, y) dxdy =
∫ ∞

y=−∞

∫ w−y

x=−∞
fXY(x, y) dxdy (13.59)
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Differentiating (13.59) and using the Leibnitz’s rule1 from calculus, we
obtain

fW(w) =
∫ ∞

y=−∞

d
dw

(∫ w−y

x=−∞
fXY(x, y) dx

)
dy

=
∫ ∞

y=−∞
fXY(w − y, y) dy (13.60)

A further special case is when X and Y are independent in which case,
using (13.54), we obtain

fW(w) =
∫ ∞

y=−∞
fX(w − y)fY(y) dy = fX(w) ∗ fY(w) (13.61)

which is a convolution integral. This is a very significant result.

� EXAMPLE 13.4 Let X ∼ U(0, 1) and Y ∼ U(0, 1) be two uniformly distributed, independent
random variables and let W = X+Y. Then from (13.61) the pdf of W is given by

fW(w) =
(
u(w) − u(w − 1)

)
∗
(
u(w) − u(w − 1)

)

=
(
1 − |w − 1|

)(
u(w) − u(w − 2)

)
(13.62)

which is a triangle between 0 and 2. To verify (13.62), we will generate a large
number of random numbers for X and Y, add them to obtain the corresponding
numbers for W, and then use the pdf1 function to obtain the pdf fW(w). The
following MATLAB script illustrates these steps.

>> N = 1000000;
>> x = rand(N,1); y = rand(N,1); >> w = x+y;
>> [Pw,wc] = pdf1(w,0,2,100);
>> % Plotting commands follow

Plot of the resulting pdf is shown in Figure 13.8. �

Two Functions This second transformation case is an extension of the
one random variable result (13.25) to two dimensions. Let two functions
of the two random variables X and Y be

W = g1(X,Y) and V = g2(X,Y) (13.63)

1Leibnitz’s rule states that

∂

∂x

∫ b(x)

a(x)
f(x, y) dy =

∂b

∂x
f
(
x, b(x)

)
− ∂a

∂x
f
(
a(x), x

)
+

∫ b(x)

a(x)

∂

∂x
f(x, y) dy.
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FIGURE 13.8 Normalized histogram of sum of two uniformly distributed random
variables

and assuming that this 2 × 2 mapping is invertible, then we also have the
inverse functions

X = h1(W, V) and Y = h2(W, V) (13.64)

Under the mappings (13.64) let the infinitesimal area dw dv in the (w, v)
plane be mapped into area Ax,y in the (x, y) plane so that the following
probabilities are equal

fWV(w, v) dw dv = fXY(h1, h2)Ax,y (13.65)

in which

Ax,y =
∣∣∣∣J
(

x y
w v

)∣∣∣∣ dw dv =

∣∣∣∣∣∣∣∣∣
det

⎡
⎢⎢⎢⎣

∂x

∂w

∂x

∂v

∂y

∂w

∂y

∂v

⎤
⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣
dw dv (13.66)

where J(·) is called the Jacobian of the transformation and represents the
slope plane in two dimensions. Substituting (13.66) in (13.65) we obtain
the desired result

fWV(w, v) = fXY
(
h1(W, V), h2(W, V)

)
×

∣∣∣∣∣∣∣∣∣
det

⎡
⎢⎢⎢⎣

∂x

∂w

∂x

∂v

∂y

∂w

∂y

∂v

⎤
⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣
(13.67)

As in the one variable case, if the given 2×2 transformation is not invert-
ible then the inverse mapping has multiple roots and contribution from
each root should be added to complete the joint pdf fWV(w, v).
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� EXAMPLE 13.5 Let random variables X and Y be independent and identically distributed with
uniform distribution U(0, 1). Define W = X + Y and V = X − Y. Then

X =
W + V

2
�
= h1(W, V) and Y =

W − V
2

�
= h2(W, V)

and

∣∣∣∣J
(

x y
w v

)∣∣∣∣ =

∣∣∣∣∣∣
det

⎡

⎣
1
2

1
2

1
2 − 1

2

⎤

⎦

∣∣∣∣∣∣
=

1
2

Hence

fWV(w, v) = 1
2fXY

(w + v

2
,
w − v

2

)
= 1

2fX

(w + v

2

)
fY

(w − v

2

)
(13.68)

due to independence. Since X and Y are U(0, 1), the joint pdf fWV(w, v) from
(13.68) is also uniform with value of 1

2 over a diamond-shaped region bounded
by four straight lines: w + v = 0, w − v = −2, w + v = 2, and w − v = 0. This
can be verified using a scatter-plot as shown in the MATLAB script below.

>> x = rand(10000,1); y = rand(10000,1);
>> w = x+y; v = x-y;
>> plot([-0.2,2.2],[0,0],’k’,’linewidth’,0.75); hold on;
>> plot([0,0],[-1.1,1.1],’k’,’linewidth’,0.75);
>> plot(w,v,’.’,’markersize’,2); axis equal;
>> axis([-0.2,2.2,-1.1,1.2]);
>> set(gca,’xtick’,[0,1,2],’ytick’,[-1,0,1]); grid;
>> xlabel(’Range of {\itw}’,’fontsize’,9);
>> ylabel(’Range of {\itv}’,’fontsize’,9);
>> title(’Scatter-Plot: W = X+Y, V = X-Y’,...
>> ’fontsize’,10,’fontweight’,’bold’);

The resulting scatter-plot is shown in Figure 13.9. �

13.2.2 JOINT STATISTICAL AVERAGES
These averages, or joint moments, are now doubly countable and require
two arguments. They are given by averaging the product of integer powers
of X and Y, or

ξXY(m, n)
�
= E

[
XmYn

]
=

∞∫∫

−∞

xmynfXY(x, y) dxdy (13.69)
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FIGURE 13.9 Scatter-plot of W = X + Y vs. V = X − Y for X ∼ U(0, 1) and
Y ∼ U(0, 1)

Clearly, ξXY(0, 0) = 1, while the means of X and Y are given by

ξXY(1, 0) = ξX(1) = µX =

∞∫∫

−∞

xfXY(x, y) dxdy =
∫ ∞

−∞
xfX(x) dx (13.70)

and

ξXY(0, 1) = ξY(1) = µY =

∞∫∫

−∞

yfXY(x, y) dxdy =
∫ ∞

−∞
yfY(y) dy (13.71)

as we have shown before. However, ξXY(1, 1) defines a new joint moment
denoted by

RXY
�
= ξXY(1, 1) = E

[
XY

]
=

∞∫∫

−∞

xyfXY(x, y) dxdy (13.72)

which is called the correlation between X and Y. It measures the average
linear relationship between the two random variables.
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Similar to the above moments, we can define the joint central
moments by subtracting the mean values before averaging as

MXY(m, n)
�
= E

[(
X − µX

)m(
Y − µY

)n]

=

∞∫∫

−∞

(x − µX)m(y − µY)nfXY(x, y) dxdy (13.73)

Again, MXY(0, 0) = 1 and MXY(1, 0) = MXY(0, 1) = 0. The variances of X
and Y are given by

MXY(2, 0) = MX(2) = σ2
X =

∞∫∫

−∞

(x − µX)2fXY(x, y) dxdy

=
∫ ∞

−∞
(x − µX)2fX(x) dx (13.74)

and

MXY(0, 2) = MY(2) = σ2
Y =

∞∫∫

−∞

(y − µY)2fXY(x, y) dxdy

=
∫ ∞

−∞
(y − µY)2fY(y) dy (13.75)

as we have shown before. However, MXY(1, 1) defines a new joint central
moment denoted by

CXY
�
= MXY(1, 1) =

∞∫∫

−∞

(x − µX)(y − µY)fXY(x, y) dxdy (13.76)

which is called the covariance between X and Y. It measures the average
linear relationship between the two random variables after their means
have been subtracted out. Note that from (13.76), it is straightforward to
show that

CXY = RXY − µXµY (13.77)

Important Concepts
Through the joint moments of correlation and covariance, we now discuss
new important relationships between two random variables.

Uncorrelated Random Variables If the covariance CXY between X
and Y is zero, then from (13.77) we have

RXY = µ2
Xµ2

Y or E
[
XY

]
= E

[
X
]
E
[
Y
]

(13.78)
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and we will say that random variables X and Y are uncorrelated with
each other. This is a weaker condition between X and Y compared to
their independence, (13.54), which is a stronger condition. This is because
independence always implies zero correlation between X and Y, while the
inverse is not always true. In Section 13.2.3, we will show that for Gaussian
random variables zero correlation also implies independence.

For uncorrelated random variables X and Y, it is easy to show that the
variance of the sum of two random variables is the sum of their variances,
that is,

σ2
X+Y = σ2

X + σ2
Y (13.79)

Orthogonal Random Variables Consider the expectation
E
[
(X + Y)2

]
. Since expectation is a linear operator, we have

E
[
(X + Y)2

]
= E

[
X2 + Y2 + 2XY

]
= E

[
X2]+ E

[
Y2]+ 2E

[
XY

]

= E
[
X2]+ E

[
Y2]+ 2RXY (13.80)

If the correlation RXY = 0, then from (13.80) we have

E
[
(X + Y)2

]
= E

[
X2]+ E

[
Y2] (13.81)

which suggests that X and Y are perpendicular to each other if X and
Y are considered vectors in a Cartesian space. Thus we will say that if
correlation is zero, then X and Y are orthogonal to each other. We note
that this condition holds when X and Y are uncorrelated and either X or
Y or both have zero mean.

Correlation Coefficient Finally, we define a normalized covariance
between random variables so that we can compare average linear depen-
dencies between pairs of random variables. This normalized covariance is
called the correlation coefficient and is defined by

ρXY
�
=

CXY

σXσY
(13.82)

Clearly, if ρXY = 0, then the covariance CXY = 0 and X and Y are uncor-
related. If ρXY = 1, we will say that X and Y are perfectly correlated and
agree with each other, on the average. However, if ρXY = −1, we will still
say that X and Y are perfectly correlated but disagree with each other, on
the average.

13.2.3 BIVARIATE GAUSSIAN DISTRIBUTION
One of the well-known and often-used models for two random variables
is the two-dimensional jointly Gaussian distribution. It is completely de-
scribed by the first two joint moments of random variables X and Y and
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in its most general form is characterized by five parameters and its pdf
given by

N
(
µX, µY; σX, σY; ρXY

) �
= fXY(x, y) =

1
2πσXσY

√
1 − ρ2

XY

×

exp

[
−1

2(1 − ρ2
XY)

{(
x − µX

σX

)2

− 2ρXY

(
x − µX

σX

)(
y − µY

σY

)
+
(

y − µY

σY

)2
}]

(13.83)

This is a unimodal bell-shaped surface and is shown in Figure 13.10
for various values of σX, σY, and ρXY and for µX = µY = 0. The contours
of constant-density values are also superimposed on the density surface
for clarity. We observe that in Figure 13.10a contours are circular; in
Figure 13.10b contours are elliptical with the major axis rotated 45◦ with
the x-axis; in Figure 13.10c contours are also elliptic but the major axis
rotated more than 45◦; and in Figure 13.10d contours are elliptic but
the major axis rotated more than 45◦ in the clockwise direction. The
density surfaces are symmetric with respect to the rotated axis. The non-
zero values of the means simply move the center of the surface to a new
location.

Using direct integration of fXY(x, y) in (13.83), we can show that the
marginal densities are given by

fX(x) =
∫ ∞

−∞
fXY(x, y) dy =

1
σX

√
2π

exp

[
−1
2

(
x − µX

σX

)2
]

= N(µX, σ2
X)

(13.84a)

fY(x) =
∫ ∞

−∞
fXY(x, y) dx =

1
σY

√
2π

exp

[
−1
2

(
y − µY

σY

)2
]

= N(µY, σ2
Y)

(13.84b)

which are marginal Gaussian random variables. Hence fXY(x, y) in (13.83)
is known as the jointly Gaussian or bivariate Gaussian distribution.

It should further be noted that if ρXY = 0, that is, if the covariance
is zero so that X and Y are uncorrelated, then from (13.83) we have

fXY(x, y) =
1

2πσXσY
exp

[
−1
2

{(
x − µX

σX

)2

+
(

y − µY

σY

)2
}]

=
1

σX
√

2π
exp

[
−1
2

(
x − µX

σX

)2
]

× 1
σY

√
2π

exp

[
−1
2

(
y − µY

σY

)2
]

= fX(x)fY(y) (13.85)
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(a) s X = 1, sY = 1, rXY = 0 (b) s X = 1, s Y = 1, rXY = 0.5

(c) s X = 2, s Y = 3, rXY = 0.5 (d) s X = 2, s Y = 3, rXY = –0.5
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FIGURE 13.10 Bivariate Gaussian distributions for various values of σX, σY,
and ρXY and for µX = µY = 0

which implies independence between X and Y. Hence, only in the case
of the Gaussian distribution, zero correlation between X and Y implies
independence.

Useful Properties Based on our discussion so far on Gaussian ran-
dom variables, it should be obvious that they possess some unique and
important properties. We enumerate these properties, along with those
that were not discussed:

1. A Gaussian random variable is completely described by its first two
moments, which means that higher-order moments can be obtained in
terms of its first two moments.

2. The sum of two Gaussian random variable is also Gaussian.
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3. In fact, any linear combination of a number of Gaussian random vari-
ables is also Gaussian.

4. The product of two Gaussian density functions also results in a
Gaussian function.

5. The convolution of two Gaussian functions also results in a Gaussian
function.

6. A countable sum of independent random variables, irrespective of their
distribution functions, results in a Gaussian distribution under some
very general conditions. This result is known as the Central Limit
theorem. Hence a Gaussian distribution is also a stable distribution
for finite means and variances.

7. If Gaussian random variables are mutually uncorrelated, then they are
also mutually independent.

Other random variable models do not possess all these properties.

� EXAMPLE 13.6 Generate samples of bivariate Gaussian random variables, X1 and X2, having
specified mean values µ1 and µ2, variances σ2

1 and σ2
2 , respectively, and a cor-

relation coefficient ρ between the two.

Solution First, we generate samples of two statistically independent, zero-mean, and
unit-variance Gaussian random variables by using the method described in Sec-
tion 13.1.3. Let us denote these random variable values by the vector notation

Y =
[
y1

y2

]
(13.86)

Next, we assemble the desired (2×2) covariance matrix

CX =
[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
(13.87)

and factor it as

CX = C
1
2
X

(
C

1
2
X

)T (13.88)

We now define the linearly transformed (2×1) vector X as

X
�
=
[
X1

X2

]
= C

1
2
X Y + µX, µX

�
=
[
µ1

µ2

]
(13.89)

Then the covariance of X is

E
[(

X − µX
)(

X − µX
)T] = E

[
C

1
2
X Y Y T(C

1
2
X

)T]

= C
1
2
X E
[
Y Y T](C

1
2
X

)T = C
1
2
X I
(
C

1
2
X

)T

= CX (13.90)

as expected. The most difficult step in this process is the factorization of the
covariance matrix CX, which can be implemented in MATLAB using the matrix
square-root function sqrtm. The following MATLAB script generates 1000 sam-
ples of the bivariate Gaussian distribution for µ1 = 2, µ2 = 1, σ1 = 1, σ2 = 2,
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FIGURE 13.11 Scatter-plot of Gaussian random numbers in Example 13.6

and ρ = 0.5. The scatter-plot of the resulting samples is shown in Figure 13.11,
in which the distribution center is shown as the “+” symbol.

mu1 = 1; mu2 = 2; % Mean parameters
sd1 = 2; sd2 = 1; % Standard deviations
var1 = sd1ˆ2; var2 = sd2ˆ2; % Variances
rho = 0.5; % Correlation coefficient
Cx = [var1, rho*sd1*sd2; rho*sd1*sd2, var2]; % Cov matrix
% Generate 1000 unit Gaussian random-2 vectors
N = 10000; M = 2; Y = randn(N,M);
% Generate correlated non-zero mean Gaussian random-2 vectors
X = sqrtm(Cx)*Y’+ [mu1;mu2]*ones(1,N); X = X’;
% Plotting commands follow

�
To generate multivariate Gaussian random numbers, we can extend

the approach of Example 13.6 to arbitrary-size (> 2) vectors. The fol-
lowing MATLAB function, X=randnMV(N,mu,C), generates N multivariate
Gaussian random vectors in X given the mean vector µ in mu and the
covariance matrix C in C.

function X = randnMV(N,mu,C)
% randnMV: multivariate Gaussian random vector generator
% Generates N vectors in X given mean mu and covariance matrix C
% mu should be a Mx1 column vector; C should be MxM
% Generated X is NxM
% X = randnMV(N,mu,C)
%
mu = mu(:); M = length(mu);
Y = randn(N,M);
X = sqrtm(C)*Y’+ mu*ones(1,N); X = X’;
end
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13.3 RANDOM SIGNALS

A random signal or process can be thought of as a collection of waveforms
(or time-varying values) with some assigned probability. Similarly, we can
think of the value of a random signal at each time instant as a random
variable with an assigned pdf. Thus a random signal is a collection of
random variables in the temporal space as well as a collection of sam-
ple waveforms in the ensemble space. This understanding is crucial in
dealing with its probabilistic (or statistical) description as well as for its
processing through linear systems.

A random process can be continuous in time (random signals) or dis-
crete in time (random sequences). We will mostly discuss random signals,
but the derived results will also apply to random sequences with obvious
modifications that we will also state. In keeping with our random variable
terminology, we will denote a random signal by X(t) and its realization or
sample waveform by x(t). Thus we have a new temporal variable in our
random object.

If a time instance t is fixed (i.e., when we assign a known value), then
X(t) is a random variable and hence has a pdf fX(x; t) or moment functions
such as a mean µX(t), mean-squared value, and variance σ2

X(t) given by

µX(t) = E
[
X(t)

]
=
∫ ∞

x=−∞
xfX(x; t) dx, (13.91a)

E
[
X2(t)

]
=
∫ ∞

x=−∞
x2fX(x; t) dx, (13.91b)

σ2
X(t) = E

[
(X(t) − µX(t))2

]
= E

[
X2(t)

]
− µ2

X(t) (13.91c)

Then all the concepts that we discussed in Section 13.1 apply at each
time instance of X(t).

If we have two fixed time instances—say, t1 and t2—then X(t1) and
X(t2) are a pair of random variables with joint pdf fX(x1, x2; t1, t2) or
joint moment functions such as correlation RXX(t1, t2) and covariance
CXX(t1, t2) given by2

RXX(t1, t2) = E
[
X(t1)X(t2)

]
=

∞∫∫

−∞

x1x2fX(x1, x2; t1, t2) dx1 dx2

(13.92a)

CXX(t1, t2) = RXX(t1, t2) − µX(t1)µX(t2) (13.92b)

in addition to their marginal densities or moments. Since the pair of ran-
dom variables X(t1) and X(t2) are from the same process X(t), we will

2We will assume real-valued random signals. For complex-valued signals, the second
term in the expectation requires complex-conjugation.
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henceforth call RXX(t1, t2) the autocorrelation function and CXX(t1, t2)
the autocovariance function. Now the concepts that we discussed in Sec-
tion 13.2 can be used for each such pair from X(t).

� EXAMPLE 13.7 A random process is given by

X(t) = Ae−tu(t) (13.93)

which is a causal exponential signal whose amplitude A ∼ U(0, 1) is a uniformly
distributed random variable over (0, 1). The marginal density of X(t) for t ≥ 0,
using the transformation of random variable formula (13.25), is given by

fX(x; t) = fA(xet)et (since h(x) = xet and h′(x) = et)

= et(u(x) − u(x − e−t)) ∼ U(0, e−t) (13.94)

which is a uniform distribution between 0 and e−t at each t ≥ 0. Note that as
t → ∞, this pdf becomes a narrower pulse with increasing amplitude and in
the limit becomes fX(x; ∞) = δ(x), which means that X(∞) is a deterministic
number zero. The first two moments of X(t), using (13.91) and the moments of
uniform distribution, are given by

µX(t) = E
[
Ae−tu(t)

]
= E

[
A
]
e−tu(t) = 1

2e−tu(t), (13.95a)

E
[
X2(t)

]
= E

[
A2]e−2tu(t) = 1

3e−2tu(t), (13.95b)

σX(t) = E
[
X2(t)

]
− µ2

X(t) = 1
12e−2tu(t) (13.95c)

To determine the joint pdf fX(x1, x2; t1, t2), note that since the random variable
A is time independent, the random variables X(t1) and X(t2), for t1, t2 ≥ 0, are
linearly dependent, that is,

X(t2) = X(t1)e−(t2−t1) (13.96)

This means that the joint pdf fX(x1, x2; t1, t2) is singular; that is, it contains an
impulse plane in the (x1-x2) domain. Now consider

fX(x1, x2; t1, t2) = fX(x2
∣∣x1; t1, t2)fX(x1; t1) (13.97)

where from (13.94) fX(x1; t1) ∼ U(0, e−t1) and from (13.96),

fX(x2
∣∣x1; t1, t2) = δ(x2 − x1e−(t2−t1)) (13.98)

which is the singular function that represents an impulse plane at an angle given
by the slope e−(t2−t1). Substituting (13.98) in (13.97), the joint pdf is given by

fX(x1, x2; t1, t2) = et1(u(x1) − u(x1 − e−t1))δ(x2 − x1e−(t2−t1)), t1, t2 ≥ 0
(13.99)

From (13.92) and (13.95), the autocorrelation and autocovariance functions are
given by

RXX(t1, t2) = E
[
Ae−t1Ae−t2

]
= E

[
A2]e−(t1+t2) = 1

3e−(t1+t2), (13.100a)

CXX(t1, t2) = RXX(t1, t2) − µX(t1)µX(t2) = 1
12e−(t1+t2) (13.100b)

�
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� EXAMPLE 13.8 Consider a sinusoidal random process given by

X(t) = A cos(Ω0t + Θ) (13.101)

where Ω0 is a fixed frequency, the amplitude random variable A is linearly
distributed with pdf

fA(a) =

{
2a, 0 ≤ a ≤ 1
0, otherwise

(13.102)

and the phase random variable Θ ∼ U(0, 2π). These two random variables are
statistically independent. The mean of X(t) is given by

µX(t) = E
[
X(t)

]
= E

[
A cos(Ω0t + Θ)

]
= E

[
A
]
E
[
cos(Ω0t + Θ)

]
= 0 (13.103)

since the average of cosine waveform over one full cycle is zero. The autocorre-
lation of X(t) is given by

RXX(t1, t2) = E
[
X(t1)X(t2)

]
= E

[
A cos(Ω0t1 + Θ)A cos(Ω0t2 + Θ)

]

= E
[
A2]E

[
cos(Ω0t1 + Θ) cos(Ω0t2 + Θ)

]
(13.104)

The first expectation on the right of (13.104) is computed as

E
[
A2] =

∫ 1

0
a2(2a) da =

1
2

(13.105)

while the second expectation is given by

E
[
cos(Ω0t1 + Θ) cos(Ω0t2 + Θ)

]
= 1

2

{
E
[
cos
(
Ω0(t1 − t2)

)

+ cos(Ω0(t1 + t2) + 2Θ)
]}

= 1
2 cos(Ω0(t1 − t2)) (13.106)

where we have used the trigonometric identity on product of two cosine func-
tions. Substituting (13.105) and (13.106) in (13.104), we obtain

RXX(t1, t2) = 1
4 cos(Ω0(t1 − t2)) (13.107)

�
Cross-correlation Functions If Y(t) is another random process de-
fined in the same random experiment, then its linear interaction with
X(t) can be described using the joint pdf fXY(x, y; t1, t2) or the cross mo-
ments in addition to its own marginal pdf and auto moments. We define
the cross-correlation function RXY(t1, t2) and cross-covariance function
CXY(t1, t2) between X(t) and Y(t) as

RXY(t1, t2) = E
[
X(t1)Y(t2)

]
=

∞∫∫

−∞

xyfXY(x, y; t1, t2) dxdy (13.108a)

CXY(t1, t2) = RXY(t1, t2) − µX(t1)µY(t2) (13.108b)

These functions will be useful later in the calculations of linear system
input/output correlations and covariances.
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13.3.1 STATIONARITY
For a general random signal, the statistical quantities such as densities or
moments vary or change with time, as in Example 13.7. However, for some
random signals it is possible to have these quantities be time invariant,
as in Example 13.8. In many applications, we model a random signal that
exhibits this time-invariant statistical behavior. It simplifies storage and
processing complexities. We will discuss two types of this time-invariance
property of random signals, collectively known as stationarity.

Strict-Sense Stationarity
In this type of stationarity, all orders of joint density functions or,
alternatively, all orders of joint moments are time invariant, that is, the
first-order densities are independent of time

fX(x; t) = fX(x) (13.109)

and the joint densities are independent of time t but depend only on the
relative interval τ between the two time instances

fX(x1, x2; t1 = t + τ, t2 = t) = fX(x1, x2; τ = t1 − t2) (13.110)

and so on, for all orders. This also means that

µX(t) = µX, E
[
X2(t)

]
= ξX(2) (13.111a)

RXX(t1, t2) = RXX(t1 − t2) (13.111b)

CXX(t1, t2) = CXX(t1 − t2) (13.111c)

and so on, for all higher-order moments. This is the strongest form of
stationarity since it requires time independence for all orders of pdf and
moments. Hence the name strict-sense stationarity, which is not always
easy to achieve.

Wide-Sense Stationarity
In many practical applications, we need or use only up to second-order
statistical quantities of a random signal. Therefore, why not require time-
invariance only for the first two orders of moments? This leads to a weaker
but workable form of stationarity called wide-sense stationarity, or WSS.
We will say that a random signal X(t) is WSS if it satisfies the following
three conditions:

E
[
X2(t)

]
= ξX(2) < ∞ (finite average power), (13.112a)

µX(t) = µX (a constant), (13.112b)

RXX(t + τ, t) = RXX(τ) (function of τ only) (13.112c)
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The variable τ is called the lag time variable since the random variable
X(t) lags X(t+ τ) in time by τ seconds. Clearly, the autocovariance func-
tion CXX(t, t + τ) also exhibits a similar time-invariance as in (13.112c),

CXX(t + τ, t) = CXX(τ) (13.113)

Note that the random process in Example 13.7 is nonstationary since
both its first- and second-order moments are functions of time, whereas
the random process in Example 13.8 is WSS since its mean is constant
and its autocorrelation function depends only on (t1 − t2), which, from
(13.107), can be written as

RXX(t + τ, t) = RXX(τ) = 1
4 cos(Ω0τ) (13.114)

In the rest of the chapter, we will mostly deal with WSS random
signals. Therefore, if we state that a random signal has a constant mean
and an autocorrelation function that depends on a single time variable,
then the reader can infer that the signal is WSS.

Finally, if X(t) and Y(t) are jointly WSS, then their cross-correlation
and cross-covariance functions depend only on the lag variable τ ; that is,

RXY(t + τ, t) = RXY(τ) and CXY(t + τ, t) = CXY(τ) (13.115)

13.3.2 ERGODICITY
Up to this point we treated a random signal as random variables at each t
and computed averages using the ensemble space. Thus we assumed that
we have had access to a very large number of waveforms so that we could
obtain averages, at each t, as weighted (by pdf) sums over ensemble as
explained in (13.8). However, in reality we have only one temporal sample
waveform, x(t), available to us for measurement and analysis. Using our
time integrating meters such as voltmeters, ammeters, or wattmeters we
could determine averages over a sufficiently long period of time. We then
wonder whether these time averages would give us the same ensemble
averages so that we can replace ensemble expectations by the temporal
integrals.

After a considerable thought, we conclude that, in general, we can
not state that the two methods that we have described above to compute
statistical averages will yield the same result even when the processes
are stationary. Therefore, we introduce a new concept called ergodicity
that would allow us to equate statistics computed over a long time us-
ing one sample waveform to those computed over ensemble of values at
each t. We will call such processes as ergodic processes and, by necessity,
these processes must be stationary. However, not all stationary processes
are ergodic. By ergodicity we basically imply that using any one sample
waveform we have observed all possible variabilities and undulations in
the random process that are inherent in the ensemble of waveforms.
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To begin with, consider the computation of the mean value. Let X(t)
be WSS with mean µX and let x(t) be its sample waveform. We will denote
the temporal average of x(t) using angular brackets:

〈
x(t)

〉 �
= lim

T→∞

1
2T

∫ T

−T

x(t) dt (13.116)

where the measurement interval is 2T . If this average is equal to µX, we
will say that X(t) is ergodic in the mean.3

Now consider the temporal averaging to compute the autocorrelation
function RXX(τ) given an arbitrary sample waveform x(t):

Rxx(τ)
�
=

〈
x(t + τ)x(t)

〉 �
= lim

T→∞

1
2T

∫ T

−T

x(t + τ)x(t) dt (13.117)

If Rxx(τ) = RXX(τ) for each τ , then we will say that X(t) is ergodic in
the autocorrelation. If τ = 0, then we have Rxx(0) as the average power
in watts from (13.116). Thus if Rxx(0) = RXX(0), then X(t) is ergodic in
the average power.

� EXAMPLE 13.9 Consider the random process X(t) = A cos(Ω0t + Θ) in which amplitude A and
frequency Ω0 are constants while Θ ∼ U(0, 2π) is the random phase. Then its
first two moments are given by

µX(t) = E
[
A cos(Ω0t + Θ)

]
= AE

[
cos(Ω0t + Θ)

]
= 0 = µX (13.118a)

RXX(t1, t2) = E
[
A cos(Ω0t1 + Θ)A cos(Ω0t2 + Θ)

]

= A2E
[
cos(Ω0t1 + Θ) cos(Ω0t2 + Θ)

]

= 1
2A2 cos(Ω0(t1 − t2)) (13.118b)

following the steps used in obtaining (13.106). Clearly, X(t) is WSS. Consider
the temporal averaging in (13.116),

〈
x(t)

〉 �
= lim

T→∞

1
2T

∫ T

−T

A cos(Ω0t + θ) dt = 0 = µX (13.119)

by choosing T = 2π/Ω0. Thus X(t) is ergodic in the mean. Now consider the
temporal averaging in (13.117),

Rxx(τ) = lim
T→∞

1
2T

∫ T

−T

A cos(Ω0(t + τ) + θ)A cos(Ω0t + θ) dt

= A2 lim
T→∞

1
2T

∫ T

−T

1
2 (cos(Ω0τ) + cos(Ω0(2t + τ) + θ)) dt

= 1
2A2 cos(Ω0τ) = RXX(τ) (13.120)

3This equivalence requires certain conditions on the autocorrelation function RXX(τ)
depending on the convergence concept used. These issues are beyond the scope of
this book.
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Thus X(t) is also ergodic in the autocorrelation at each τ . In particular, it is
ergodic in the average power. �

� EXAMPLE 13.10 Consider the random process X(t) = A cos(Ω0t + Θ) given in Example 13.8,
which is a WSS process. Its mean and autocorrelation were computed as µX =
0 and RXX(τ) = 1

4 cos(Ω0τ). This process is ergodic in the mean but not in
the autocorrelation since its temporal average, for any observed value a of the
random variable A, is given by

Rxx(τ) = lim
T→∞

1
2T

∫ T

−T

a cos(Ω0(t + τ) + θ)a cos(Ω0t + θ) dt

= a2 lim
T→∞

1
2T

∫ T

−T

1
2 (cos(Ω0τ) + cos(Ω0(2t + τ) + θ)) dt

= 1
2a2 cos(Ω0τ) 	= RXX(τ) (13.121)

�

13.3.3 RANDOM SEQUENCES
The results and the concepts that we have discussed so far for random
signals also apply to random sequences that are discrete-time random
processes. We will denote random sequences by X(n) where n is a sample
index, which we assume is uniformly spaced in time. Then at each n, the
value X(n) is a random variable with pdf fX(x;n), while the first two
moments are given by

µX(n) = E
[
X(n)

]
=
∫ ∞

−∞
xfX(x;n) dx, (13.122a)

E
[
X2(n)

]
=
∫ ∞

−∞
x2fX(x;n) dx, (13.122b)

σ2
X(n) = E

[
X2(n)

]
− µ2

X(n) (13.122c)

If two time indices, m and n, are fixed, then values X(m) and X(n) rep-
resent a pair of random variables with joint pdf fX(x1, x2;m, n). Then the
autocorrelation and autocovariance sequences, respectively, are given by

RXX(m, n) = E
[
X(m)X(n)

]
=

∞∫∫

−∞

x1x2 fX(x1, x2;m, n) dx1 dx2,

(13.123a)

CXX(m, n) = RXX(m, n) − µX(m)µX(n) (13.123b)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Random Signals 649

If Y(n) is another random sequence defined along with X(m) with
joint pdf fXY(x, y;m, n), then their cross-correlation and cross-covariance
sequences, respectively, are given by

RXY(m, n) = E
[
X(m)Y(n)

]
=

∞∫∫

−∞

xy fXY(x, y;m, n) dxdy, (13.124a)

CXY(m, n) = RXY(m, n) − µX(m)µY(n) (13.124b)

A random sequence X(n) is WSS if

E
[
X2(n)

]
= ξX(2) < ∞, (13.125a)

µX(n) = µX, (13.125b)

RXX(n + �, n) = RXX(�) or CXX(n + �, n) = CXX(�) (13.125c)

where � is called the lag index variable. Similarly, two mutually WSS
random sequences have cross-correlation and cross-covariance sequences
that are functions of �.

Finally, for an ergodic random sequence X(n), we can compute its
statistical averages using the temporal arithmetic averages from a sample
waveform x(n) as

µX =
〈
x(n)

〉 �
= lim

N→∞

1
2N + 1

N∑
n=−N

x(n), (13.126a)

RXX(�) =
〈
x(n + �)x(n)

〉 �
= lim

N→∞

1
2N + 1

N∑
n=−N

x(n + �)x(n)

(13.126b)

MATLAB Implementation The SP Toolbox provides the function

[Rxy,lags]=xcorr(x,y,maxlags,’option’)

that estimates cross-correlation values Rxy at lag indices lags between
two data vectors x and y. The correlation values are computed up to
the maxlag index using four option cases: ’none’ (default), ’biased’,
’unbiased’, and ’coeff’, which are described below. It also computes
the autocorrelation values using the invocation

[Rxy,lags]=xcorr(x,maxlags,’option’)

When both x and y are zero-mean arrays, obtained by subtracting
their respective means, then xcorr computes the covariance values.
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By default, xcorr computes estimated correlations, with no normaliza-
tion, given by

R̂XY(�) =

⎧
⎪⎨
⎪⎩

N−�∑
n=0

x(n + �)y(n), � ≥ 0

R̂XY(−�), � < 0

(13.127)

where N is the maxlag index. The elements of the output vector Rxy are
then given by

Rxy(m) = R̂XY(m − N − 1), m = 1, 2, . . . , 2N + 1 (13.128)

The parameter ‘option’ has the following choices:

• ’biased’: Biased estimate of the cross-correlation function given by

R̂XY,biased(�) =
(

1
N

)
R̂XY(�) (13.129)

• ’unbiased’: Unbiased estimate of the cross-correlation function
given by

R̂XY,unbiased(�) =
(

1
N − |�|

)
R̂XY(�) (13.130)

• ’coeff’: Normalizes the sequence so the autocorrelations at zero lag
are identically equal to 1.

• ’none’: Uses the raw, unscaled cross-correlations (default).

� EXAMPLE 13.11 In Section 13.6.3 and in Example 13.22, we will discuss how to generate a
random process with the autocorrelation sequence of ρ|�|. Samples of such a
process are available in the MATLAB data file x.mat. Determine and plot the
autocorrelation sequence for this process over the maximum lag of 10.

Solution The following MATLAB script loads the data file, uses the xcorr function to
compute autocorrelations, and then plots the random sequence and its autocor-
relation. The resulting plots are shown in Figure 13.12. From the autocorrelation
plot, we can conclude that the correlation coefficient ρ is approximately equal
to 0.7.

>> load x; maxlag = 10;
>> [Rx,lags] = xcorr(x,maxlag,’coeff’);
>> % Plotting commands follow

�

13.4 POWER SPECTRAL DENSITY

In our previous discussions in Section 13.1.2, we related average dc and
ac powers in a stationary random signal to the first and second moments
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FIGURE 13.12 Plots of the random process and its autocorrelation in
Example 13.11

of a random variable at each t. We further would like to know how the
average ac power is distributed along the frequency scale so that we can
design appropriate frequency selective or optimal filters. As we explain in
this section, this power distribution can be gleaned from the analysis of
the pairs of random variables and, in particular, from the autocorrelation
function. The result is a new term called power spectral density, or PSD.

To develop this result, we will need the use of Fourier analysis. We
studied and used Fourier transforms of continuous- and discrete-time
signals in previous chapters where signals were mostly deterministic and
satisfied certain convergence conditions such as finite power or absolute
integrability. It is difficult to establish that random signals can satisfy
these conditions. To alleviate this seemingly difficult mathematical prob-
lem, we will consider a truncated version of the random signal for which
the Fourier transform certainly exists for each sample waveform. Then we
will take the ensemble average to remove randomness and a limiting op-
eration in time (toward infinity) to remove truncation in order to obtain
the desired result.

Let XT (t) be a finite-duration random signal derived from the WSS
random process X(t)

XT (t)
�
=

{
X(t), −T ≤ t ≤ T

0, otherwise
(13.131)

and let XT (jΩ) be its continuous-time Fourier transform (CTFT), which
exists.4 The relevant CTFT pairs are given by

XT (jΩ) =
∫ ∞

−∞
XT (t)e−jΩt dt =

∫ T

−T

X(t)e−jΩt dt, (13.132a)

XT (t) =
1
2π

∫ ∞

−∞
XT (jΩ)ejΩt dΩ (13.132b)

4Note the difference in font representation: sans-serif X for random variable and roman-
italic X for CTFT.
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where Ω is the analog radian frequency in rad/sec. Note that XT (jΩ) is
a random variable. The energy in the truncated random signal XT (t) is
given by

EXT

�
=

∫ T

−T

X2(t) dt =
∫ ∞

−∞
X2

T (t) dt (13.133)

The time-averaged power across 1 ohm resistance is then given by

PXT
=

1
2T

∫ ∞

−∞
X2

T (t) dt =
1

2T (2π)

∫ ∞

−∞

∣∣XT (jΩ)
∣∣2 dΩ (13.134)

where for the second equality we have used Parseval’s theorem for CTFT.
Clearly, the term PXT

is a random variable since it contains random quan-
tities. Hence we will take an ensemble average to obtain the average power
in the truncated random process as

PXT

�
= E

[
PXT

]
=

1
2T (2π)

∫ ∞

−∞
E
[∣∣XT (jΩ)

∣∣2] dΩ (13.135)

Finally, we take the limit as T → ∞ to obtain the average power in the
original untruncated random process

PX
�
= lim

T→∞

{
1

2T (2π)

∫ ∞

−∞
E
[∣∣XT (jΩ)

∣∣2] dΩ
}

=
1
2π

∫ ∞

−∞
lim

T→∞

E
[∣∣XT (jΩ)

∣∣2]

2T
dΩ (13.136)

A close examination of the quantity inside the integral in (13.136) above
reveals that it is a power density term since the left-hand side is an average
power. We denote this term as

SXX(Ω)
�
= lim

T→∞

E
[∣∣XT (jΩ)

∣∣2]

2T
(13.137)

and refer to it as power spectral density (PSD) since it is a power density
as a function of frequency.

It remains to be shown that the PSD is related to the autocorrela-
tion function through the CTFT. Toward this, consider the numerator in
(13.137), which from (13.132a) can be written as

E
[∣∣XT (jΩ)

∣∣2] = E

[∫ T

−T

∫ T

−T

X(t1)X(t2)e−jΩ(t1−t2) dt1 dt2

]

=
∫ T

−T

∫ T

−T

E[X(t1)X(t2)]e−jΩ(t1−t2) dt1 dt2

=
∫ T

−T

∫ T

−T

RXX(t1 − t2)e−jΩ(t1−t2) dt1 dt2 (13.138)
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where in the last equality we have used the fact that X(t) is a WSS process.
Since the integrand in (13.138) depends only on (t1 − t2), we make the
change of variables τ = t1 − t2 and λ = t1 + t2 and integrate along λ to
transform the double integral into a single integral

E
[∣∣XT (jΩ)

∣∣2] =
∫ 2T

−2T

RXX(τ)(2T − |τ |)e−jΩτ dτ (13.139)

Finally, substituting (13.139) into (13.137) and taking the limit, we obtain

SXX(Ω) = lim
T→∞

∫ 2T

−2T

RXX(τ)
(
1 − |τ |

2T

)
e−jΩτ dτ

=
∫ ∞

−∞
RXX(τ)e−jΩτ dτ (13.140)

which shows that the PSD SXX(Ω) is a CTFT of the autocorrelation func-
tion RXX(τ). This important result is known as the Wiener–Khinchin
theorem. The autocorrelation function can be obtained from the PSD
using the inverse CTFT

RXX(τ) =
1
2π

∫ ∞

−∞
SXX(Ω)ejΩτ dΩ (13.141)

It should be noted that the total average power in the WSS random
process X(t) is given by

PX =
1
2π

∫ ∞

−∞
SXX(Ω) dΩ (13.142)

which from (13.141) is equal to RXX(0) = E
[
X2(t)

]
= µ2

X + σ2
X. This is

the sum of the dc and ac powers. Although it is tempting to conclude
that the dc power is equal to µ2

X and ac power is equal to σ2
X, this is not

always true unless the process is also ergodic. However, if the process has
a dc power, then the PSD function will have an impulse at the origin
Ω = 0 with area equal to the dc power. Likewise, if the PSD function has
impulses at nonzero frequencies, then the process is known as a harmonic
process.

Properties of the PSD and Autocorrelation Functions
The PSD SXX(Ω) function possesses several important properties:

1. SXX(Ω) is a real-valued function even for complex-valued random
processes.

2. SXX(Ω) is an even function for real-valued processes or conjugate even
for complex-valued processes.

3. SXX(Ω) is a non-negative function.
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Through the CTFT relations, the autocorrelation function RXX(τ) also
possesses equivalent properties:

1. RXX(τ) is a conjugate symmetric function.
2. For real-valued random processes, RXX(τ) is real and even.
3. RXX(τ) is a non-negative definite function.

� EXAMPLE 13.12 Let RXX(τ) = e−α|τ |, α > 0. Determine the PSD SXX(Ω).

Solution Using (13.140), we have

SXX(Ω) =
∫ ∞

−∞
e−α|τ |e−jΩτ dτ

=
∫ 0

−∞
eατe−jΩτ dτ +

∫ ∞

0
e−ατe−jΩτ dτ

=
1

α − jΩ
+

1
α + jΩ

=
2α

α2 + Ω2 (13.143)

The autocorrelation function RXX(τ) and the PSD SXX(Ω) are plotted in
Figure 13.13. �

–10 0 10–5 0

Rxx(t ) Sxx(Ω)

1 1

(a) (b)

5
Ωt

FIGURE 13.13 Plots of (a) autocorrelation and (b) PSD in Example 13.12

Cross-Spectral Density Function
Analogous to the PSD (which we will also call an auto-PSD) function, we
can also define the cross-spectral density (CSD) function as the Fourier
transform of the cross-correlation function. Let X(t) and Y(t) be jointly
WSS random signals with cross-correlation RXY(τ). Then the CSD func-
tion is given by

SXY(Ω)
�
=

∫ ∞

−∞
RXY(τ)e−jΩτ dτ (13.144)

This function does not have a connotation as a power density function
and, in general, is a complex-valued function. However, it is useful in
analysis.
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13.4.1 PSD OF RANDOM SEQUENCES
A similar discussion and analysis applies to random sequences. The PSD
of a WSS random sequence X[n] and its autocorrelation are related by the
discrete-time Fourier transform (DTFT) relations

SXX(ω) =
∞∑

�=−∞
RXX(�)e−jω�, (13.145a)

RXX(�) =
1
2π

∫ π

−π

SXX(ω)ejω� dω (13.145b)

where ω is the digital radian frequency in radians/sample. Note that in
this case, the PSD SXX(ω) is periodic in ω with a period of 2π. The total
average power in X[n] is then given by

PX = RXX(0) =
1
2π

∫ π

−π

SXX(ω) dω (13.146)

Also note that the PSD and the autocorrelation functions of a random se-
quence follows similar properties given for random signals above. Finally,
for jointly WSS random sequences X(n) and Y(n) with cross-correlation
RXY(�), we define the CSD function by

SXY(ω)
�
=

∞∑
�=−∞

RXY(�)e−jω� (13.147)

� EXAMPLE 13.13 Let the autocorrelation of a random sequence X(n) be given by RXX(�) =
( 1

2

)|�|

for all �. Determine its PSD SXX(ω).

Solution Using (13.145a), we obtain

SXX(ω) =
∞∑

�=−∞

(
1
2

)|�|
e−jω� =

−1∑

�=−∞

(
1
2

)−�

e−jω� +
∞∑

�=0

(
1
2

)�

e−jω�

=
∞∑

�=1

(
1
2
ejω

)�

+
∞∑

�=0

(
1
2
e−jω

)�

=
1
2ejω

1 − 1
2ejω

+
1

1 − 1
2e−jω

=
3

5 − 4 cos(ω)
(13.148)

The plots of the autocorrelation RXX(�) and PSD SXX(ω) are shown in
Figure 13.14. �

� EXAMPLE 13.14 Let the PSD of a random sequence X(n) be given by

SXX(ω) =
16

17 + 8 cos(ω)
, −π < ω ≤ π (13.149)

Determine its autocorrelation sequence RXX(�).
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FIGURE 13.14 Plots of (a) autocorrelation and (b) PSD in Example 13.13

Solution Using (13.145b), we obtain

RXX(�) =
1
2π

∫ π

−π

16
17 + 8 cos(ω)

ejω� dω (13.150)

which is not easy to evaluate. Therefore, we will use the inverse z-transform
approach by converting SXX(ω) in (13.149) into an equivalent z-domain function
S̃XX(z), called the complex PSD. This is done by using

cos(ω) =
ejω + e−jω

2
=

z + z−1

2

∣∣∣∣
z=ejω

(13.151)

Substituting (13.151) in (13.149), we have

S̃XX(z) =
16

17 + 8(z + z−1)/2
=

16z

4z2 + 17z + 4

=
4z(

z + 1
4

)
(z + 4)

, ROC: 1
4 < |z| < 4 (13.152)

since the unit circle must be in the ROC. Now using partial fraction expansion
followed by the use of Table 4.1 (z-transform pairs), we can obtain RXX(�). From
(13.152),

S̃XX(z) =
4z(

z + 1
4

)
(z + 4)

=
16
15

(
z

z + 1
4

− z

z + 4

)
, 1

4 < |z| < 4 (13.153)

Hence

RXX(�) =
16
15

(
−1

4

)�

u(�) +
16
15

(−4)�u[−� − 1]

=
16
15

(
−1

4

)|�|
, for all � (13.154)

The plots of the PSD sX(ω) and autocorrelation RXX(�) are shown in
Figure 13.15. �
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FIGURE 13.15 Plots of (a) PSD and (b) autocorrelation in Example 13.14

MATLAB Implementation The SP Toolbox provides several func-
tions, such as pwelch and cpsd, to estimate PSD and CSD functions,
respectively, from data vectors. These functions use techniques from spec-
tral estimation theory, a topic that is beyond the scope of this book. Since
we have used the xcorr function to estimate autocorrelation lag values,
we will compute the FFT of a large number of suitably zero-padded au-
tocorrelations as a preferred implementation of the PSD estimate.

Since the autocorrelation values being transformed are still finite
in number (and not infinite as the theory requires), this computation
amounts to windowing the original autocorrelation sequence by a rect-
angular window. This may result in some of the computed PSD values
becoming negative, which violates one of the PSD properties. Therefore,
we will use a window function whose DTFT is always non-negative. Such
windows are known as lag windows, and one such window is the Bartlett
(or triangular) window. It should be noted that there are other choices
available in literature for lag-windows. One side-effect of using nonrectan-
gular window is some loss of resolution in the spectral estimates. However,
this loss can be mitigated by using a large number of autocorrelation lags.
The following PSD function incorporates the above discussed approach.

function [Sx,omega] = PSD(Rx,maxlag,Nfft)
%PSD Computation of PSD using Autocorrelation Lags
% [Sx,omega] = PSD(Rx,lags,Nfft)
% Sx: Computed PSD values
% omega: digital frequency array in pi units from -1 to 1
% Rx: autocorrelations from -maxlag to +maxlag
% maxlag: maximum lag index (must be >= 10)
% Nfft: FFT size (must be >= 512)
Nfft2 = Nfft/2;
M = 2*maxlag+1; % Bartlett window length
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Rx = bartlett(M).*Rx(:); % Windowed autocorrelations
Rxzp = [zeros(Nfft2-maxlag,1);Rx;zeros(Nfft2-maxlag-1,1)];
Rxzp = ifftshift(Rxzp); %Zero-padding and circular shifting
Sx = fftshift(real(fft(Rxzp))); % PSD
Sx = [Sx;Sx(1)]; % Circular shifting
omega = linspace(-1,1,Nfft+1); % Frequencies in units of pi
end

� EXAMPLE 13.15 In Example 13.11 we computed autocorrelation sequence RXX(�), −10 ≤ � ≤ 10,
of a random sequence from its observed values. Compute its PSD numerically.

Solution We will demonstrate the use of the PSD function in the following MATLAB
script.

>> load x; maxlag = 10; %Load random sequence data
>> [Rx,lags] = xcorr(x,maxlag,’coeff’); % Compute ACRS
>> [Sx,omega] = PSD(Rx,maxlag,512); % Compute PSD
>> % Plotting commands follow

The resulting plots are shown in Figure 13.16. �
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FIGURE 13.16 Plots of a sample sequence and its PSD in Example 13.15

13.5 STATIONARY RANDOM PROCESSES THROUGH LTI SYSTEMS

One of the important aspects of signal processing is the filtering of signals
through linear systems. In previous chapters, we studied how to filter
deterministic signals through linear and time-invariant (LTI) systems to
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LTI System

X(t) Y(t)
h(t)

H ( jΩ)

FIGURE 13.17 Filtering of random process

obtain the output response in both the time domain and the frequency
domain. Now we want to consider filtering of stationary random processes.
What do we mean exactly by this filtering?

To obtain this meaning, we appeal to the ensemble description of the
random process, which is that it is a collection of sample waveforms. When
each input sample waveform is processed through the system, it produces
a filtered sample function. Thus at the output, we also have an ensemble
of sample waveforms or an output random process. The individual sample
waveform filtering aspect is well understood and can be implemented with
filter structures from Chapter 6. What we really are interested in is how
do we characterize the output random process in terms of its second-
order statistical averages. This is the meaning that we seek. A complete
description of the output process in terms of its joint densities is difficult
to obtain even for simple systems.

Let the input random signal be a WSS process X(t) with a known
mean µX and an autocorrelation function RXX(τ). It is applied as an
input to a LTI system with impulse response h(t) or frequency response
function H(jΩ). Let the output process be Y(t). This system set up is
shown in Figure 13.17. The output process, symbolically, is given by the
convolution integral

Y(t) = X(t) ∗ h(t) =
∫ ∞

λ=−∞
X(λ)h(t − λ) dλ (13.155)

while the frequency response function H(jΩ) is given by

H(jΩ) =
∫ ∞

−∞
h(t)e−jΩt dt (13.156)

We want to determine the mean and autocorrelation function of the out-
put process Y(t) as well as the cross-correlation between the output and
input processes and also want to examine if Y(t) is a stationary process.

Computation of Output Mean Function The mean of Y(t) from
(13.155) is given by

µY(t) = E
[
Y(t)

]
=
∫ ∞

λ=−∞
E
[
X(λ)

]
h(t − λ) dλ

=
∫ ∞

λ=−∞
µXh(t − λ) dλ =

(∫ ∞

λ=−∞
h(λ) dλ

)
µX (13.157)
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Note that the integral in the parenthesis is a constant, which from (13.156)
is equal to H(j0), or the dc-gain value. Hence the output mean is given by

µY(t) =
(∫ ∞

λ=−∞
h(λ) dλ

)
µX = H(j0)µX = µY (13.158)

which also is a constant. Thus the output mean is the input mean scaled
by the dc-gain of the LTI system, which makes sense.

Computation of Cross-Correlation and CSD Functions Con-
sider the cross-correlation between the output Y(t + τ) and X(t). Using
(13.155), we obtain

RYX(t + τ, t) = E
[
Y(t + τ)X(t)

]
= E

[∫ ∞

λ=−∞
h(λ)X(t + τ − λ)X(t) dλ

]

=
∫ ∞

t1=−∞
h(λ)E

[
X(t + τ − λ)X(t)

]
dλ

=
∫ ∞

t1=−∞
h(λ)RXX(τ − λ) dλ (13.159)

where in the last equality we have used the stationarity of X(t). The
integral in (13.159) can be identified as a convolution between h(τ) and
RXX(τ), that is,

RYX(t + τ, t) = h(τ) ∗ RXX(τ) = RYX(τ) (13.160)

Thus the cross-correlation function is time invariant. After taking Fourier
transform of (13.160), the CSD function between the output and the input
is given by

SYX(Ω) = H(jΩ)SXX(Ω) (13.161)

In a similar fashion, we can compute the cross-correlation and CSD
between the input and the output. The results are

RXY(τ) = h(−τ) ∗ RXX(τ) (13.162a)

SXY(Ω) = H∗(jΩ)SXX(Ω) (13.162b)
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Computation of the Output Autocorrelation and PSD Functions
Now consider the autocorrelation function of the output Y(t). Again using
(13.155), we obtain

RYY(t + τ, t) = E
[
Y(t + τ)Y(t)

]
= E

[∫ ∞

λ=−∞
Y(t + τ)h(λ)X(t − λ) dλ

]

=
∫ ∞

λ=−∞
h(λ)E[Y(t + τ)X(t − λ)] dλ

=
∫ ∞

λ=−∞
h(λ)RYX(τ + λ) dλ =

∫ ∞

λ=−∞
h(−λ)RYX(τ − λ) dλ

(13.163)

where we have used the fact that the cross-correlation RYX(τ) is time in-
variant. The integral in (13.163) can be identified as a convolution between
h(−τ) and RYX(τ), that is,

RYY(t + τ, t) = h(−τ) ∗ RYX(τ) = RYY(τ) (13.164)

Clearly, the autocorrelation RYY(τ) is also time invariant. Substituting
RYX(τ) from (13.160) in (13.164), we obtain

RYY(τ) = h(τ) ∗ h(−τ) ∗ RXX(τ) (13.165)

After taking Fourier transform of (13.165), the output PSD is given by

SYY(Ω) =
∣∣H(jΩ)

∣∣2SXX(Ω) (13.166)

which is also a real and non-negative function, thus emphasizing that it
is a valid PSD function.

The first convolution term in (13.165) is unique to the LTI system
and can be pre-computed. It is referred to as the system autocorrelation
function and is denoted by

Rh(τ)
�
= h(τ) ∗ h(−τ) (13.167)

which implies
RYY(τ) = Rh(τ) ∗ RXX(τ) (13.168)

The Fourier transform of Rh(τ) is referred to as the system power-spectral
function and is denoted by

SH(Ω) =
∣∣H(jΩ)

∣∣2 (13.169)

which implies
SYY(Ω) = SH(Ω)SXX(Ω) (13.170)
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Starting with the cross-correlation function RXY(τ), we can obtain
the same result given in (13.165). The corresponding expressions are

RYY(τ) = h(τ) ∗ RXY(τ) = h(τ) ∗ h(−τ) ∗ RXX(τ) (13.171a)

SYY(Ω) = H(jΩ)SXY(Ω) =
∣∣H(jΩ)

∣∣2SXX(Ω) (13.171b)

In conclusion, since the mean µY is a constant and the autocorrelation
RYY(τ) is time invariant, the output process Y(t) is also a WSS process.
Thus the LTI filtering of a WSS process will always result in a WSS
process.

� EXAMPLE 13.16 A WSS random process X(t) with mean µX = 2 and autocovariance CXX(τ) =
4δ(τ) is applied as an input to a stable LTI system with impulse response

h(t) = e−tu(t) (13.172)

The output of this system is the random process Y(t). Determine the following
quantities.
1. The mean µY.

Solution Using (13.158), the mean of Y(t) is given by

µY = µX

∫ ∞

−∞
h(t) dt = 2

∫ ∞

0
e−t dt = 2 (13.173)

2. The cross-correlation RXY(τ) and the cross-covariance CXY(τ).

Solution The autocorrelation of X(t) is given by

RXX(τ) = µ2
X + CXX(τ) = 4 + 4δ(τ) (13.174)

Now using (13.162a), we have

RXY(τ) = h(−τ) ∗ RXX(τ) = eτu(−τ) ∗ [4 + 4δ(τ)]

= 4
∫ 0

−∞
eτ dτ + 4eτu(−τ) = 4 + 4eτu(−τ) (13.175)

Since RXY(τ) = µXµY + CXY(τ), the cross-covariance, CXY(τ), from (13.175) is
given by

CXY(τ) = 4eτu(−τ) (13.176)

3. The autocorrelation RXX(τ) and the autocovariance CXX(τ).

Solution From (13.167), the system autocorrelation function is given by

Rh(τ) = h(τ) ∗ h(−τ) = [e−τu(τ)] ∗ [eτu(−τ)]

=

{∫ τ

−∞ eλe−(τ−λ) dλ, τ < 0,∫ 0
−∞ eλe−(τ−λ) dλ, τ ≥ 0,

=

{
1
2eτ , τ < 0,
1
2e−τ , τ ≥ 0,

=
1
2
e−|τ | (13.177)
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Now from (13.168), (13.174), and (13.177), the output autocorrelation is
given by

RYY(τ) = Rh(τ) ∗ RXX(τ) =
1
2
e−|τ | ∗ [4 + 4δ(τ)]

= 2
∫ ∞

−∞
e|τ | dτ + 2e−|τ | = 4 + 2e−|τ | (13.178)

Since µY = 2, the autocovariance CYY(τ) is given by

CYY(τ) = RYY(τ) − µ2
Y = 2e−|τ | (13.179)

From these calculations, note that cross quantities undergo operations identical
to those for the auto quantities. �

� EXAMPLE 13.17 Repeat Example 13.16 using the frequency domain approach by computing the
PSD and CSD quantities.

Solution The frequency response function is given by

H(jΩ) = F [e−tu(t)] =
1

1 + jΩ
(13.180)

From (13.158), the mean µY is

µY = µXH(j0) = 2(1) = 2 (13.181)

From (13.174), the input PSD is

SXX(Ω) = F [4 + 4δ(τ)] = 8πδ(Ω) + 4 (13.182)

Now from (13.162b), the CSD between X(t) and Y(t) is given by

SXY(Ω) = H∗(jΩ)SXX(Ω) =
8πδ(Ω) + 4

1 − jΩ

= 8πδ(Ω) +
4

1 − jΩ
(13.183)

Hence, after inverse Fourier transformation, we obtain

RXY(τ) = 4 + 4eτu(−τ) (13.184)

as before in (13.175). From (13.169) and (13.170), the PSD SYY(Ω) is given by

SYY(Ω) =
∣∣H(jΩ)

∣∣2SXX(Ω) =
8πδ(Ω) + 4

1 + Ω2

= 8πδ(Ω) +
4

1 + Ω2 (13.185)

In Example 13.12 and in (13.143), we obtained the Fourier transform pair

e−a|τ |, a > 0 F←→ 2a

a2 + Ω2 (13.186)
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Using a = 1 in (13.186), we obtain the inverse Fourier transform of the second
term in (13.186). Hence

RYY(τ) = 4 + 2e−|τ | (13.187)

as before in (13.178). �

13.5.1 DISCRETE-TIME LTI SYSTEMS
Similar results apply to the discrete-time LTI systems driven by WSS
random sequences. Let h(n) be the impulse response of the system, and
let H(ejω) be the frequency response function, that is,

H(ejω) =
∞∑

n=−∞
h(n)e−jωn (13.188)

Let X(n) be the input WSS process with mean µX, autocorrelation se-
quence RXX(�), and auto PSD SXX(ω). Let Y(n) be the resulting output
process. Then Y(n) is also WSS with the following statistical quantities.

Output Mean

µY =

( ∞∑
n=−∞

h(n)

)
µX = H(ej0)︸ ︷︷ ︸

dc-gain

µX (13.189)

Cross-correlations between input and output

RYX(�) = h(�) ∗ RXX(�), (13.190a)

RXY(�) = h(−�) ∗ RXX(�) (13.190b)

CSD functions between input and output

SYX(ω) = H(ejω)SXX(ω) (13.191a)

SXY(ω) = H(e−jω)SXX(ω) (13.191b)

Autocorrelations between input and output

RYY(�) = h(−�) ∗ RY,X(�) = h(�) ∗ RXY(�) (13.192a)

= h(�) ∗ h(−�)︸ ︷︷ ︸
�
= Rh(�)

∗ RXX(�) = Rh(�) ∗ RXX(�) (13.192b)
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Auto PSD functions between input and output

SYY(ω) = H(e−jω)SYX(ω) = H(ejω)SXY(ω) (13.193a)

=
∣∣H(ejω)

∣∣2
︸ ︷︷ ︸

�
= SH(ω)

SXX(ω) = SH(ω)SXX(ω) (13.193b)

Average power in the output

E{X2(n)} = RXX[0] =
1
2π

∫ π

−π

SXX(ω) dω (13.194)

� EXAMPLE 13.18 Let X(n) be a WSS random sequence with mean and autocovariance sequence
given by

µX = 1 and CXX(�) = {1, 2, 3
↑
, 2, 1} (13.195)

It is applied as an input to a stable LTI system given by the impulse response

h(n) = {1
↑
, 1, 1, 1} (13.196)

Determine the following quantities.

1. The mean µY.

Solution From (13.189), we obtain

µY =

( ∞∑

�=−∞
h(�)

)
µX = (1 + 1 + 1 + 1)(1) = 4 (13.197)

2. The cross-covariance CYX(�) and cross-correlation RY,X(�).

Solution The cross-covariance sequences follow operations similar to those in (13.190).
Thus CY,X(�) is given by

CYX(�) = h(�) ∗ CXX(�) = {1
↑
, 1, 1, 1} ∗ {1, 2, 3

↑
, 2, 1}

= {1, 3, 6
↑
, 8, 8, 6, 3, 1} (13.198)

which is computed using MATLAB as shown in the following script.
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>> h = [1,1,1,1]; nh = [0:3];
>> Cx = [1,2,3,2,1]; lCx = [-2:2];
>> [Cyx,lCyx] = conv_m(Cx,lCx,h,nh)
Cyx =

1 3 6 8 8 6 3 1
lCyx =

-2 -1 0 1 2 3 4 5

The cross-correlation RYX(�) is then given by

RYX(�) = CYX(�) + µYµX = {1, 3, 6
↑
, 8, 8, 6, 3, 1} + 4

= {. . . , 4, 4, 5, 7, 10
↑

, 12, 12, 10, 7, 5, 4, 4 . . .} (13.199)

3. The autocovariance CYY(�) and autocorrelation RYY(�).

Solution The autocovariance sequences also follow operations similar to those in (13.192).
Thus CYY(�) is given by

CYY(�) = h(−�) ∗ CYX(�) = {1, 1, 1, 1
↑
} ∗ {1, 3, 6

↑
, 8, 8, 6, 3, 1}

= {1, 4, 10, 18, 25, 28
↑

, 25, 18, 10, 4, 1} (13.200)

which is also computed using MATLAB as shown below.

>> [Cy,lCy] = conv_m(Cyx,lCyx,h,-fliplr(nh))
Cy =

1 4 10 18 25 28 25 18 10 4 1
lCy =

-5 -4 -3 -2 -1 0 1 2 3 4 5

Finally, the autocorrelation RYY(�) is given by

RYY(�) = CYY(�) + µ2
Y = {1, 4, 10, 18, 25, 28

↑
, 25, 18, 10, 4, 1} + 16

= {. . . , 16, 16, 17, 20, 26, 34, 41, 44
↑

, 41, 34, 26, 20, 17, 16, 16 . . .} (13.201)

�

� EXAMPLE 13.19 A zero-mean stationary random process with PSD SXX(ω) = 1 is passed through
a linear filter with impulse response

h(n) =

{
(0.95)n, n ≥ 0
0, n < 0

(13.202)

Determine the PSD SYY(ω) and the autocorrelation RYY(�) of the output
process Y(n).
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Solution It is easily seen that

H(ejω) =
∞∑

n=0

h(n)e−jωn =
∞∑

n=0

(0.95e−jω)n

=
1

1 − 0.95e−jω
(13.203)

from which we obtain

∣∣H(ejω)
∣∣2 =

1∣∣1 − 0.95e−jω
∣∣2 =

1
1.9025 − 1.9 cos(ω)

(13.204)

Therefore, the PSD of the output is

SYY(ω) =
∣∣H(ejω)

∣∣2SXX(ω) =
1

1.9025 − 1.9 cos(ω)
(13.205)

Note that SYY(ω) is periodic with period 2π. We can determine the autocorre-
lation RYY(�) using the inverse z-transform approach of Example 13.14. How-
ever, in this example, we will use MATLAB to numerically compute samples
of RYY(�). This computation is similar to the one used in the PSD function to
compute SXX(ω) from samples of RXX(�) except for the windowing. Details are
given in the following MATLAB script.

>> N = 1024; omega = linspace(-1,1,N+1)*pi; % Frequency samples
>> Sy = 1./(1.9025-1.9*cos(omega));
>> % Autocorrelation sequence
>> Sy = fftshift(Sy(1:end-1)); % Circular shift; origin at the beginning
>> Ry = real(ifft(Sy)); % Autocorrelation samples
>> Ry = ifftshift(Ry); % Circular shift; origin at the center
>> Ry = [Ry,Ry(1)]; % Sample symmetry for plotting
>> Rymax = max(Ry); % Ry[0] value
>> fprintf(’ Ry[0] = %7.4f\n’,Rymax);
Ry[0] = 10.2564
>> Ry = Ry/Rymax; % Normalized autocorrelation
>> fprintf(’ rho = %4.2f\n’,Ry(N/2));
rho = 0.95

From the resulting printout, note that the maximum autocorrelation is RYY(0) =
10.2564 while the normalized autocorrelation at lag � = ±1 is equal to 0.95.
Since 10.2564 = 1/(1 − 0.952), we infer that the autocorrelation sequence is

RYY(�) =
ρ|�|

1 − ρ2 , ρ = 0.95 (13.206)

Figure 13.18 shows plots of the PSD SYY(ω) and the first ±10 lag values of the
autocorrelation RYY(�), which confirms our inference in (13.206). �
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FIGURE 13.18 Plots of the PSD and first 10 lag samples of the normalized
RYY(�) in Example 13.19

13.6 USEFUL RANDOM PROCESSES

After studying random processes through their statistical and spectral
descriptions as well as analyzing their input-output behavior through LTI
systems, we now consider a few representative and useful random process
models that will be needed in Chapters 14 and 15. One important model
is that of the Gaussian random process which needs only second-order
statistical averages to describe it completely. Another important model
is that of the idealized noise signal called the white noise process. The
term noise is generally used to describe unwanted signals that tend to
disturb and distort the transmission and processing of signals—for exam-
ple, in communication systems—and over which we have limited control.
Using white noise process and appropriately designed LTI systems we
can generate other types of random processes such as Markov processes,
lowpass and bandpass processes, and so on. We will also consider a few
discrete-time processes.

13.6.1 GAUSSIAN PROCESS
Gaussian processes play an important role in many applications, in par-
ticular, in communication systems. We have discussed useful properties of
the Gaussian distribution in Section 13.2.3. These properties make Gaus-
sian processes mathematically tractable and easy to deal with. Another
crucial reason why Gaussian distribution is necessary can be found in the
ever-present thermal noise that is produced by the random movement of
agitated electrons in electrical devices.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Useful Random Processes 669

To understand this Gaussian behavior, consider a resistor. The free
electrons in a resistor move as a result of thermal agitation. This move-
ment is random and can be in any direction. However, their velocity is
proportional to the ambient temperature; the higher the temperature,
the higher the velocity. This movement generates a current with a ran-
dom value. We can model each electron as a tiny current source whose
current is a random variable with positive or negative values. The total
current generated (which is the thermal noise) is the sum of all these cur-
rent sources. Quantum mechanics suggests that the electron movements
(i.e., current sources) are statistically independent. Thus the thermal noise
is a sum of a large number of IID random sources. Using the central limit
theorem, we conclude that this total current has a Gaussian distribution.

A random process X(t) is a Gaussian process if for all n and all time
instances (t1, t2, . . . , tn), the n random variables {X(ti)}n

i=1 are jointly
Gaussian with pdf given by

fX(x) =
1

(2π)n/2 [det(CX]1/2 exp
[
−1

2
(x − µX)TC−1

XX (x − µX)
]

(13.207)

where the vector x = [x1, . . . , xn]T denotes the values taken by the n

random variables X(ti)
�
= Xi, µX denotes the mean vector containing the

means, E
[
Xi

]
= µi

�
= µX(ti), of the random variables Xi, and CXX de-

notes the autocovariance matrix of the n random variables with elements

CXX(tk, t�) = E
[
(Xk − µk)(X� − µ�)

]
(13.208)

The superscript T denotes the transpose of a vector or a matrix, and the
term C−1 denotes the inverse of matrix C.

From the above definition of the Gaussian random process, it
should be obvious that at any t, X(t) is Gaussian with mean µX(t)
and variance CXX(t, t). Similarly, if t1 �= t2 are two time instances,
then X(t1) and X(t2) are jointly Gaussian with means µX(t1) and
µX(t2), variances CXX(t1, t1) and CXX(t2, t2), and correlation coefficient
ρX(t1, t2) = CXX(t1, t2)/

√
CXX(t1, t1)CXX(t2, t2), and so on. Thus the

Gaussian random process is completely described in the probabilistic
sense. Furthermore, if it is a stationary random process, then µX(t) = µX

and CXX(t + τ, t) = CXX(τ).
Finally, since Gaussianity is preserved under linear transformation,

if a Gaussian process X(t) is passed through a LTI system, the output
is also a Gaussian process. The effect of the system operation is simply
to change the mean function µX(t) → µY(t) and the covariance function
CXX(t1, t2) → CY(t1, t2).
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� EXAMPLE 13.20 Let X(t) be a Gaussian random process with mean µX(t) = 3 and autocovariance
CXX(t1, t2) = 4e−0.2|t1−t2|.

1. Determine the probability that X(5) ≤ 2.

Solution Note that X(t) is a stationary random process with mean µX = 3 and variance
σ2

X = CXX(t, t) = 4. Thus from (13.21) and (13.22), we obtain

Pr[X(5) ≤ 2] = FX(5)(2) =
1
2

[
1 + erf

(
2 − 3√

2(4)

)]

=
1
2

[
1 + erf

(
−1
2
√

2

)]
= 0.3085 (13.209)

which is computed using the MATLAB fragment

>> Pr = 0.5*(1+erf(-1/sqrt(2*4)));
>> fprintf(’Pr[X(5)<=2] = %6.4f\n’,Pr);
Pr[X(5)<=2] = 0.3085

2. Determine the probability that |X(8) − X(5)| ≤ 1.

Solution Let Y = X(8) − X(5) be a random variable. Then Y is Gaussian with mean 0
and variance

σ2
Y = CXX(8, 8) + CXX(5, 5) − 2CXX(5, 5) = 4 + 4 − 8e−0.6

= 3.608 (13.210)

Hence

Pr[|X(8) − X(5)| ≤ 1] = Pr[|Y | ≤ 1] = FY(1) − FY(−1)

=
1
2

[
1 + erf

(
1√

2 · 3.608

)]
− 1

2

[
1 + erf

(
−1√

2 · 3.608

)]

= 0.4014 (13.211)

which is also computed using MATLAB as shown below.

>> Pr = 0.5*(1+erf(1/sqrt(2*3.608))) ...
- 0.5*(1+erf(-1/sqrt(2*3.608)));

>> fprintf(’Pr[|X(8)-X(5)|<=1] = %6.4f\n\n’,Pr);
Pr[|X(8)-X(5)|<=1] = 0.4014

�

13.6.2 WHITE NOISE PROCESS
This is an idealization of the thermal noise generated in electronic de-
vices that helps in analysis immensely. Recall the discussion leading up to
the Gaussian process in the previous section. Using quantum mechanical
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FIGURE 13.19 Power spectrum of thermal noise at room temperature,
T = 300 K

analysis, it can be shown that the thermal noise is a zero-mean stationary
process with a PSD given by

STN(2πF ) =
�F

2
(
e�F/kT − 1

) , F in Hz (13.212)

where � is Planck’s constant (equal to 6.6× 10−34 joules-sec.), k is Boltz-
mann’s constant (equal to 1.38 × 10−23 joules/kelvin), and T is the ab-
solute temperature in degrees kelvin (K). A plot of this PSD is shown in
Figure 13.19. It achieves its maximum at F = 0 with the value of kT/2.
The spectrum goes to zero as F → ∞, but the rate of decrease is very
slow. For example, at room temperature (T = 300 K), the PSD STN(2πF )
drops to only 90% of the peak value at about 2000 GHz, well beyond the
frequencies used in the conventional systems, including communication
and radar systems.

Since the thermal noise process has a PSD that is approximately
constant over a large range of frequencies, one simple approach to ap-
proximate (13.212) is to consider an ideal process that has PSD which is
exactly constant over the entire frequency range. Such a process will have
an infinite power, and hence it may not be a meaningful physical pro-
cess. However, this idealization is equivalent in usefulness to the impulse
function, which also has infinite power.

The noise analysis in systems is usually based on this idealized form
of noise called white noise (WN), which is a zero-mean stationary pro-
cess. The adjective white is used in the same sense as that of the white
light, which contains equal amounts of all frequencies within the visible
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FIGURE 13.20 Characteristics of white noise: (a) power spectral density, (b) au-
tocorrelation function

electromagnetic spectrum. The white noise will be denoted by W(t) and
is defined in terms of its PSD as

SWW(2πF ) =
N0

2
,

watts
Hz

or SWW(Ω) =
N0

4π
,

watts
rad/sec

(13.213)

This PSD is shown in Figure 13.20 and is sometimes referred to as the two-
sided power spectral density, emphasizing that this spectrum extends to
both positive and negative frequencies. The parameter N0 is expressed as

N0 = kT, watts per Hz (13.214)

so that SWW(2πF ) matches the thermal PSD at F = 0. The autocorrela-
tion function of W(t) is given by

RWW(τ) =
N0

2
δ(τ) (13.215)

which reenforces the fact that white noise is an unrealistic process. This
autocorrelation function is also shown in Figure 13.20. Clearly, the sam-
ples W(t1) and W(t2) of white noise for t1 �= t2 are uncorrelated. If W(t)
is also Gaussian (since thermal noise is Gaussian), then it is called a
white Gaussian noise (WGN) process. In this case, the components of
the process (i.e., random variables at each t) are also independent. Such
a process is called an independent process.

Discrete-Time White Noise Process
In a similar fashion, a discrete-time white noise process W(n) is defined
as a zero-mean stationary random sequence with PSD

SWW(2πf) = σ2
W or SWW(ω) =

σ2
W

2π
, f =

ω

2π
(13.216)

where σ2
W is the variance of W(n). The autocorrelation of W(n) is then

given by
RWW(�) = σ2

Wδ(�) (13.217)
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In addition, if W(n) is also Gaussian at each n, then it is termed a WGN
process, which is also an independent process. Sample sequences for inde-
pendent WN processes are easy to generate in MATLAB using the randn
or rand functions. For example,

>> Wn = randn(N,1);

generates N samples of unit variance WGN process, while

>> Wn = rand(N,1);

generates N samples of unit variance independent WN process.

� EXAMPLE 13.21 Generate 10,000 samples of a WGN random process with variance σ2
W = 4.

Numerically estimate autocorrelation lag values RWW(�), −20 ≤ � ≤ 20 and use
these to compute the PSD SWW(2πf). Repeat this procedure over 100 sample
sequences to reduce variability of estimates and average RWW(�) and SWW(2πf)
over these sample functions and plot the resulting quantities.

Solution We will use the randn function to generate WGN samples, the xcorr function to
estimate autocorrelation lag values, and the PSD function to compute the PSD.
These steps and averaging operations are illustrated in the following MATLAB
script.

>> M = 100; % Number of sample sequences to average over
>> N = 10000; % Number of samples in each sequence
>> varW = 4; % Variance of the process
>> sigW = sqrt(varW); % Standard deviation
>> maxlag = 20; % Maximum number of lag values
>> Nfft = 1024; Nfft2 = Nfft/2; % FFT size
>> Rwsum = zeros(2*maxlag+1,1)’; % Rw initialization
>> Swsum = zeros(Nfft+1,1); % Sw initialization
>> ell = -maxlag:maxlag; % Lag indices for plotting
>> f = linspace(-0.5,0.5,Nfft+1); % Frequency grid for plotting
>> % Loop over M Sample Sequences
>> for k = 1:M
>> % Generate 10000 samples of WGN Process
>> wn = sigW*randn(N,1)’;
>> % Compute ACRS
>> [Rw,lags] = xcorr(wn, maxlag,’unbiased’);
>> Rwsum = Rw+Rwsum; % Sum autocorrelations
>> Sw = PSD(Rw’,maxlag,Nfft); % Compute PSD
>> Swsum = Sw+Swsum; % Sum PSD values
>> end
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FIGURE 13.21 Plots of the autocorrelation RWW(�) and PSD SWW(2πf) in
Example 13.21

>> Rw = Rwsum/M; % Average autocorrelations
>> Sw = Swsum /M; % Average PSD
>> % Plotting commands follow

The resulting plots of RWW(�) and SWW(2πf) are shown In Figure 13.21. The
white noise property of the generated random numbers is quite obvious from
these plots. �

13.6.3 MARKOV PROCESS
In some applications, it is advantageous to model a random process whose
future values depend only on the present value. This reduces storage as
well as processing complexities. Such a process is called a Markov process,
and it is a process whose past has no influence on the future given that its
present is specified; that is, if tn > tn−1, then the conditional distribution
of a Markov process X(t) based on the infinite past

Pr
{
X(tn) ≤ xn | X(t), t ≤ tn−1

}
= Pr

{
X(tn) ≤ xn | X(tn−1)

}
(13.218)

depends on its immediate past. It further follows that if t1 < t2 < · · · < tn,
then

Pr
{
X(tn) ≤ xn | X(tn−1),X(tn−2), . . . ,X(t1)

}
= Pr

{
X(tn) ≤ xn | X(tn−1)

}
(13.219)

If X(t) is a Gaussian process, then it is called a Gauss–Markov process.
It can be shown that continuous-time LTI systems described by linear,
constant-coefficient differential equations and driven by a WGN process
generate Gauss–Markov processes.

Discrete-Time Markov Process
Similarly, discrete-time LTI systems described by linear, constant-
coefficient difference equations and driven by WGN sequence generate
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Gauss–Markov sequences. Hence the simplest method for generating
a Gauss–Markov sequence is to use the first-order auto-regressive AR
system

X(n) = ρX(n − 1) + W(n) (13.220)

where W(n) is an independent, zero-mean WGN sequence and the
filter coefficient ρ represents the correlation coefficient between X(n)
and X(n − 1), that is,

E
[
X(n)X(n − 1)

]
= E

[
(ρX(n − 1) + W(n))X(n − 1)

]

= ρE
[
X2(n − 1)

]
= ρσ2

X(n − 1) (13.221)

Thus in this process, we have to store only one past value to generate the
next correlated value.

� EXAMPLE 13.22 Generate 10,000 samples of a Gauss–Markov process X(n) that has correlation
coefficient ρ = 0.7 and average power of 100 watts.

Solution We will use (13.220) with ρ = 0.7 to generate samples of X(n) from W(n). To
generate the WGN W(n), we will need its variance σ2

W. Following the steps used
in Example 13.14, we can show that the autocorrelation of X(n) in (13.220) is
given by

RXX(�) =
(

σ2
W

1 − ρ2

)
ρ|�| =

(
σ2

W

0.51

)
0.7|�| (13.222)

The average power in X(n) is then given by

RXX[0] =
σ2

W

0.51
(13.223)

Hence for RXX[0] = 100, we obtain σ2
W = 51. Now we will generate samples of

W(n) using the randn function and filter those samples using (13.220) to obtain
samples of X(n). The following MATLAB script provides these steps.

>> N = 10000; varW = 51;
>> wn = sqrt(varW)*randn(N,1);
>> rho = 0.7; b = 1; a = [1,-rho];
>> xn = filter(b,a,wn);

The resulting samples were used in Example 13.11. Plots of these samples and
the normalized autocorrelation are shown in Figure 13.12. �
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13.6.4 FILTERED NOISE PROCESS
Even if we model the thermal noise as a white noise process at the input
of a communication receiver system, it gets processed, or, more correctly,
filtered, by subsequent stages of operations in the receiver. At each stage,
a correlated noise process is generated, known as a color noise process, or
colored process for short. If the frequency response function of the receiver
is H(jΩ) and the input is WGN W(t) with PSD SWW(Ω) = N0/(4π), then
the colored process X(t) is also zero mean with PSD

SXX(Ω) = N0
4π

∣∣H(jΩ)
∣∣2 (13.224)

Generally, the stages in the receiver are bandpass systems, and hence
the filtered noise is a bandpass process. However, the information sig-
nals generally have lowpass power distribution. We now consider both
processes below.

Lowpass Process
A random process X(t) is called lowpass if its power spectrum is large in
the vicinity of F = 0 Hz and small (approaching 0) at high frequencies.
In other words, a lowpass random process has most of its power concen-
trated at low frequencies. The discrete-time random process generated in
Example 13.22 is a lowpass process whose PSD is shown in Figure 13.16.

A lowpass random process X(t) is bandlimited if its power spectrum
is given by SXX(jΩ) = 0 for |Ω| > 2πB. The parameter B is called the
bandwidth in Hz of the random process. It can be generated by filtering
the WN process through a lowpass filter. Similarly, an ideal bandlimited
lowpass process can be generated by filtering a WN process through an
ideal filter with frequency response function

H(jΩ) =

{
1, |Ω| ≤ 2πB

0, |Ω| > 2πB
(13.225)

It has the PSD (in watts per radian) given by

SXX(Ω) =

{
N0/(4π), |Ω| ≤ 2πB

0, |Ω| > 2πB
(13.226)

which is shown in Figure 13.22(a), from which the average power in this
process is PX = N0

4π (4πB) = N0B watts. The autocorrelation function is
given by

RXX(τ) = N0B sinc(2Bτ) (13.227)

It is also shown in Figure 13.22. Thus from the zero-crossings, we conclude
that every random variables pair in the ideal bandlimited lowpass process,
separated by τ = 1/2B lag interval, is uncorrelated (due to zero mean)
or is independent if X(t) is also Gaussian.
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FIGURE 13.22 Ideal lowpass process: (a) PSD, (b) autocorrelation function

� EXAMPLE 13.23 Consider the problem of generating samples of a bandlimited lowpass process by
filtering a discrete-time WGN process through a properly designed IIR elliptic
filter that approximates the ideal filter in (13.225). Obtain samples X(n) of a
lowpass process X(t) that is bandlimited to 3 KHz using a fifth-order elliptic
filter. Choose a sampling rate of 20 KHz.

Solution First, we will design a fifth-order elliptic filter by setting passband cutoff fre-
quency to ωp = (3/20)2π = 0.3π. To approximate the ideal lowpass filter, we
will choose passband ripple of 0.1 dB and stopband attenuation of 50 dB, which
are quite reasonable. Now using the ellip function, we obtain the required low-
pass filter that can be used in filtering WGN samples to obtain samples of the
bandlimited lowpass process. The following MATLAB script gives all the nec-
essary details.

M = 100; % Number of sample sequences to average over
N = 10000; % Number of samples in each sequence
varW = 4; % Variance of the input WGN process
sigW = sqrt(varW); % Standard deviation
maxlag = 50; % Maximum number of lag values
Nfft = 2048; Nfft2 = Nfft/2; % FFT size
Rxsum = zeros(2*maxlag+1,1)’; % Contains Autoc sum for averaging
Sxsum = zeros(Nfft+1,1); % Contains PSD sum for averaging
ell = -maxlag:maxlag; % Lag indices
f = linspace(-0.5,0.5,Nfft+1); % Frequency grid
% Approximation to Ideal LPF using Elliptic Filter
omp = 0.3; % Passband cutoff in pi units
Rp = 0.1; % Passband ripple in dB
As = 50; % Stopband attenuation in dB
Nellip = 5; % Order of the elliptic filter
[b,a] = ellip(Nellip,Rp,As,omp); % Elliptic filter coefficients
% Loop over M Sample Sequences
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FIGURE 13.23 A few illustrative samples, the autocorrelation values, and the
PSD function of a generated bandlimited lowpass process

for k = 1:M
% Generate 10000 samples of WGN Process
wn = sigW*randn(N,1)’;
xn = filter(b,a,wn); % Filtered WGN using lowpass filter
% Compute ACRS
[Rx,lags] = xcorr(xn, maxlag,’unbiased’);
Rxsum = Rx+Rxsum;
Sx = PSD(Rx,maxlag,Nfft); % Compute PSD
Sxsum = Sx+Sxsum;

end
Rx = Rxsum/M;
Sx = Sxsum/M;
% Plotting commands follow

The top plot in Figure 13.23 shows few samples of the generated process,
while the bottom plots show its autocorrelation and PSD functions, respectively.
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FIGURE 13.24 White noise filtered through an ideal bandpass filter

The autocorrelation function plot clearly shows the sinc function shape, while
the PSD plot is bandlimited to 3 KHz. �

Bandpass Process
A random process is called a bandpass process if its power spectrum is
large in a band of frequencies centered in the neighborhood of a central
frequency ±F0 and relatively small outside of this band of frequencies. A
random process is called narrowband bandpass if its bandwidth B 	 F0.

Let X(t) be the output of an ideal bandpass filter H(jΩ) whose input
is a WGN process W(t) with PSD SWW(Ω) = N0/(4π). The ideal band-
pass filter has a bandwidth of B Hz that is located at frequencies around
F0 Hz as shown in Figure 13.24 and is given by

H(jΩ) =
{

1, |Ω − Ω0| ≤ 2πB
0, otherwise (13.228)

Since the thermal noise is white and Gaussian, the filtered noise X(t) is
Gaussian but not white. The PSD of the filtered noise is given by

SXX(Ω) =
∣∣H(jΩ)

∣∣2SWW(Ω)

=
N0

4π
H(jΩ) =

{
N0
4π , |Ω − Ω0| ≤ 2πB
0, otherwise

(13.229)

and the average power in the filtered process X(t) is given by

PX = 2 × N0

4π
× 4πB = 2N0B watts (13.230)

� EXAMPLE 13.24 In this example, we will use the procedure of Example 13.23 to obtain samples
of an approximated bandlimited bandpass process. Generate samples X(n) of
a bandpass process X(t) that is bandlimited between 3 and 6 KHz using a
tenth-order bandpass elliptic filter. Choose sampling rate of 20 KHz.

Solution Again, we will first design a tenth-order elliptic filter by setting passband cutoff
frequencies to ωp1 = (3/20)2π = 0.3π and ωp2 = (6/20)2π = 0.6π. To ap-
proximate the ideal bandpass filter, we will choose passband ripple of 0.1 dB
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and stopband attenuation of 50 dB, which are quite reasonable. The stopband
cutoff frequencies will be set by the order of the filter. Now using the ellip
function, we obtain the required bandpass filter that can be used in filtering
WGN samples to obtain samples of the bandlimited bandpass process. The fol-
lowing MATLAB script gives all the necessary details. A representative segment
of the bandpass process, its autocorrelation, and the resulting PSD functions
are shown in Figure 13.25.

M = 100; % Number of sample sequences to average over
N = 10000; % Number of samples in each sequence
varW = 1; % Variance of the input WGN process
sigW = sqrt(varW); % Standard deviation
maxlag = 50; % Maximum number of lag values
Nfft = 2048; Nfft2 = Nfft/2; % FFT size
Rxsum = zeros(2*maxlag+1,1)’; % Contains Autoc sum for averaging
Sxsum = zeros(Nfft+1,1); % Contains PSD sum for averaging
ell = -maxlag:maxlag; % Lag indices
f = linspace(-0.5,0.5,Nfft+1); % Frequencies in cycles/sam
Fs = 20; % Sampling rate in Khz
F = f*Fs; % Frequencies in KHz
% Approximation to ideal BPF using elliptic filter
omp1 = 0.3; % Lower Passband cutoff in pi units
omp2 = 0.6; % Upper Passband cutoff in pi units
Rp = 0.1; % Passband ripple in dB
As = 50; % Stopband attenuation in dB
Nellip = 5; % Order of the resulting elliptic filter is 2*N
[b,a] = ellip(Nellip,Rp,As,[omp1,omp2]); % Elliptic filter coefficients
% Loop over M sample sequences
for k = 1:M

% Generate 10000 samples of WGN Process
wn = sigW*randn(N,1)’;
xn = filter(b,a,wn); % Filtered WGN using lowpass filter
% Compute ACRS
[Rx,lags] = xcorr(xn, maxlag,’unbiased’);
Rxsum = Rx+Rxsum;
Sx = PSD(Rx,maxlag,Nfft); % Compute PSD
Sxsum = Sx+Sxsum;

end
Rx = Rxsum/M;
Sx = Sxsum/M;
% Plotting commands follow

�
Bandpass processes are suitable for representing modulated signals.

In a communication system, the information-bearing signal is usually a
lowpass random process that modulates a carrier for transmission over
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FIGURE 13.25 A segment of the process, its autocorrelation, and the resulting
PSD functions of a generated bandlimited bandpass process in Example 13.24

a bandpass (narrowband) communication channel. Thus the modulated
signal is a bandpass random process.

A bandpass random process X(t) can be represented in terms of low-
pass processes as

X(t) = Xc(t) cos(2πF0t) − Xs(t) sin(2πF0t) (13.231)

where Xc(t) and Xs(t) are called the in-phase and quadrature components
of X(t). These random processes Xc(t) and Xs(t) are lowpass processes.
Furthermore, there is an important relationship among these X(t), Xc(t),
and Xs(t) processes, given below without proof:

THEOREM 1 If X(t) is a zero-mean, stationary random process, then processes Xc(t)
and Xs(t) are also zero-mean, jointly stationary processes.
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FIGURE 13.26 Generation of a bandpass random process

In fact, it can be easily proved that (see [82]) the autocorrelation
functions of Xc(t) and Xs(t) are identical and may be expressed as

RXc(τ) = RXs(τ) = RXX(τ) cos(2πF0τ) + R̂XX(τ) sin(2πF0τ) (13.232)

where RXX(τ) is the autocorrelation function of the bandpass process X(t)
and R̂XX(τ) is the Hilbert transform of RX(τ), which is defined as

R̂XX(τ) =
1
π

∫ ∞

−∞

RXX(τ)
τ − t

dt (13.233)

The cross-correlation function of Xc(t) and Xs(t) can be expressed as

RXcs(τ) = RXX(τ) sin(2πF0τ) − R̂XX(τ) cos(2πF0τ) (13.234)

� EXAMPLE 13.25 Generate samples of a Gaussian bandpass random process by first generating
samples of two statistically independent Gaussian random processes Xc(t) and
Xs(t) and then using these to modulate the quadrature carriers cos(2πF0t) and
sin(2πF0t), as shown in Figure 13.26.

Solution On a digital computer or in MATLAB, samples of the lowpass processes Xc(t)
and Xs(t) are generated by filtering two independent Gaussian white noise se-
quences by two identical lowpass filters. Thus we obtain the samples Xc(n) and
Xs(n), corresponding to the sampled values of Xc(t) and Xs(t). Then Xc(n) mod-
ulates the sampled carrier cos(2πF0nT ), and Xs(n) modulates the quadrature
carrier sin(2πF0nT ), where T is the appropriate sampling interval.

The MATLAB script for these computations is given below. For illustrative
purposes, we have selected the lowpass filter to have a system function

H(z) =
1

1 − 0.9z−1 (13.235)

Also, we selected T = 0.001 sec or sampling rate of 1000 sam/sec and F0 =
200Hz. A representative segment of the bandpass process, its autocorrelation,
and the resulting PSD are shown in Figure 13.27.
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FIGURE 13.27 A segment of the process, its autocorrelation, and the resulting
PSD functions of a generated bandpass process in Example 13.25

M = 100; % Number of sample sequences to average over
N = 10000; % Number of samples in each sample sequence
varW = 1; % Variance of the input WGN process
sigW = sqrt(varW); % Standard deviation
maxlag = 50; % Maximum number of lag values
Nfft = 2048; Nfft2 = Nfft/2; % FFT size
Rxsum = zeros(2*maxlag+1,1)’; % Contains Autoc sum for averaging
Sxsum = zeros(Nfft+1,1); % Contains PSD sum for averaging
ell = -maxlag:maxlag; % Lag indices
f = linspace(-0.5,0.5,Nfft+1); % Frequency grid
Fs = 1000; % Sampling rate in Khz
F = f*Fs; % Frequencies in KHz
F0 = 200; % Carrier frequency in Hz
T = 1/Fs; % Sampling interval
t = (0:N-1)*T; % Sampled time instances
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% Lowpass filter for illustration
b = 1; a = [1,-0.9];
% Loop over M Sample Sequences
for k = 1:M

% Generate 10000 samples of WGN process
wcn = sigW*randn(N,1)’; % Input WGN for Xc(n)
wsn = sigW*randn(N,1)’; % Input WGN for Xs(n)
xcn = filter(b,a,wcn); % WGN -> lowpass filter -> Xc(n)
xsn = filter(b,a,wsn); % WGN -> lowpass filter -> Xs(n)
xn = xcn.*cos(2*pi*F0*t) - xsn.*sin(2*pi*F0*t); % BP process
% Compute ACRS
[Rx,lags] = xcorr(xn, maxlag,’unbiased’);
Rxsum = Rx+Rxsum;
Sx = PSD(Rx,maxlag,Nfft); % Compute PSD
Sxsum = Sx+Sxsum;

end
Rx = Rxsum/M; Sx = Sxsum/M;
% Plotting commands follow

�

13.7 SUMMARY AND REFERENCES

In this chapter, we have presented probabilistic and statistical description
of signals with randomly varying waveforms and provided tools and tech-
niques to process them through LTI systems. We began in Section 13.1
with the concept of a random variable as a model for single random
measurement. We described it using probability functions, the most im-
portant one being the marginal probability density function (pdf). We
developed MATLAB function pdf1 to simulate the pdf using normalized
histogram. For practical simplicity, we emphasized statistical averages
(or moments) of mean and variance to describe the random variable and
provided tools to estimate its mean value using several observed mea-
surements. We discussed few useful random variable models including
uniform and Gaussian distributions.

In Section 13.2, we extended this treatment to a pair of random vari-
ables using the joint pdf and the joint moments of correlation and co-
variance. We showed the use of scatter-plots to simulate the joint density
function in MATLAB. The important model for the random variable pair
(namely, the bivariate Gaussian distribution) was discussed in detail, in-
cluding enumeration of its unique and important properties.

The major focus of this chapter was on random signals, or stochastic
processes. To this end, in Section 13.3, we modeled the random signal
value X(t) at each fixed time instance t, as a random variable and at
two fixed-time instances, t1 and t2, the two random measurements
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(X(t1), X(t2)) as a pair of random variables. This allowed us to extend
and apply concepts such as the marginal and joint densities, the mean
and variance, and the correlations and covariances to random processes
in a straightforward manner. The means and variances became temporal
functions while autocorrelations and autocovariances became joint tem-
poral functions. In practice, we are interested in statistical quantities that
do not vary with time, so we focused on stationary processes in which
means were constant and auto moments were functions of lag variable
τ = t1 − t2. Also, for practical considerations, we discussed ergodic pro-
cesses that allowed us to estimate mean and autocorrelation from the
observation of a single sample waveform. We extended these ideas to
discrete-time random processes or random sequences. The use of xcorr
function in MATLAB was illustrated through several examples.

One of the most useful parameters in signal description is its average
power. In Section 13.4, we developed the Wiener–Khinchin theorem that
related the autocorrelation function of a stationary process to the power
spectral density through Fourier transform and allowed us to obtain aver-
age signal power in the frequency domain. This concept was extended to
random sequences as well. In Section 13.5, we discussed filtering of station-
ary random processes and sequences through LTI systems. We developed
formulas to obtain output means and autocorrelations using convolutions
with the impulse response in the time domain. Likewise, we obtained
formulas to compute output psd functions using the frequency response
function in the frequency domain.

In Section 13.6, we discussed several useful practical random pro-
cesses and how to obtain their samples through simple linear filtering.
The Gaussian process was an extension of the bivariate Gaussian distri-
bution to multivariate distribution at several arbitrary time instances.
The white noise process was developed as an idealized model to describe
thermal noise in electrical components. This noise process was further fil-
tered through recursive equations to obtain Markov processes and through
lowpass and bandpass filters to obtain lowpass and bandpass processes,
respectively. Finally, we showed how to generate bandlimited lowpass and
bandpass processes filtering white noise processes through carefully de-
signed elliptic filters.

The material presented in this chapter is available in many excel-
lent textbooks written over the period of last 50 years. One of the best
sources for insightful exposition of probability and stochastic processes is
the book by Papoulis and Pillai [73], now in its fourth edition. For grad-
uate students, books by Stark and Woods [90] and Leon-Garcia [53] are
good choices. For reading at the undergraduate level, books by Miller and
Childers [67], and Yates and Goodman [99] are sufficient. This material
is also available either as a single chapter or a part of a chapter in many
books, including Proakis and Salehi [82], Oppenheim and Schafer [71],
Manolakis and Ingle [60], and Manolakis, Ingle, and Kogon [61].
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C H A P T E R 14
Linear Prediction
and Optimum
Linear Filters

The design of filters to perform signal estimation is a problem that
frequently arises in the design of communication systems and control
systems, in geophysics, and in many other disciplines. In this chapter, we
treat the problem of optimum filter design from a statistical viewpoint.
The filters are constrained to be linear and the optimization criterion is
based on the minimization of the mean square error. As a consequence,
only the second-order statistics (autocorrelation and cross-correlation
functions) of a stationary process are required in the determination of
optimum filters.

Included in this treatment is the design of optimum filters for linear
prediction. Linear prediction is a particularly important topic in digital
signal processing, with applications in a variety of areas, such as speech
signal processing, image processing, and noise suppression in communica-
tion systems. As we shall observe, the determination of the optimum filter
for linear prediction requires the solution of a set of linear equations that
have special symmetry. To solve these linear equations, we describe two
algorithms, Levinson–Durbin and Schur, which provide the solution to
the equations through computationally efficient procedures that exploit
the symmetry properties.

The last section of this chapter treats an important class of optimum
filters called Wiener filters, which are widely used in many applications
involving the estimation of signals corrupted with additive noise.
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14.1 INNOVATIONS REPRESENTATION OF A STATIONARY
RANDOM PROCESS

In this section, we demonstrate that a wide-sense stationary random pro-
cess may be represented as the output of a causal and causally invertible
linear system excited by a white noise process. The condition that the
system is causally invertible also allows us to represent the wide-sense
stationary random process by the output of the inverse system, which is
a white noise process.

Let us consider a wide-sense stationary process X(n) with autocorrela-
tion sequence

{
RXX(m)

}
and power spectral density1 SXX(f), |f | ≤ 1

2 . We
assume that SXX(f) is real and continuous for all |f | ≤ 1

2 . The z-transform
of the autocorrelation sequence {RXX(m)} was termed the complex PSD
and is given by2

SXX(z) =
∞∑

m=−∞
RXX(m)z−m (14.1)

from which we obtain the power spectral density SXX(f) by evaluating
SXX(z) on the unit circle—that is, by substituting z = exp(j2πf).

Now, let us assume that log S(z) is analytic (possesses derivatives of
all orders) in an annular region in the z-plane that includes the unit circle,
that is, r1 < |z| < r2 where r1 < 1 and r2 > 1. Then log SXX(z) may be
expanded in a Laurent series of the form

log SXX(z) =
∞∑

m=−∞
v(m)z−m (14.2)

where the v(m) are the coefficients in the series expansion. We may view
{v(m)} as the sequence with z-transform V (z) = log SXX(z). Equivalently,
we may evaluate log SXX(z) on the unit circle,

log SXX(z)
∣∣
z=ej2πf = log SXX(f) =

∞∑
m=−∞

v(m)e−j2πfm (14.3)

1In this chapter, we slightly abuse our Chapter 13 notation of SXX(2πf) for PSD and
denote it by SXX(f) for simplicity.
2Again, for simplicity we use SXX(z) instead of S̃XX(z) to denote a complex PSD, as
was done in Chapter 13. It should be noted that SXX(ω), SXX(f), and SXX(z) all refer
to the same basic PSD function but with different frequency argument dependencies.
The exact dependency should be clear from the context.
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688 Chapter 14 LINEAR PREDICTION AND OPTIMUM LINEAR FILTERS

so that the v(m) are the Fourier coefficients in the Fourier series expansion
of the periodic function log SXX(f). Hence

v(m) =
∫ 1

2

− 1
2

[log SXX(f)]ej2πfm df, m = 0,±1, . . . (14.4)

We observe that v(m) = v(−m), since SXX(f) is a real and even function
of f .

From (14.2), it follows that

SXX(z) = exp

[ ∞∑
m=−∞

v(m)z−m

]

= exp

[ −1∑
m=−∞

v(m)z−m + v(0) +
∞∑

m=1

v(m)z−m

]

�
= σ2

WH(z)H(z−1) (14.5)

where, by definition, σ2
W = exp[v(0)] and

H(z) = exp

[ ∞∑
m=1

v(m)z−m

]
, |z| > r1 (14.6)

If (14.5) is evaluated on the unit circle, we have the equivalent represen-
tation of the power spectral density as

SXX(f) = σ2
W

∣∣H(f)
∣∣2 (14.7)

We note that

log SXX(f) = log σ2
W + log H(f) + log H∗(f)

=
∞∑

m=−∞
v(m)e−j2πfm

From the definition of H(z) given by (14.6), it is clear that the causal
part of the Fourier series in (14.3) is associated with H(z) and that the
anticausal part is associated with H

(
z−1

)
.

The filter with system function H(z) given by (14.6) is analytic in the
region |z| > r1 < 1. Hence, in this region, it has a Taylor series expansion
as a causal system of the form

H(z) =
∞∑

n=0

h(n)z−n (14.8)
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Linear causal
filter
H(z)

W(n) W(n)

White noise

X(n)
X(n)

=
k= 0

h (k )W(n−k) Linear causal
filter

1
H(z)

White noise

Σ
∞

(a) (b)

FIGURE 14.1 Filters for generating (a) the random process X(n) from white
noise and (b) the inverse filter

The output of this filter to a white noise input sequence W(n) with power
spectral density σ2

W is a stationary random process X(n) with power spec-
tral density SXX(f) = σ2

W

∣∣H(f)
∣∣2. Conversely, the stationary random pro-

cess X(n) with power spectral density SXX(f) may be transformed into a
white noise process by passing X(n) through a linear filter with system
function 1/H(z). We call this filter a noise-whitening filter. Its output,
denoted by W(n), is called the innovations process associated with the sta-
tionary random process X(n). These two relationships are illustrated in
Figure 14.1, where x(n) and w(n) are sample sequences of the stationary
random processes X(n) and W(n), respectively.

The representation of stationary stochastic process X(n) as the output
of an IIR filter with system function H(z) as given by (14.8) and excited
by a white noise sequence W(n) is called the Wold representation.

� EXAMPLE 14.1 The autocorrelation function of a wide-sense stationary random process is
given by

RXX(m) = 5
( 1

2

)|m|

a. Determine SXX(z) and its factors σ2
W, H(z), and H

(
z−1) as given in (14.5).

b. Plot RXX(m) and SXX(f) for |f | ≤ 1
2 . Note that

SXX(f) =
∞∑

m=−∞
RXX(m)e−j2πfm and

RXX(m) =
∫ 1

2

− 1
2

SXX(f)ej2πfm df

c. Implement the filter H(z) to generate an output sequence x(n) for 0 ≤ n ≤
10,000, when the input sequence w(n) is a sample sequence of a white,
zero-mean Gaussian noise sequence with variance σ2

W. Compute and plot
the autocorrelation R̂XX(m) for |m| ≤ 50 and the power density spectrum
ŜXX(f) of the output sequence x(n). Compare these plots with the analytic
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results of part (b) and comment on similarities and differences. The biased
estimates R̂XX(m) and ŜXX(f) are defined as follows:

R̂XX(m) =
1
N

N−m−1∑

n=0

x∗(n)x(n + m), 0 ≤ m ≤ N − 1

ŜXX(f) =
N−1∑

m=−(N−1)

RXX(m)e−j2πfm, |f | ≤ 1
2

Solution Note that this example is similar to Example 13.13.

a. The z-transform of RXX(m) is

SXX(z) =
∞∑

m=−∞
RXX(m)z−m = 5

[ −1∑

m=−∞

(
1
2

)
z−m +

∞∑

m=0

(
1
2

)m

z−m

]

=
15
4

[
1

(1 − 1
2z−1)(1 − 1

2z)

]
,

1
2

< |z| < 2

Therefore, σ2
W =

15
4

and H(z) =
1

1 − 1
2z−1

b. The PSD SXX(f) is given by

SXX(f) =
∞∑

m=−∞
RXX(m)e−j2πfm = 5

∞∑

m=−∞

( 1
2

)|m|
e−j2πfm

=
15

5 − 4 cos(2πf)

using (13.148). Plots of RXX(m) and SXX(f) are shown in Figure 14.2.

Lag m

–10 –5 0 5 10

R
X

X
(m

)

0

5

Autocorrelation Sequence

Frequency f, cyc/sam
–0.5 0 0.5

S
X

X
(f

)

5/3

15

Power Spectral Density

FIGURE 14.2 Plots of autocorrelation RXX(m) and PSD SXX(f) in
Example 14.1(b)
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Lag m

–10 –5 0 5 10
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X

X
(m
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Autocorrelation Estimate

Frequency f, cyc/sam
–0.5 0 0.5

S
X

X
(f

)

5/3

15

PSD Estimate

FIGURE 14.3 Plots of the estimated autocorrelation sequence R̂XX(m) and PSD
ŜXX(f) in Example 14.1(c)

c. The difference equation for the filter H(z) is

x(n) = 1
2x(n − 1) + w(n)

where w(n) is a sample sequence from a white Gaussian noise process with
variance σ2

W = 15
4 . Plots of the estimated autocorrelation R̂XX(m) and its

Fourier transform ŜXX(f) are shown in Figure 14.3 which were obtained
using the procedures discussed in Chapter 13. We observe that these plots
are similar to those of part (b). �

14.1.1 RATIONAL POWER SPECTRA
Let us now restrict our attention to the case where the power spectral
density of the stationary random process X(n) is a rational function,
expressed as

SXX(z) = σ2
W

B(z)B(z−1)
A(z)A(z−1)

, r1 < |z| < r2 (14.9)

where the polynomials B(z) and A(z) have roots that fall inside the unit
circle in the z-plane. Then the linear filter H(z) for generating the random
process X(n) from the white noise sequence W(n) is also rational, and is
expressed as

H(z) =
B(z)
A(z)

=
∑q

k=0 bkz−k

1 +
∑p

k=1 akz−1 , |z| > r1 (14.10)

where bk and ak are the filter coefficients that determine the location of
the zeros and poles of H(z), respectively. Thus H(z) is a causal, stable,
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692 Chapter 14 LINEAR PREDICTION AND OPTIMUM LINEAR FILTERS

and minimum phase linear system. Its reciprocal 1/H(z) is also a causal,
stable, and minimum phase linear system. Therefore, the random pro-
cess X(n) uniquely represents the statistical properties of the innovations
process W(n), and vice versa.

For the linear system with the rational system function H(z) given
by (14.10), the output process X(n) is related to the input process W(n)
by the difference equation

X(n) +
p∑

k=1

akX(n − k) =
q∑

k=0

bkW(n − k) (14.11)

We distinguish among three specific cases:

Autoregressive (AR) Process: b0 = 1, bk = 0, k > 0.
In this case, the linear filter H(z) = 1/A(z) is an all-pole filter, and
the difference equation for the input-output relationship is

X(n) +
p∑

k=1

akX(n − k) = W(n) (14.12)

In turn, the noise-whitening filter for generating the innovations process
is an all-zero filter.

Moving Average (MA) Process: ak = 0, k ≥ 1.
In this case, the linear filter H(z) = B(z) is an all-zero filter, and the
difference equation for the input-output relationship is

X(n) =
q∑

k=0

bkW(n − k) (14.13)

The noise-whitening filter for the MA process is an all-pole filter.
Autoregressive, Moving Average (ARMA) Process. In this case,

the linear filter H(z) = B(z)/A(z) has both finite poles and zeros in the
z-plane, and the corresponding difference equation is given by (14.11).
The inverse system for generating the innovations process from X(n) is
also a pole-zero system of the form 1/H(z) = A(z)/B(z).

� EXAMPLE 14.2 Consider an ARMA process X(n) generated by the difference equation

X(n) = 1.6X(n − 1) − 0.63X(n − 2) + W(n) + 0.9W(n − 1)

where W(n) is a white noise sequence with unit variance.

a. Determine the system function H(z) and the system function of the noise
whitening filter and its poles and zeros. Is the noise whitening filter stable?

b. Determine and plot the power spectrum density SXX(f) for |f | ≤ 1
2 .
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Frequency f, cyc/sam

–0.5 0 0.5

S
X

X
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)
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4011

Power Spectral Density

FIGURE 14.4 Plot of power spectral density ŜXX(f) in Example 14.2(b)

Solution a. The system function is given by

H(z) =
1 + 0.9z−1

1 − 1.6z−1 + 0.63z−2

Whitening filter: B(z) = H(z)−1 =
1 − 1.6z−1 + 0.63z−2

1 + 0.9z−1

zeros: z1,2 = 0.7, 0.9

poles: p1 = −0.9

Yes, the noise whitening filter is stable, since
∣∣p1
∣∣ < 1.

b. The power spectral density is

SXX(f) = σ2
W

∣∣H(f)
∣∣2 =

∣∣1 + 0.9e−j2πf
∣∣2

|1 − 1.6ej2πf + 0.63ej4πf |2

since σ2
W = 1. A plot of SXX(f) is shown in Figure 14.4. �

� EXAMPLE 14.3 An ARMA process has an autocorrelation RXX(m), where its z-transform is
given as

SXX(z) = 9

(
z − 1

3

)
(z − 3)(

z − 1
2

)
(z − 2)

,
1
2

< |z| < 2

a. Determine the filter H(z) for generating an output sequence x(n) from a
white noise input sample sequence w(n). Is H(z) unique? Explain.

b. Implement the filter H(z) to generate an output sequence x(n) for 0 ≤ n ≤
10,000, when the input sequence w(n) is a sample sequence from a white,
zero-mean Gaussian noise sequence with unit variance. Compute and plot
the autocorrelation estimates R̂XX(m) for |m| ≤ 50 and the power spectral
density estimates ŜXX(f) for |f | ≤ 1

2 from the output sequence x(n).
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694 Chapter 14 LINEAR PREDICTION AND OPTIMUM LINEAR FILTERS

c. Determine a stable linear whitening filter for the sequence generated in
part (b). Pass the sequence x(n) generated in part (b) through the noise-
whitening filter for 0 ≤ n ≤ 10,000. Compute the autocorrelation R̂YY(m)
for |m| ≤ 50 and the power spectral density ŜYY(f) for |f | ≤ 1

2 , where y(n)
is the output of the noise-whitening filter. Plot R̂YY(m) and ŜYY(f), and
comment on the results.

Solution a. The complex PSD can be put in the form

SXX(z) =
27
2

(
1 − 1

3z−1) (1 − 1
3z
)

(
1 − 1

2z−1
) (

1 − 1
2z
)

For a stable system, denominator
(

1 − 1
2
z−1

)
must be chosen. However,

either numerator factor may be used:

H(z) =

(
1 − 1

3z−1)
(
1 − 1

2z−1)
︸ ︷︷ ︸
Min. phase

or H(z) =

(
1 − 1

3z
)

(
1 − 1

2z−1
)

b. We use the minimum phase system function H(z) to generate the sequence

x(n) = 1
2x(n − 1) + w(n) − 1

3w(n − 1)

We compute the unbiased autocorrelation sequence estimate

R̂XX(m) =
1

N − m

N−1−m∑

n=0

x(n)x(n − m), |m| ≤ 50

and from it the estimate of the power spectral density

ŜXX(f) =
N∑

m=−N

R̂XX(m)e−j2πfm

Graphs of R̂XX(m) and ŜXX(f) are shown in Figure 14.5.
c. The stable whitening filter is the minimum phase system with system

function

A(z) =
1 − 1

2z−1

1 − 1
3z−1

Thus we generate the sequence

y(n) = 1
3y(n − 1) + x(n) − 1

2x(n − 1)

and compute the estimates R̂YY(m) and ŜYY(f), which are illustrated in
Figure 14.6. �
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FIGURE 14.5 Plots of the estimated autocorrelation sequence R̂XX(m) and PSD
ŜXX(f) in Example 14.3(b)
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FIGURE 14.6 Plots of the estimated autocorrelation sequence R̂YY(m) and PSD
ŜYY(f) in Example 14.3(c)

14.1.2 RELATIONSHIPS BETWEEN THE FILTER PARAMETERS AND
THE AUTOCORRELATION SEQUENCE

When the power spectral density of the stationary random process is
a rational function, there is a basic relationship that exists between
the autocorrelation sequence RXX(m) and the parameters ak and bk of
the linear filter H(z) that generates the process by filtering the white
noise sequence W(n). This relationship may be obtained by multiplying
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the difference equation in (14.11) by X∗(n − m) and taking the expected
value of both sides of the resulting equation. Thus we have

E
[
X(n)X∗(n − m)

]

= −
p∑

k=1

akE
[
X(n − k)X∗(n − m)

]
+

q∑
k=0

bkE
[
W(n − k)X∗(n − m)

]

(14.14)
Hence

RXX(m) = −
p∑

k=1

akRXX(m − k) +
q∑

k=0

bkRWX(m − k) (14.15)

where RWX(m) is the cross-correlation sequence between W(n) and X(n).
The cross-correlation RWX(m) is related to the filter impulse response.

That is,

RWX(m) = E
[
X∗(n)W(n + m)

]

= E

[ ∞∑
k=0

h(k)W∗(n − k)W(n + m)

]

= σ2
Wh(−m) (14.16)

where, in the last step, we have used the fact that the sequence W(n) is
white. Hence

RWX(m) =

{
0, m > 0

σ2
Wh(−m), m ≤ 0

(14.17)

By combining (14.17) with (14.15), we obtain the desired relationship,

RXX(m) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−
p∑

k=1

akRXX(m − k), m > q

−
p∑

k=1

akRXX(m − k) + σ2
W

1−m∑
k=0

h(k)bk+m, 0 ≤ m ≤ q

R∗
XX(−m), m < 0

(14.18)
This represents a nonlinear relationship between RXX(m) and the param-
eters ak, bk. The relationship in (14.18) applies, in general, to the ARMA
process. For an AR process, (14.18) simplifies to

RXX(m) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−
p∑

k=1

akRXX(m − k), m > 0

−
p∑

k=1

akRXX(m − k) + σ2
W, m = 0

R∗
XX(−m), m < 0

(14.19)
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Thus we have a linear relationship between RXX(m) and the ak parame-
ters. These equations are called the Yule–Walker equations and may be
expressed in the matrix form

⎡
⎢⎢⎢⎣

RXX(0) RXX(−1) RXX(−2) . . . RXX(−p)
RXX(1) RXX(0) RXX(−1) . . . RXX(−p + 1)

...
...

...
. . .

...
RXX(p) RXX(p − 1) RXX(p − 2) . . . RXX(0)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

1
a1
a2
...

ap

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

σ2
W
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦

(14.20)
This correlation matrix is Toeplitz and, hence, can be efficiently inverted
by use of the algorithms described in Section 14.3.

Finally, by setting ak = 0, 1 ≤ k ≤ p, and h(k) = bk, 0 ≤ k ≤ q,
in (14.18), we obtain the relationship for the autocorrelation sequence in
the case of a MA process, namely,

RXX(m) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q−m∑
k=0

bkbk+m, 0 ≤ m ≤ q

0, m > q

R∗
XX(−m), m < 0

(14.21)

� EXAMPLE 14.4 A moving average (MA) process is described by the difference equation

X(n) = W(n) − 2W(n − 1) + W(n − 2) (14.22)

where W(n) is a white noise sequence with variance σ2
W = 1.

a. Determine and plot the autocorrelation RXX(m) and power spectral density
SXX(f).

b. Generate the output sequence x(n), 0 ≤ n ≤ 10,000, when w(n) is a sample
sequence of a white, zero-mean Gaussian noise sequence with unit variance.
Compute and plot the autocorrelation estimates R̂XX(m) of the sequence
X(n) for |m| ≤ 50 and the corresponding power spectral density ŜXX(f) for∣∣f
∣∣ ≤ 1

2 . Compare these plots with those in part (a) and comment on any
similarities and differences.

Solution a. From (14.22) and using E
[
W(n)

]
= 0, we have E

[
X(n)

]
= 0. Hence we

obtain

RXX(m) = σ2
W

q∑

k=0

bkbk+m, 0 ≤ m ≤ q
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698 Chapter 14 LINEAR PREDICTION AND OPTIMUM LINEAR FILTERS

With q = 2, b0 = 1, b1 = −2, b2 = 1 and from (14.21), the autocorrelation
values are given by

RXX(0) = σ2
W

2∑

k=0

b2
k = 6σ2

W = 6,

RXX(±1) = σ2
W

1∑

k=0

bkbk+1 = −4σ2
W = −4,

RXX(±2) = σ2
W

0∑

k=0

bkbk+2 = σ2
W = 1, and

RXX(m) = 0, |m| ≥ 3

The PSD is given by

SXX(f) =
2∑

m=−2

RXX(m)e−j2πfm

= (1)e−j2πf(−2) + (−4)e−j2πf(−1) + (6)e−j2πf(0)

+ (−4)e−j2πf(1) + (1)e−j2πf(2)

= 6 − 8 cos(2πf) + 2 cos(4πf)

The plots of RXX(m) and SXX(f) are shown in Figure 14.7.
b. Using the difference equation

x(n) = w(n) − 2w(n − 1) + w(n − 2)

we compute x(n) for 0 ≤ n ≤ 10,000 and estimate the autocorrelation and
power spectral density. These functions are plotted in Figure 14.8. They
closely resemble the function RXX(m) and SXX(f) computed in part (a). �

Lag m

–5 0 5

R
X

X
(m

)

–4

0

6

Autocorrelation Sequence

Frequency f, cyc/sam
–0.5 0 0.5

S
X

X
(f

)

0

16

Power Spectral Density

FIGURE 14.7 Plots of autocorrelation RXX(m) and PSD SXX(f) in
Example 14.4(a)
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Lag m
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(f

)

0
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PSD Estimate

FIGURE 14.8 Plots of the estimated autocorrelation R̂XX(m) and PSD ŜXX(f)
in Example 14.4(b)

� EXAMPLE 14.5 An AR process is described by the difference equation

X(n) = X(n − 1) − 0.6X(n − 2) + W(n) (14.23)

where W(n) is a zero-mean, white noise process with variance σ2
W.

a. Use the Yule–Walker equations to solve for the values of the autocorrelations
RXX(m).

b. Determine the z-transform of the autocorrelation RXX(m) and plot the power
spectral density SXX(f) for

∣∣f
∣∣ ≤ 1

2 .
c. Generate the output sequence x(n), 0 ≤ n ≤ 10,000, when w(n) is a sample

sequence from a white, zero-mean Gaussian noise process with unit variance.
Compute and plot the autocorrelation estimates R̂XX(m) of the sequence
x(n) for |m| ≤ 50 and the corresponding power spectral density estimate
ŜXX(f) for

∣∣f
∣∣ ≤ 1

2 . Compare ŜXX(f) with SXX(f) plotted in part (b).

Solution a. The Yule–Walker equations are given by
⎡

⎣
RXX(0) RXX(1) RXX(2)
RXX(1) RXX(0) RXX(1)
RXX(2) RXX(1) RXX(0)

⎤

⎦

⎡

⎣
1

−1
0.6

⎤

⎦ =

⎡

⎣
1
0
0

⎤

⎦σ2
W

or
⎡

⎣
1 −1 0.6

−1 1.6 0
0.6 −1 1

⎤

⎦

⎡

⎣
RXX(0)
RXX(1)
RXX(2)

⎤

⎦ =

⎡

⎣
1
0
0

⎤

⎦σ2
W

Solving,

RXX(0) = 2.5641σ2
W, RXX(1) = 1.6026σ2

W, RXX(2) = 0.06416σ2
W

For m ≥ 3, we have

RXX(m) = RXX(m − 1) − 0.6RXX(m − 2)

and finally, for m < 0, we have

RXX(m) = RXX(−m)
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Power Spectral Density

FIGURE 14.9 Plot of power spectral density SXX(f) in Example 14.5(b)

b. The z-transform of the autocorrelation RXX(m), from (14.5), is

SXX(z) =
∞∑

m=−∞
RXX(m)z−m = σ2

WH(z)H(z−1)

= σ2
W

1
(1 − z−1 + 0.6z−2)(1 − z + 0.6z2)

and SXX(f) is

SXX(f) =
σ2

W∣∣1 − e−j2πf + 0.6e−j4πf
∣∣2

The PSD SXX(f) is plotted in Figure 14.9.
c. The estimated autocorrelation R̂XX(m) and the power spectral density

ŜXX(f) are plotted in Figure 14.10. The estimate ŜXX(f) is a close approxi-
mation to SXX(f) shown in Figure 14.9. �
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FIGURE 14.10 Plots of the estimated autocorrelation R̂XX(m) and PSD ŜXX(f)
in Example 14.5(c)
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14.2 FORWARD AND BACKWARD LINEAR PREDICTION

Linear prediction is an important topic in digital signal processing, with
many practical applications. In this section, we consider the problem of
linearly predicting the value of a stationary random process either forward
or backward in time. This formulation leads to lattice filter structures, and
to some interesting connections to parametric signal models.

14.2.1 FORWARD LINEAR PREDICTION
Let us begin with the problem of predicting a future value of a stationary
random process X(n) from observation of past values of the process. We
will denote its observed values by x(n). In particular, we consider the one-
step forward linear predictor, which forms the prediction of the value x(n)
by a weighted linear combination of the past values x(n − 1), x(n − 2),
. . . , x(n − p). Hence the linearly predicted values of X(n) is the process
X̂(n) with observed values given by

x̂(n) = −
p∑

k=1

ap(k)x(n − k) (14.24)

where the −ap(k) represent the weights in the linear combination. These
weights are called the prediction coefficients of the one-step forward lin-
ear predictor of order p. (The negative sign in the definition of x̂(n) is
for mathematical convenience and conforms with current practice in the
technical literature.)

The difference between the value of X(n) and the predicted value
X̂(n) is called the forward prediction error process, denoted by Fp(n),
with observed values given by

fp(n) = x(n) − x̂(n)

= x(n) +
p∑

k=1

ap(k)x(n − k)
(14.25)

We view linear prediction as being equivalent to linear filtering when
the predictor is embedded in the linear filter, as shown in Figure 14.11.
This is called a prediction-error filter with input sequence x(n) and output
sequence fp(n). An equivalent realization for the prediction-error filter is
shown in Figure 14.12. This realization is a direct form FIR filter with
system function

Ap(z) =
p∑

k=0

ap(k)z−k (14.26)

where, by definition, ap(0) = 1.
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x(n )

z−1
Forward
Linear

Predictor

+
+

−

fp (n )

x(n − 1) x̂ (n )

FIGURE 14.11 Forward linear prediction

There is another realization of an FIR filter that takes the form of a
lattice structure. To describe this structure and to relate it to the direct
form FIR filter structure, let us begin with a predictor of order p = 1.
The output of such a filter is

f1(n) = x(n) + a1(1)x(n − 1) (14.27)

This output can be obtained from the single-stage lattice filter, illustrated
in Figure 14.13, by exciting both inputs by x(n) and selecting the output
from the top branch. Thus the output is exactly that given by (14.27)
if we select K1 = a1(1). The parameter K in the lattice filter is called a
reflection coefficient.

Next, let us consider a predictor of order p = 2. In this case, the
output of the direct form FIR filter is

f2(n) = x(n) + a2(1)x(n − 1) + a2(2)x(n − 2) (14.28)

By cascading two lattice stages as shown in Figure 14.14, it is possible
to obtain the same output as (14.28). Indeed, the two outputs from the
first stage are

f1(n) = x(n) + K1x(n − 1)
g1(n) = K∗

1x(n) + x(n − 1)
(14.29)

x(n)
z–1 z–1 z–1 z–1

+

fp(n)

1 ap(1) ap(2) ap(3) ap(p –1) ap(p)

FIGURE 14.12 Prediction-error filter
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x (n)

f0(n)

g0(n) g0(n – 1)

f1(n)

g1(n)
z −1

+

+

K1

K*1

FIGURE 14.13 Single-stage lattice filter

The two outputs from the second stage are

f2(n) = f1(n) + K2g1(n − 1)
g2(n) = K∗

2f1(n) + g1(n − 1)
(14.30)

If we focus our attention on f2(n) and substitute for f1(n) and g1(n − 1)
from (14.29) into (14.30), we obtain

f2(n) = x(n) + K1x(n − 1) + K2[K∗
1x(n − 1) + x(n − 2)]

= x(n) + (K1 + K∗
1K2)x(n − 1) + K2x(n − 2) (14.31)

Now (14.31) is identical to the output of the direct form FIR filter given
by (14.28), if we equate the coefficients. Thus

a2(2) = K2, a2(1) = K1 + K∗
1K2 (14.32)

or equivalently,
K2 = a2(2), K1 = a1(1) (14.33)

By continuing this process, one can easily demonstrate by induction
the equivalence between an mth-order direct form FIR filter and an mth-
order or m-stage lattice filter. The lattice filter is generally described by
the following set of order-recursive equations:

f0(n) = g0(n) = x(n)
fm(n) = fm−1(n) + Kmgm−1(n − 1), m = 1, 2, . . . , p

gm(n) = K∗
mfm−1(n) + gm−1(n − 1), m = 1, 2, . . . , p

(14.34)

+

+ z−1z−1

+

+

x (n)

f0(n) f1(n)

g1(n)g0(n) g2(n)

f2(n)

K*1 K*2

K2K1

FIGURE 14.14 Two-stage lattice filter
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First
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p th
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z−1

+

+

K*m

Km

x (n)
fp(n)

fm(n)fm–1(n)

gm–1(n) gm(n)

f2(n)

g2(n)

f1(n)

g1(n)

f0(n)

g0(n) gp(n)

FIGURE 14.15 p-stage lattice filter

Then the output of the p-stage lattice filter is identical to the output of
a p-order direct form FIR filter. Figure 14.15 illustrates a p-stage lattice
filter in block-diagram form, along with a typical stage that shows the
computations given by (14.34).

As a consequence of the equivalence between the direct form prediction-
error FIR filter and the FIR lattice filter, the output of the p-stage lattice
filter is expressed as

fp(n) =
p∑

k=0

ap(k)x(n − k), ap(0) = 1 (14.35)

Since (14.35) is a convolution sum, the z-transform relationship is

Fp(z) = Ap(z)X(z) (14.36)

or equivalently,

Ap(z) =
Fp(z)
X(z)

=
Fp(z)
F0(z)

(14.37)

The mean-square value of the forward linear prediction error process
Fp(n) is

E f
p = E

[∣∣Fp(n)
∣∣2]

= RXX(0) + 2Re

[
p∑

k=1

a∗
p(k)RXX(k)

]
+

p∑
k=1

p∑
�=1

a∗
p(�)ap(k)RXX(� − k)

(14.38)

E f
p is a quadratic function of the predictor coefficients, and its minimiza-

tion leads to the set of linear equations

RXX(�) = −
p∑

k=1

ap(k)RXX(� − k), � = 1, 2, . . . , p (14.39)
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These are called the normal equations for the coefficients of the linear
predictor. The minimum mean-square prediction error is simply

min
[
E f

p

]
≡ Ef

p = RXX(0) +
p∑

k=1

ap(k)RXX(−k) (14.40)

In the following section, we extend the above development to the
problem of predicting the value of a time series in the opposite direction,
namely, backward in time.

� EXAMPLE 14.6 Consider the AR(3) process generated by the equation

x(n) = 14
24x(n − 1) + 9

24x(n − 2) − 1
24x(n − 3) + w(n)

where w(n) is a sample sequence of a white noise sequence with variance σ2
W.

a. Determine the coefficient of the optimum p = 3 linear predictor.
b. Determine the autocorrelation sequence RXX(m), 0 ≤ m ≤ 5.

Solution a. The coefficients of the optimum p = 3 are obtained using

A(z) =
1

1 − 14
24z−1 − 9

24z−2 + 1
24z−3

Thus the optimum whitening filter of order 3 will have z-transform

B(z) = 1 − 14
24z−1 − 9

24z−2 + 1
24z−3

b. For an AR process, we have

RXX(m) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−
p∑

k=1

akRXX(m − k), m > 0

−
p∑

k=1

akRXX(m − k) + σ2
W, m = 0

R∗
XX(−m), m < 0

Since we know the {ak}, we can solve for RXX, m = 0, 1, 2, 3. Then we can
obtain RXX(m) for m > 3, by the previous recursions. Start with

⎡

⎢⎢⎢⎢⎣

1 − 14
24 − 9

24
1
24

− 14
24

15
24

1
24 0

− 9
24 − 13

24 1 0
1
24 − 9

24 − 14
24 1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

RXX(0)

RXX(1)

RXX(2)

RXX(3)

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

σ2
W

0

0

0

⎤

⎥⎥⎥⎥⎦

which gives

RXX(0) = 4.9377σ2
W, RXX(1) = 4.3287σ2

W,

RXX(2) = 4.1964σ2
W, RXX(3) = 3.8654σ2

W

Using RXX(m) = −
∑p

k=1 akRXX(m−k), m > 0, we obtain RXX(4) = 3.65σ2
W

and RXX(5) = 3.46σ2
W. �
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14.2.2 BACKWARD LINEAR PREDICTION
Let us assume that we have the data sequence x(n), x(n − 1), . . . ,
x(n − p + 1) from a stationary random process X(n) and we wish to
predict the value x(n − p) of the process. In this case, we employ a
one-step backward linear predictor of order p. Hence

x̂(n − p) = −
p−1∑
k=0

bp(k)x(n − k) (14.41)

The difference between the value x(n − p) and the estimate x̂(n − p) is
called the backward prediction error, denoted by gp(n),

gp(n) = x(n − p) +
p−1∑
k=0

bp(k)x(n − k)

=
p∑

k=0

bp(k)x(n − k), bp(p) = 1 (14.42)

The backward linear predictor may be realized either by a direct form
FIR filter structure similar to the structure shown in Figure 14.11, or as
a lattice structure. The lattice structure shown in Figure 14.15 provides
the backward as well as the forward linear predictor. To prove this point,
let us consider the output of this lattice filter from the lower branch. This
output is given as

g1(n) = K∗
1x(n) + x(n − 1) (14.43)

Hence the weighting coefficient of the backward predictor is b1(0) = K∗
1 .

In the two-stage lattice shown in Figure 14.14, the output of the
second stage from the bottom branch is

g2(n) = K∗
2f1(n) + g1(n − 1) (14.44)

If we substitute from (14.29) for f1(n) and g1(n − 1), we obtain

g2(n) = K∗
2x(n) + (K∗

1 + K1K
∗
2 )x(n − 1) + x(n − 2) (14.45)

Hence the weighting coefficients in the backward linear predictor are iden-
tical to the (complex conjugate) coefficients for the forward linear predic-
tor, but they occur in reverse order. Thus we have

bp(k) = a∗
p(p − k), k = 0, 1, . . . , p (14.46)

In the z-domain, the convolution sum in (14.42) becomes

Gp(z) = Bp(z)X(z) (14.47)
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or equivalently,

Bp(z) =
Gp(z)
X(z)

=
Gp(z)
G0(z)

(14.48)

where Bp(z) represents the system function of the FIR filter with coeffi-
cients bp(k).

Since bp(k) = a∗
p(p − k), Bp(z) is related to Ap(z) as follows:

Bp(z) =
p∑

k=0

bp(k)z−k =
p∑

k=0

a∗
p(p − k)z−k

= z−p

p∑
k=0

a∗
p(k)zk = z−pA∗

p(z
−1) (14.49)

The relationship in (14.49) implies that the zeros of the FIR filter with
system function Bp(z) are simply the (conjugate) reciprocals of the zeros
of Ap(z). Hence Bp(z) is called the reciprocal or reverse polynomial of
Ap(z).

Finally, let us consider the minimization of the mean-square error
in a backward linear predictor. The backward prediction-error process is
denoted by Gp(n) with sample sequence gp(n) given by

gp(n) = x(n − p) +
p−1∑
k=0

bp(k)x(n − k)

= x(n − p) +
p∑

k=1

a∗
p(k)x(n − p + k) (14.50)

and its mean-square value given by

Eb
p = E

[∣∣Gp(n)
∣∣2] (14.51)

The minimization of Eb
p with respect to the prediction coefficients yields

the same set of linear equations as in (14.39). Hence, the minimum mean-
square error is

min
[
Eb

p

]
≡ Eb

p = Ef
p (14.52)

which is given by (14.40).

14.2.3 CONVERSIONS BETWEEN FIR FILTER COEFFICIENTS AND
LATTICE REFLECTION COEFFICIENTS

Now that we have established these interesting relationships between the
direct form FIR filter and the FIR lattice filter, let us return to the
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708 Chapter 14 LINEAR PREDICTION AND OPTIMUM LINEAR FILTERS

recursive lattice equations in (14.34) and transform them to the z-domain.
Thus we have

F0(z) = G0(z) = X(z) (14.53a)

Fm(z) = Fm−1(z) + Kmz−1Gm−1(z), m = 1, 2, . . . , p (14.53b)

Gm(z) = K∗
mFm−1(z) + z−1Gm−1(z), m = 1, 2, . . . , p (14.53c)

If we divide each equation by X(z), we obtain the desired results in the
form

A0(z) = B0(z) = 1 (14.54a)

Am(z) = Am−1(z) + Kmz−1Bm−1(z), m = 1, 2, . . . , p (14.54b)

Bm(z) = K∗
mAm−1(z) + z−1Bm−1(z), m = 1, 2, . . . , p (14.54c)

Thus a lattice filter is described in the z-domain by the matrix equation
[
Am(z)
Bm(z)

]
=
[

1 Kmz−1

K∗
m z−1

] [
Am−1(z)
Bm−1(z)

]
(14.55)

The relations in (14.54) for Am(z) and Bm(z) allow us to obtain the direct
form FIR filter coefficients am(k) from the reflection coefficients Km, and
vice versa. We illustrate the procedure in the following example.

� EXAMPLE 14.7 Given a three-stage lattice filter with coefficients K1 = 1
4 , K2 = 1

2 , K3 = 1
3 ,

determine the FIR filter coefficients for the direct form structure.

Solution We solve the problem recursively, beginning with (14.54) for m = 1. Thus we
have

A1(z) = A0(z) + K1z
−1B0(z) = 1 + K1z

−1

= 1 + 1
4z−1

Hence the coefficients of an FIR filter corresponding to the single-stage lattice
are a1(0) = 1, a1(1) = K1. Since Bm(z) is the reverse polynomial of Am(z),
we have

B1(z) = 1
4 + z−1

Next, we add the second stage to the lattice. For m = 2, (14.54) yields

A2(z) = A1(z) + K2z
−1B1(z)

= 1 + 3
8z−1 + 1

2z−2

Hence the FIR filler parameters corresponding to the two-stage lattice are
a2(0) = 1, a2(1) = 3

8 , and a2(2) = 1
2 . Also,

B2(z) = 1
2 + 3

8z−1 + z−2
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Finally, the addition of the third stage to the lattice results in the polynomial

A3(z) = A2(z) + K3z
−1B2(z)

= 1 + 13
24z−1 + 5

8z−2 + 1
3z−3

Consequently, the desired direct form FIR filter is characterized by the coeffi-
cients

a3(0) = 1, a3(1) = 13
24 , a3(2) = 5

8 , a3(3) = 1
3

�

As this example illustrates, the lattice structure with parameters K1,
K2, . . ., Kp corresponds to a class of p direct form FIR filters with system
functions A1(z), A2(z), . . . , Ap(z). It is interesting to note that a charac-
terization of this class of p FIR filters in direct form requires p(p + 1)/2
filter coefficients. In contrast, the lattice form characterization requires
only the p reflection coefficients {Ki}. The reason that the lattice pro-
vides a more compact representation for the class of p FIR filters is that
appending stages to the lattice does not alter the parameters of the previ-
ous stages. On the other hand, appending the pth stage to a lattice with
(p − 1) stages results in an FIR filter with system function Ap(z) that has
coefficients totally different from the coefficients of the lower-order FIR
filter with system function Ap−1(z).

A formula for recursively determining the filter coefficients ap(k),
1 ≤ k ≤ p, can be derived easily from polynomial relationships (14.54).
We have

Am(z) = Am−1(z) + Kmz−1Bm−1(z) (14.56a)
m∑

k=0

am(k)z−k =
m−1∑
k=0

am−1(k)z−k + Km

m−1∑
k=0

a∗
m−1(m − 1 − k)z−(k+1)

(14.56b)

By equating the coefficients of equal powers of z−1, and recalling that
am(0) = 1 for m = 1, 2, . . . , p, we obtain the desired recursive equation
for the FIR filter coefficients in the form

am(0) = 1
am(m) = Km

...
... (14.57)

am(k) = am−1(k) + Kma∗
m−1(m − k)

= am−1(k) + am(m)a∗
m−1(m − k), 1 ≤ k ≤ m − 1, m = 1, 2, . . . , p
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MATLAB Implementation The following MATLAB function,
latc2fir, implements (14.56a). Note that the product Kmz−1Bm−1(z)
is obtained by convolving the two corresponding arrays, whereas the
polynomial Bm(z) is obtained by using a fliplr operation on the Am(z)
polynomial.

function [a] = latc2fir(K,a0)
% Lattice form to FIR direct form conversion
% ------------------------------------------
% [a] = latc2fir(K,b0)
% a = FIR direct form coefficients (prediction coefficients)
% K = lattice filter coefficients (reflection coefficients)
% a0 = overall gain if \= 1 (optional)
%
if nargin == 1

a0 = 1;
end
p = length(K);
B = 1; A = 1;
for m=1:1:p
A = [A,0]+conv([0,K(m)],B);
B = fliplr(A);
end
a = a0*A;
end

To verify the latc2fir function, consider the lattice reflection coef-
ficients used in Example 14.7 above:

>> K = [1/4,1/2,1/3];
>> a = latc2fir(K)
a =

1 13/24 5/8 1/3

Clearly, we obtain the same FIR filter coefficients.
The formula for conversion from the direct form FIR filter coefficients

ap(k) to the lattice reflection coefficients Ki is also very simple. For the p-
stage lattice, we immediately obtain the reflection coefficient Kp = ap(p).
To obtain Kp−1, . . . , K1, we need the polynomials Am(z) for m = p −
1, . . . , 1. From (14.55), we obtain

Am−1(z) =
Am(z) − KmBm(z)

1 − |Km|2
, m = p, . . . , 1 (14.58)

which is just a step-down recursion. Thus we compute all lower-degree
polynomials Am(z) beginning with Ap−1(z) and obtain the desired lattice
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reflection coefficients from the relation Km = am(m). We observe that
the procedure works as long as Km �= 1 for m = 1, 2 . . . , p − 1. From this
step-down recursion for the polynomials, it is relatively easy to obtain a
formula for recursively and directly computing Km, m = p − 1, . . . , 1. For
m = p − 1, . . . , 1, we have

Km = am(m)

am−1(k) =
am(k) − Kmbm(k)

1 − |Km|2

=
am(k) − am(m)a∗

m(m − k)
1 − |am(m)|2

(14.59)

which is just the recursion in the Schur–Cohn stability test for the poly-
nomial Am(z).

MATLAB Implementation Given the coefficients
{
ap(k)

}
of the di-

rect form, we can obtain the lattice filter coefficients
{
Ki

}
using (14.58)

and (14.59). This is done by the following MATLAB function, fir2latc.
Note that the equation to compute Bm(z) in (14.58) implies that the
polynomial Bm(z) is a fliplr operation on the Am(z) polynomial.

function [K,a0] = fir2latc(a)
% FIR Direct form to All-Zero Lattice form Conversion
% ---------------------------------------------------
% [K,a0] = fir2latc(b)
% K = lattice filter coefficients (reflection coefficients)
% a0 = first coefficient (or gain) of A(z), useful if \= 1
% a = FIR direct form coefficients (prediction coefficients)
p = length(a)-1;
K = zeros(1,p);
a0 = a(1);
if a0 == 0
error(’a(1) is equal to zero’)
end
A = a/a0;
for m=p+1:-1:2
K(m-1) = A(m);
B = fliplr(A);
A = (A-K(m-1)*B)/(1-K(m-1)*K(m-1));
A = A(1:m-1);
end
end

Finally, the lattice filter can be implemented using (14.34), which is done
by the latcfilt function, as shown here.
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function [y] = latcfilter(K,x,a0)
% LATTICE form realization of FIR filters
% ---------------------------------------
% y = latcfilter(K,x,a0)
% y = output sequence
% K = LATTICE filter (reflection) coefficient array
% x = input sequence
% a0 = Overall Gain (optional)
%
if nargin == 1

a0 = 1;
end
Nx = length(x)-1;
x = a0*x;
p = length(K); %K = K(2:M+1);
fg = [x; [0 x(1:Nx)]];
for m = 1:p

fg = [1,K(m);K(m),1]*fg;
fg(2,:) = [0 fg(2,1:Nx)];

end
y = fg(1,:);
end

The SP Toolbox provides several functions that are similar in func-
tionality to the functions developed in this section. The function K =
tf2latc(a) computes the FIR lattice reflection coefficients in array K
given the FIR filter (or prediction) coefficients in array a, normalized by
a(1). Similarly, the function a = latc2tf(K) produces a general FIR
filter coefficient array a from the lattice reflection coefficients in K with
a(1)=1. Finally, the function [f,g] = latcfilt(K,x) implements the
lattice filter shown in Figure 14.15. It filters the input array x with the
FIR lattice coefficients in the array K. The forward lattice filter output (or
forward prediction error) is in array f, and the backward lattice filter out-
put (or backward prediction error) is in array g. If |K| ≤ 1, f corresponds
to the minimum-phase output and g corresponds to the maximum-phase
output (see Section 14.4).

� EXAMPLE 14.8 An FIR filter is characterized by its system function

H(z) ≡ A3(z) = 1 + 13
24z−1 + 5

8z−2 + 1
3z−3

Determine the lattice coefficients and sketch the lattice filter structure corre-
sponding to the FIR filter.

Solution We follow the step-down procedure given in (14.58).
• m = 3:

A3(z) = 1 + 13
24z−1 + 5

8z−2 + 1
3z−3, K3 = 1

3

B3(z) = 1
3 + 5

8z−1 + 13
24z−2 + z−3.
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FIGURE 14.16 Lattice filter diagram in Example 14.8

• m = 2:

A2(z) =
A3(z) − K3B3(z)

1 − K2
3

= 1 + 3
8z−1 + 1

2z−2, K2 = 1
2

B2(z) = 1
2 + 3

8z−1 + z−3.

• m = 1:

A1(z) =
A2(z) − K2B2(z)

1 − K2
2

= 1 + 1
4z−1, K1 = 1

4

We can also use the fir2latc function:

>> a = [1,13/24,5/8,1/3];
>> [K] = fir2latc(a)
K =

1/4 1/2 1/3

The resulting lattice filter structure is shown in Figure 14.16. �

� EXAMPLE 14.9 The reflection coefficient of an FIR lattice filter are

K1 = 1
2 , K2 = − 1

3 , K3 = 1

a. Determine the system function H(z) of the FIR filter.
b. Determine the zeros of the FIR filter and sketch the pattern in the z-plane.
c. Repeat when K3 = −1. Comment your results.

Solution a. The system function is obtained using the following steps:

A1(z) = 1 + K1z
−1 = 1 + 1

2z−1,

B1(z) = 1
2 + z−1,

A2(z) = A1(z) + K2B1(z)z−1 = 1 + 1
3z−1 − 1

3z−2,

B2(z) = − 1
3 + 1

3z−1 + z−2,

H(z) = A3(z) = A2(z) + K3z
−1B2(z) = 1 + z−3
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FIGURE 14.17 Pole-zero plot in Example 14.9(b)

Use of the latc2fir function gives

>> K = [1/2,-1/3,1];
>> a = latc2fir(K)
a =

1.0000 0.0000 0.0000 1.0000

b. The zeros are located at z1 = −1 and at z2,3 = e±jπ/3. The pole-zero plot
is shown in Figure 14.17.

c. If K3 = −1, then we have

H(z) = A2(z) − z−1B2(z) = 1 + 2
3z−1 − 2

3z−2 − z−3

Use of the latc2fir function gives

>> K = [1/2,-1/3,-1];
>> a = latc2fir(K)
a =

1.0000 0.6667 -0.6667 -1.0000
>> zeros = roots(a)’; mag_zeros = abs(zeros)
mag_zeros =

1.0000 1.0000 1.0000
>> pha_zeros = angle(zeros)/pi
pha_zeros =

0 -0.8136 0.8136

The zeros are then located at z1 = 1, z2,3 = e±j0.8136π. The pole-zero plot
is shown in Figure 14.18. �

As indicated previously, the recursive equation in (14.59) breaks down
if any of the lattice parameters |Km| = 1. If this occurs, it is indicative that
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FIGURE 14.18 Pole-zero plot in Example 14.9(c)

the polynomial Am−1(z) has a root located on the unit circle. This was
clearly evident in Figures 14.17 and 14.18. Such a root may be factored
out from Am−1(z), and the iterative process in (14.59) can be carried out
for the reduced-order system.

� EXAMPLE 14.10 Use the recursive equation (14.59) to determine the FIR lattice filter parameters
for the AR(3) process given in Example 14.6.

Solution In this case, p = 3 and a3(3) = 1
24 , a3(2) = − 9

24 , a3(1) = − 14
24 . The recursive

equation for the reflection coefficient is

am−1(k) =
am(k) − am(m)a∗(m − k)

1 − |am(m)|2
, m = p − 1, . . . , 1

with Km = am(m).

From these, we obtain the reflection coefficient K3 = 0.0417, K2 = −0.3513,
and K1 = −0.8767. For verification, we use

>> a = [1,-14/24,-9/24,1/24];
>> K = dir2latc(a)
K =

1.0000 -0.8767 -0.3513 0.0417

�

14.2.4 OPTIMUM REFLECTION COEFFICIENTS FOR THE LATTICE
FORWARD AND BACKWARD PREDICTORS

In Sections 14.2.1 and 14.2.2, we derived the set of linear equations that
provide the predictor coefficients that minimize the mean-square value of
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716 Chapter 14 LINEAR PREDICTION AND OPTIMUM LINEAR FILTERS

the prediction error. In this section, we consider the problem of optimizing
the reflection coefficients in the lattice predictor.

The forward prediction error process in the lattice filter is
expressed as

Fm(n) = Fm−1(n) + KmGm−1(n − 1) (14.60)

The minimization of E
[∣∣Fm(n)

∣∣2] with respect to the reflection coefficient
Km yields the result

Km =
−E
[
Fm−1(n)G∗

m−1(n − 1)
]

E
[∣∣Gm−1(n − 1)

∣∣2] (14.61)

or equivalently,

Km =
−E
[
Fm−1(n)G∗

m−1(n − 1)
]

√
Ef

m−1E
b
m−1

(14.62)

where

Ef
m−1 = Eb

m−1 = E
[∣∣Gm−1(n − 1)

∣∣2] = E
[∣∣Fm−1(n)

∣∣2]

We observe that the optimum choice of the reflection coefficients in
the lattice predictor is the negative of the (normalized) cross-correlation
coefficients between the forward and backward errors in the lattice.3 Since
it is apparent from (14.61) that |Km| ≤ 1, it follows that the minimum
mean-square value of the prediction error, which may be expressed recur-
sively as

Ef
m =

(
1 − |Km|2

)
Ef

m−1 (14.63)

is a monotonically decreasing sequence.

14.2.5 RELATIONSHIP OF AN AR PROCESS TO LINEAR PREDICTION
The parameters of an AR(p) process are intimately related to a predictor
of order p for the same process. To see the relationship, we recall that in an
AR(p) process, the autocorrelation sequence RXX(m) is related to the pa-
rameters ak by the Yule–Walker equations given in (14.19) or (14.20). The
corresponding equations for the predictor of order p are given by (14.39)
and (14.40).

A direct comparison of these two sets of relations reveals that there
is a one-to-one correspondence between the parameters ak of the AR(p)

3The normalized cross-correlation coefficients between the forward and backward
error in the lattice (i.e., −Km) are often called the partial correlation (PARCOR)
coefficients.
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process and the predictor coefficients ap(k) of the pth-order predictor. In
fact, if the underlying process x(n) is AR(p), the prediction coefficients of
the pth-order predictor will be identical to ak. Furthermore, the minimum
MSE in the pth-order predictor Ef

p will be identical to σ2
W, the variance

of the white noise process. In this case, the prediction-error filter is a
noise-whitening filter that produces the innovations sequence W(n).

� EXAMPLE 14.11 In Section 14.2.5, we indicated that the noise-whitening filter Ap(z) for a causal
AR(p) process is a forward linear prediction-error filter of order p. Show that
the backward linear prediction-error filter of order p is the noise-whitening filter
of the corresponding anticausal AR(p) process.

Solution For the backward linear prediction-error filter,

x̂(n−p) = −
p−1∑

k=0

bp(k)x(n−k) where bp(k) = a∗
p(p−k), k = 0, . . . , p

Thus

x̂(n − p) = −
p−1∑

k=0

a∗
p(p − k)x(n − k) set p − k = l

= −
p∑

l=1

a∗
p(l)x(n − p + l) = {x(n − p + 1), . . . , x(n)}

∗ {a∗
p(−p), . . . , a∗

p(−1)}

that is, the convolution of {x(n)} with the anticausal sequence {a∗
p(−p), . . . ,

a∗
p(−1)}. �

14.3 SOLUTION OF THE NORMAL EQUATIONS

In the previous section, we observed that the minimization of the mean-
square value of the forward prediction error resulted in a set of linear
equations for the coefficients of the predictor given by (14.39). These
equations, called the normal equations, may be expressed in the compact
form

p∑
k=0

ap(k)RXX(� − k) = 0, � = 1, 2, . . . , p, ap(0) = 1 (14.64)

The resulting minimum MSE (MMSE) is given by (14.40). If we
augment (14.40) to the normal equations given by (14.64), we obtain
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the set of augmented normal equations, which may be expressed as

p∑
k=0

ap(k)RXX(� − k) =

{
Ef

p, � = 0

0, � = 1, 2, . . . , p
(14.65)

We also noted that if the random process is an AR(p) process, the MMSE
Ef

p = σ2
W. In this section, we describe two computationally efficient algo-

rithms for solving the normal equations. The Levinson–Durbin algorithm,
originally due to Levinson [54] and modified by Durbin [14], is suitable
for serial processing and has a computation complexity of o(p2). The sec-
ond algorithm, due to Schur [88], also computes the reflection coefficients
in o(p2) operations, but with parallel processors the computations can
be performed in o(p) time units. Both algorithms exploit the Toeplitz
symmetry property inherent in the autocorrelation matrix. We begin by
describing the Levinson–Durbin algorithm.

14.3.1 LEVINSON–DURBIN ALGORITHM
The Levinson–Durbin algorithm is a computationally efficient algorithm
for solving the normal equations in (14.64) for the prediction coefficients.
This algorithm exploits the special symmetry in the autocorrelation
matrix

Tp =

⎡
⎢⎢⎢⎣

RXX(0) R∗
XX(1) · · · R∗

XX(p − 1)
RXX(1) RXX(0) · · · R∗

XX(p − 2)
...

...
...

RXX(p − 1) RXX(p − 2) · · · RXX(0)

⎤
⎥⎥⎥⎦ (14.66)

Note that Tp(i, j) = Tp(i − j), so that the autocorrelation matrix is a
Toeplitz matrix. Since Tp(i, j) = T ∗

p (j, i), the matrix is also Hermitian.
The key to the Levinson–Durbin solution method, which exploits the

Toeplitz property of the matrix, is to proceed recursively, beginning with
a predictor of order m = 1 (one coefficient), we increase the order re-
cursively, using the lower-order solutions to obtain the solution to the
next-higher order. Thus the solution to the first-order predictor, obtained
by solving (14.64), is

a1(1) = −RXX(1)
RXX(0)

(14.67)

and the resulting MMSE is

Ef
1 = RXX(0) + a1(1)RXX(−1)

= RXX(0)
[
1 − |a1(1)|2

]
(14.68)

Recall that a1(1) = K1, the first reflection coefficient in the lattice filter.
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The next step is to solve for the coefficients a2(1), a2(2) of the second-
order predictor and express the solution in terms of a1(1). The two equa-
tions obtained from (14.64) are

a2(1)RXX(0) + a2(2)R∗
XX(1) = −RXX(1)

a2(1)RXX(1) + a2(2)R∗
XX(0) = −RXX(2)

(14.69)

By using the solution in (14.67) to eliminate RXX(1), we obtain the
solution

a2(2) = −RXX(2) + a1(1)RXX(1)

RXX(0)
[
1 − |a1(1)|2

]

= −RXX(2) + a1(1)RXX(1)
Ef

1

a2(1) = a1(1) + a2(2)a∗
1(1)

(14.70)

Thus we have obtained the coefficients of the second-order predictor.
Again, we note that a2(2) = K2, the second reflection coefficient in the
lattice filter.

Proceeding in this manner, we may express the coefficients of the
mth-order predictor in terms of the coefficients of the (m − 1)th-order
predictor. Thus we may write the coefficient vector am as the sum of two
vectors, namely,

am =

⎡
⎢⎢⎢⎣

am(1)
am(2)

...
am(m)

⎤
⎥⎥⎥⎦ =

⎡
⎣

am−1
. . .
0

⎤
⎦+

⎡
⎣

dm−1
. . .
Km

⎤
⎦ (14.71)

where am−1 is the predictor coefficient vector of the (m − 1)th-order
predictor and the vector dm−1 and the scalar Km are to be determined.
Let us also partition the m × m autocorrelation matrix Tm as

Tm =
[
Tm−1 Rb∗

m−1
Rbt

m−1 RXX(0)

]
(14.72)

where Rbt
m−1 = [RXX(m − 1)RXX(m − 2) . . . RXX(1)] = (Rb

m−1)
t, the

asterisk (*) denotes the complex conjugate, Rt
m denotes the transpose

of Rm, and the superscript b on Rm−1 denotes the vector Rt
m−1 =

[RXX(1)RXX(2) . . . RXX(m − 1)], with elements taken in reverse order.
The solution to the equation Tmam = −Rm may be expressed as
[
Tm−1 Rb∗

m−1
Rbt

m−1 RXX(0)

]([
am−1

0

]
+
[
dm−1
Km

])
= −

[
Rm−1

RXX(m)

]
(14.73)
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720 Chapter 14 LINEAR PREDICTION AND OPTIMUM LINEAR FILTERS

This is the key step in the Levinson–Durbin algorithm. From (14.73), we
obtain two equations,

Tm−1am−1 + Tm−1dm−1 + KmRb∗
m−1 = −Rm−1 (14.74)

Rbt
m−1am−1 + Rbt

m−1dm−1 + KmRXX(0) = −RXX(m) (14.75)

Since Tm−1am−1 = −Rm−1, (14.74) yields the solution

dm−1 = −KmT −1
m−1R

b∗
m−1 (14.76)

But Rb∗
m−1 is just Rm−1 with elements taken in reverse order and conju-

gated; therefore, the solution in (14.76) is simply

dm−1 = Kmab∗
m−1 = Km

⎡
⎢⎢⎢⎣

a∗
m−1(m − 1)

a∗
m−1(m − 2)

...
a∗

m−1(1)

⎤
⎥⎥⎥⎦ (14.77)

The scalar equation (14.75) can now be used to solve for Km. If we elim-
inate dm−1 in (14.75), we obtain

Km[RXX(0) + Rbt
m−1a

b∗
m−1] + Rbt

m−1am−1 = −RXX(m)

Hence

Km = −
RXX(m) + Rbt

m−1am−1

RXX(0) + Rbt
m−1a

b∗
m−1

(14.78)

Therefore, by substituting the solutions in (14.77) and (14.78)
into (14.71), we obtain the desired recursion for the predictor coefficients
in the Levinson–Durbin algorithm as

am(m) = Km = −
RXX(m) + Rbt

m−1am−1

RXX(0) + Rbt
m−1a

b∗
m−1

= −
RXX(m) + Rbt

m−1am−1

Ef
m−1

(14.79)

am(k) = am−1(k) + Kma∗
m−1(m − k)

= am−1(k) + am(m)a∗
m−1(m − k),

k = 1, 2, . . . , m − 1
m = 1, 2, . . . , p

(14.80)

Note that the recursive relation in (14.80) is identical to the recursive rela-
tion in (14.57) for the predictor coefficients, which was obtained from the
polynomials Am(z) and Bm(z). Furthermore, Km is the reflection coeffi-
cient in the mth-stage of the lattice predictor. This development clearly
illustrates that the Levinson–Durbin algorithm produces the reflection co-
efficients for the optimum lattice predictor as well as the coefficients of
the optimum direct form FIR predictor.
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Finally, let us determine the expression for the MMSE. For the mth-
order predictor, we have

Ef
m = RXX(0) +

m∑
k=1

am(k)RXX(−k)

= RXX(0) +
m∑

k=1

[am−1(k) + am(m)a∗
m−1(m − k)]RXX(−k)

= Ef
m−1[1 − |am(m)|2] = Ef

m−1

(
1 − |Km|2

)
m = 1, 2, . . . , p

(14.81)

where Ef
0 = RXX(0). Since the reflection coefficients satisfy the property

that |Km| ≤ 1, the MMSE for the sequence of predictors satisfies the
condition

Ef
0 ≥ Ef

1 ≥ Ef
2 ≥ · · · ≥ Ef

p (14.82)

This concludes the derivation of the Levinson–Durbin algorithm for
the solution of the linear equations Tmam = −Rm, for m = 0, 1, . . . , p. We
observe that the linear equations have the special property that the vector
on the right-hand side also appears as a vector in Tm. In the more general
case, where the vector on the right-hand side is some other vector—say,
cm—the set of linear equations can be solved recursively by introducing
a second recursive equation to solve the more general linear equations
Tmbm = cm. The result is a generalized Levinson–Durbin algorithm.

The Levinson–Durbin recursion given by (14.80) require o(m)
multiplications and additions (operations) to go from stage m to stage
m + 1. Therefore, for p stages, it will require of the order of 1 + 2 +
3 + · · · + p(p + 1)/2, or o(p2) operations to solve for the prediction or
reflection coefficients, compared with o(p3) operations if we do not exploit
the Toeplitz property of the correlation matrix.

If the Levinson–Durbin algorithm is implemented on a serial com-
puter or signal processor, the required computation time is of the order
of o(p2) time units. On the other hand, if the processing is performed
on a parallel-processing machine utilizing as many processors as neces-
sary to exploit the full parallelism in the algorithm, the multiplications
as well as the additions required to compute (14.80) can be carried out
simultaneously. In that case, the computation can be performed in o(p)
time units. However, the computation in (14.79) for the reflection coeffi-
cients takes additional time. Certainly the inner products involving the
vectors am−1 and Rb

m−1 can be computed simultaneously by employing
parallel processors. However, the addition of these products cannot be
done simultaneously but, instead, requires o(log p) time units. Hence the
computations in the Levinson–Durbin algorithm, when performed by p
parallel processors, can be accomplished in o(p log p) time units.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



722 Chapter 14 LINEAR PREDICTION AND OPTIMUM LINEAR FILTERS

MATLAB Implementation The SP Toolbox provides the function
levinson that implements the Levinson–Durbin algorithm. Its invoca-
tion is

[a,E,K] = levinson(Rx,p)

in which the input array Rx contains autocorrelation sequence for positive
lags starting with lag 0. The linear predictor coefficients of order p are
computed in array a along with pth-order prediction error in E and the
corresponding reflection coefficients in array K.

� EXAMPLE 14.12 The autocorrelation sequence of a random process is

RXX(m) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, m = 0

− 0.5, m = ±1

0.625, m = ±2

− 0.6875, m = ±3

0, otherwise

Use the Levinson–Durbin algorithm to determine the system function Am(z)
for the prediction-error filter for m = 1, 2, 3, the reflection coefficients, and the
corresponding mean sequence prediction error.

Solution Use the Levinson–Durbin algorithm: For m = 1 we have

a1(1) = −RXX(1)
RXX(0)

= K1 = 1
2

Therefore, A1(z) = 1 + 1
2z−1 and E1 = RXX(0)(1 − a2

1(1)) = 3
4 . For m = 2,

a2(2) = −RXX(2) + a1(1)RXX(1)
E1

= K2 = − 1
2

and

a2(1) = a1(1) + a2(2)a1(1) = 1
4

Therefore, A2(z) = 1 + 1
4z−1 − 1

2z−2 and E2 = (1 − a2
2(2))E1 = 9

16 . Finally, for
m = 3,

a3(3) = −RXX(3) + a2(1)RXX(2) + a2(2)RXX(1)
E2

= K3 =
1
2

a3(2) = a2(2) + a3(3)a2(1) = − 3
8

a3(1) = a2(1) + a3(3)a2(2) = 0

Hence

A3(x) = 1 − 3
8z−2 + 1

2z−3 E3 = (1 − a2
3(3))E2 = 27

64 = 0.4219
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We will verify the above results using the levinson function:

>> Rx = [1,-0.5,0.625,-0.6875];
>> [a,E,K] = levinson(Rx)
a =

1.0000 0 -0.3750 0.5000
E =

0.4219
K =

0.5000
-0.5000
0.5000

�
� EXAMPLE 14.13 Repeat Example 14.12 for an AR process with autocorrelation

RXX(m) = a|m| cos
πm

2
, 0 < a < 1

Solution From the given autocorrelation RXX(m), we will need first four values:

RXX(0) = a|0| cos(0) = 1, RXX(1) = a|1| cos(π/2) = 0,

RXX(2) = a|2| cos(π) = −a2, RXX(3) = a|3| cos(3π/2) = 0

Now consider the recursion.
• m = 1:

a1(1) = −RXX(1)
RXX(0)

= 0 ⇒ K1 = 0;

A1(z) = 1;

E1 = RXX(0)(1 − a2
1(1)) = RXX(0) = 1

• m = 2:

a2(2) = −RXX(2) + a1(1)RXX(1)
E1

= a2

a2(1) = a1(1) + a2(2)a1(1) = 0 ⇒ K2 = a2;

A2(z) = 1 + a2z−2;

E2 = E1(1 − a2
2(2)) = E1(1 − a4)

= 1 − a4

• m = 3:

a3(3) = −RXX(3) + a2(1)RXX(2) + a2(2)RXX(1)
E2

= 0

a3(2) = a2(2) + a3(3)a2(1) = a2

a3(1) = a2(1) + a3(3)a2(2) = 0 ⇒ K3 = 0;

A3(z) = 1 + a2z−2;

E3 = E2 = 1 − a4

�
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724 Chapter 14 LINEAR PREDICTION AND OPTIMUM LINEAR FILTERS

In the following section, we describe another algorithm, due to
Schur [88], that avoids the computation of inner products and, hence, is
more suitable for parallel computation of the reflection coefficients.

14.3.2 THE SCHUR ALGORITHM
The Schur algorithm is intimately related to a recursive test for determin-
ing the positive definiteness of a correlation matrix. To be specific, let us
consider the autocorrelation matrix Tp+1 associated with the augmented
normal equations given by (14.65). From the elements of this matrix, we
form the function

D0(z) =
RXX(1)z−1 + RXX(2)z−2 + · · · + RXX(p)z−p

RXX(0) + RXX(1)z−1 + · · · + RXX(p)z−p
(14.83)

and the sequence of functions Dm(z) defined recursively as

Dm(z) =
Dm−1(z) − Dm−1(∞)

z−1[1 − D∗
m−1(∞)Dm−1(z)]

, m = 1, 2, . . . (14.84)

Schur’s theorem states that a necessary and sufficient condition for the
correlation matrix to be positive definite is that |Dm(∞)| < 1 for m =
1, 2, . . . , p.

Let us demonstrate that the condition for positive definiteness of the
autocorrelation matrix Tp+1 is equivalent to the condition that the re-
flection coefficients in the equivalent lattice filter satisfy the condition
|Km| < 1, m = 1, 2, . . . , p.

First, we note that D0(∞) = 0. Then from (14.84), we have

D1(z) =
RXX(1) + RXX(2)z−1 + · · · + RXX(p)z−p+1

RXX(0) + RXX(1)z−1 + · · · + RXX(p)z−p
(14.85)

Hence D1(∞) = RXX(1)/RXX(0). We observe D1(∞) = −K1.
Second, we compute D2(z) according to (14.84) and evaluate the

result at z = ∞. Thus, we obtain

D2(∞) =
RXX(2) + K1RXX(1)
RXX(0)(1 − |K1|2)

Again, we observe that D2(∞) = −K2. By continuing this procedure,
we find that Dm(∞) = −Km, for m = 1, 2, . . . , p. Hence the condition
|Dm(∞)| for m = 1, 2, . . . , p is identical to the condition |Km| < 1 for m =
1, 2, . . . , p, which ensures the positive definiteness of the autocorrelation
matrix Tp+1.

Since the reflection coefficients can be obtained from the sequence of
functions Dm(z), m = 1, 2, . . . , p, we have another method for solving the
normal equations. We call this method the Schur algorithm.
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Schur Algorithm Derivation Let us first rewrite Dm(z) as

Dm(z) =
Pm(z)
Qm(z)

, m = 0, 1, . . . , p (14.86)

where

P0(z) = RXX(1)z−1 + RXX(2)z−2 + · · · + RXX(p)z−p (14.87a)

Q0(z) = RXX(0) + RXX(1)z−1 + · · · + RXX(p)z−p (14.87b)

Since K0 = 0 and Km = −Dm(∞) for m = 1, 2, . . . , p, the recursive Equa-
tion (14.84) implies the following recursive equations for the polynomials
Pm(z) and Qm(z):

[
Pm(z)
Qm(z)

]
=
[

1 Km−1
K∗

m−1z
−1 z−1

] [
Pm−1(z)
Qm−1(z)

]
, m = 1, 2, . . . , p

(14.88)
Thus we have

P1(z) = P0(z) = RXX(1)z−1 + RXX(2)z−2 + · · · + RXX(p)z−p

Q1(z) = z−1Q0(z) = RXX(0)z−1 + RXX(1)z−2 + · · · + RXX(p)z−p−1

(14.89)
and

K1 = − P1(z)
Q1(z)

∣∣∣∣
z=∞

= −RXX(1)
RXX(0)

(14.90)

Next, the reflection coefficient K2 is obtained by determining P2(z) and
Q2(z) from (14.88), dividing P2(z) by Q2(z), and evaluating the result at
z = ∞. Thus we find that

P2(z) = P1(z) + K1Q1(z)

= [RXX(2) + K1RXX(1)]z−2 + · · · + [RXX(p) + K1RXX(p − 1)]z−p

+ K1RXX(p)z−p−1

Q2(z) = z−1[Q1(z) + K∗
1P1(z)]

= [RXX(0) + K∗
1RXX(1)]z−2 + · · · + [RXX(p − 1) + K∗

1RXX(p)]z−p−1

+ RXX(p)z−p−2 (14.91)

Thus we observe that the recursive equation in (14.88) is equivalent
to (14.84).

Based on these relationships, the Schur algorithm is described by the
following recursive procedure.

Initialization: Form the 2 × (p + 1) generator matrix

G0 =
[

0 RXX(1) RXX(2) · · · RXX(p)
RXX(0) RXX(1) RXX(2) · · · RXX(p)

]
(14.92)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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where the elements of the first row are the coefficients of P0(Z) and
the elements of the second row are the coefficients of Q0(z).

Step 1. Shift the second row of the generator matrix to the right by one
place and discard the last element of this row, and place a zero in the
vacant position. You will obtain the new generator matrix

G1 =
[

0 RXX(1) RXX(2) · · · RXX(p)
0 RXX(0) RXX(1) · · · RXX(p − 1)

]
(14.93)

The (negative) ratio of the elements in the second column yields the
reflection coefficient K1 = −RXX(1)/RXX(0).

Step 2. Multiply the generator matrix by the 2 × 2 matrix

V1 =
[

1 K1
K∗

1 1

]
(14.94)

to obtain V1G1:

V1G1 =
[
0 0 RXX(2) + K1RXX(1) · · · RXX(p) + K1RXX(p − 1)
0 RXX(0) + K∗

1RXX(1) · · · · · · RXX(p − 1) + K∗
1RXX(p)

]

(14.95)
Step 3. Shift the second row of V1G1 by one place to the right and, thus,

form the new generator matrix

G2 =
[

0 0 RXX(2) + K1RXX(1) · · · RXX(p) + K1RXX(p − 1)
0 0 RXX(0) + K∗

1RXX(1) · · · RXX(p − 2) + K∗
1RXX(p − 1)

]

(14.96)
The negative ratio of the elements in the third column of G2 yields K2.

Steps 2 and 3 are repeated until we have solved for all p reflection
coefficients. In general, the 2 × 2 matrix in step m is

Vm =
[

1 Km

K∗
m 1

]
(14.97)

and multiplication of Vm by Gm yields VmGm. In Step 3, we shift the
second row of VmGm one place to the right and, thus, we obtain the new
generator matrix Gm+1.

Observe that the shifting operation of the second row in each iteration
is equivalent to multiplication by the delay operator z−1 in the second
recursive equation in (14.88).

Also, note that the division of the polynomial Pm(z) by the polyno-
mial Qm(z) and the evaluation of the quotient at z = ∞ are equivalent
to dividing the elements in the (m + 1)th column of Gm. The computa-
tion of the p reflection coefficients can be accomplished by use of parallel
processors in o(p) time units. We describe a pipelined architecture for
performing these computations below.
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� EXAMPLE 14.14 An AR(3) process x(n) is characterized by the autocorrelation sequence

RXX(0) = 1, RXX(1) =
1
2
, RXX(2) =

1
8
, RXX(3) =

1
64

Use the Schur algorithm to determine the three reflection coefficients K1, K2,
and K3.

Solution Following the above steps in the Schur algorithm, we obtain the following.
• Initialization:

G0 =

[
0 1

2
1
8

1
64

1 1
2

1
8

1
64

]

• Step 1:

G1 =

[
0 1

2
1
8

1
64

0 1 1
2

1
8

]
⇒ K1 = −1

2
,

V1 =

[
1 − 1

2

− 1
2 1

]
, V1G1 =

[
0 0 − 1

8 − 3
64

0 3
4

7
16

15
128

]

• Step 2:

G2 =

[
0 0 − 1

8 − 3
64

0 0 3
4

7
16

]
⇒ K2 =

2
3
,

V2 =

[
1 2

3
2
3 1

]
, V2G2 =

[
0 0 0 47

192

0 0 2
3

13
32

]

• Step 3:

G3 =

[
0 0 0 47

192

0 0 0 2
3

]
⇒ K3 = − 47

128

Hence the reflection coefficients are

K1 = − 1
2 , K2 = 2

3 , and K3 = − 47
128

�

� EXAMPLE 14.15 Repeat Example 14.14 for an AR process characterized by the autocorrelation

RXX(m) = a|m| cos
πm

2

Solution The first four autocorrelation values are

RXX(0) = 1, RXX(1) = 0, RXX(2) = −a2, and RXX(3) = 0
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Again following the steps in the Schur algorithm, we obtain the following.
• Initialization:

G0 =

[
0 0 −a2 0

1 0 −a2 0

]

• Step 1:

G1 =

[
0 0 −a2 0

0 1 0 −a2

]
⇒ K1 = −0

1
= 0,

V1 =

[
1 0

0 1

]
, V1G1 = G1 =

[
0 0 −a2 0

0 1 0 −a2

]

• Step 2:

G2 =

[
0 0 −a2 0

0 0 1 0

]
⇒ K2 = a2,

V2 =

[
1 a2

a2 1

]
, V2G2 =

[
0 0 0 0

0 0 1 − a4 0

]

• Step 3:

G3 =

[
0 0 0 0

0 0 0 1 − a4

]
⇒ K3 = 0

Hence the reflection coefficients are

K1 = 0, K2 = a2, and K3 = 0

as obtained in Example 14.13. �

Another way of demonstrating the relationship of the Schur algo-
rithm to the Levinson–Durbin algorithm and the corresponding lattice
predictor is to determine the output of the lattice filter that is obtained
when the input sequence is the correlation sequence

{
RXX(m), m =

0, 1, . . .
}
. Thus the first input to the lattice filter is RXX(0), the second

input is RXX(1), and so on; in other words, f0(n) = RXX(n). After the de-
lay in the first stage, we have g0(n−1) = RXX(n−1). Hence, for n = 1, the
ratio f0(1)/g0(0) = RXX(1)/RXX(0), which is the negative of the reflection
coefficient K1. Alternatively, we may express this relationship as

f0(1) + K1g0(0) = RXX(1) + K1RXX(0) = 0

Furthermore, g0(0) = RXX(0) = Ef
0. At time n = 2, the input to the

second stage is, according to (14.34),

f1(2) = f0(2) + K1g0(1) = RXX(2) + K1RXX(1)
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and after the unit of delay in the second stage, we have

g1(1) = K∗
1f0(1) + g0(0) = K∗

1RXX(1) + RXX(0)

Now the ratio f1(2)/g1(1) is

f1(2)
g1(1)

=
RXX(2) + K1RXX(1)
RXX(0) + K∗

1RXX(1)
=

RXX(2) + K1RXX(1)
Ef

1
= −K2

Hence

f1(2) + K2g1(1) = 0

g1(1) = Ef
1

By continuing in this way, we can show that at the input to the mth
lattice stage the ratio fm−1(m)/gm−1(m−1) = −Km and gm−1(m−1) =
Ef

m−1. Consequently, the lattice filter coefficients obtained from the Levin-
son algorithm are identical to the coefficients obtained from the Schur
algorithm. Furthermore, the lattice filter structure provides a method for
computing the reflection coefficients in the lattice predictor.

A Pipelined Architecture for Implementing the Schur Algorithm
Kung and Hu [52] developed a pipelined lattice-type processor for imple-
menting the Schur algorithm. The processor consists of a cascade of p
lattice-type stages, where each stage consists of two processing elements
(PEs), which we designate as upper PEs, denoted by A1, A2, . . . , Ap, and
lower PEs, denoted by B1, B2, . . . , Bp, as shown in Figure 14.19.

The PE designated as A1 is assigned the task of performing divi-
sions. The remaining PEs perform one multiplication and one addition
per iteration (one clock cycle). Initially, the upper PEs are loaded with
the elements of the first row of the generator matrix G0, as illustrated
in Figure 14.19. The lower PEs are loaded with the elements of the sec-
ond row of the generator matrix G0. The computational process begins
with the division PE A1, which computes the first reflection coefficient as
K1 = −RXX(1)/RXX(0). The value of K1 is sent simultaneously to all the
PEs in the upper and lower branches.

The second step in the computation is to simultaneously update the
contents of all processing elements. The contents of the upper and lower
PEs are updated as follows.

PE Am: Am ← Am + K1Bm, m = 2, 3, . . . , p

PE Bm: Bm ← Bm + K∗
1Am, m = 1, 2, . . . , p

The third step involves the shifting of the contents of the upper PEs
one place to the left. Thus, we have

PE Am: Am−1 ← Am, m = 2, 3, . . . , p
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RXX(1) RXX(2) RXX(3) RXX(p − 1) RXX(p )

RXX(0) RXX(1) RXX(2) RXX(p − 2) RXX(p − 1)

A1 A2 A3 Ap−1 Ap

B1 B2 B3 Bp−1 Bp

E
f
m

Km Km KmKm Km

K *mKmK *mK *mK *m

K *m

FIGURE 14.19 Pipelined parallel processor for computing the reflection
coefficients

At this point, PE A1 contains RXX(2) + K1RXX(1) while PE B1 con-
tains RXX(0) + K∗

1RXX(1). Hence the processor A1 is ready to begin the
second cycle by computing the second reflection coefficient K2 = −A1/B1.
The three computational steps beginning with the division A1/B1 are re-
peated until all p reflection coefficients are computed. Note that PE B1
provides the minimum mean-square error Ef

m for each iteration.
If τd denotes the time for PE A1 to perform a (complex) division

and τma is the time required to perform a (complex) multiplication and
an addition, the time required to compute all p reflection coefficients is
p(τd + τma) for the Schur algorithm.

14.4 PROPERTIES OF THE LINEAR PREDICTION-ERROR FILTERS

Linear prediction-error filters possess several important properties, which
are described in this section. We begin by demonstrating that the forward
prediction-error filter is minimum phase.

Minimum Phase Property of the Forward Prediction-Error
Filter We have already demonstrated that the reflection coefficients
Ki are correlation coefficients and, consequently, |Ki| ≤ 1 for all i. This
condition and the relation Ef

m = (1 − |Km|2)Ef
m−1 may be used to

show that the zeros of the prediction-error filter are either all inside the
unit circle or all on the unit circle.
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First, we show that if Ef
p > 0, then the zeros |zi| < 1 for every i.

The proof is by induction. Clearly, for p = 1, the system function for the
prediction-error filter is

A1(z) = 1 + K1z
−1 (14.98)

Hence z1 = −K1 and Ef
1 = (1 − |K1|2)Ef

0 > 0. Now, suppose that the
hypothesis is true for p − 1. Then, if zi is a root of Ap(z), we have,
from (14.49) and (14.54),

Ap(zi) = Ap−1(zi) + Kpz
−1
i Bp−1(zi)

= Ap−1(zi) + Kpz
−p
i A∗

p−1

(
1
zi

)
= 0 (14.99)

Hence

1
Kp

= −
z−p
i A∗

p−1

(
1
zi

)

Ap−1(zi)
≡ Q(zi) (14.100)

We note that the function Q(z) is allpass. In general, an allpass function
of the form

P (z) =
N∏

k=1

zz∗
k + 1

z + zk
, |zk| < 1 (14.101)

satisfies the property that |P (z)| > 1 for |z| < 1, |P (z)| = 1 for |z| = 1,
and |P (z)| < 1 for |z| > 1. Since Q(z) = −P (z)/z, it follows that |zi| < 1
if |Q(z)| > 1. Clearly, this is the case, since Q(zi) = 1/Kp and Ef

p > 0.
On the other hand, suppose that Ef

p−1 > 0 and Ef
p = 0. In this case,

|Kp| = 1 and |Q(zi)| = 1. Since the MMSE is zero, the random process
X(n) is called predictable or deterministic. Specifically, a purely sinusoidal
random process with sample functions of the form

x(n) =
M∑

k=1

αkej(nωk+θk) (14.102)

where the phases θk are statistically independent and uniformly dis-
tributed over (0, 2π), has the autocorrelation

RXX(m) =
M∑

k=1

α2
kejmωk (14.103)

and the power density spectrum

SXX(f) =
M∑

k=1

α2
kδ(f − fk), fk =

ωk

2π
(14.104)

This process is predictable with a predictor of order p ≥ M .
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To demonstrate the validity of this statement, consider passing this
process through a prediction-error filter of order p > M . The MSE at the
output of this filter is

E f
p =

∫ 1/2

−1/2
SXX(f)|Ap(f)|2df

=
∫ 1/2

−1/2

[
M∑

k=1

α2
kδ(f − fk)

]
|Ap(f)|2df

=
M∑

k=1

α2
k|Ap(fk)|2 (14.105)

By choosing M of the p zeros of the prediction-error filter to coincide with
the frequencies fk, the MSE E f

p can be forced to zero. The remaining p−M
zeros can be selected arbitrarily to be anywhere inside the unit circle.

Finally, we leave it to the reader to prove that if a random process
consists of a mixture of a continuous power spectral density and a discrete
spectrum, the prediction-error filter must have all its roots inside the
unit circle.

Maximum Phase Property of the Backward Prediction-Error
Filter The system function for the backward prediction-error filter of
order p is

Bp(z) = z−pA∗
p(z

−1) (14.106)

Consequently, the roots of Bp(z) are the reciprocals of the roots of the
forward prediction-error filter with system function Ap(z). Hence, if Ap(z)
is minimum phase, then Bp(z) is maximum phase. However, if the process
X(n) is predictable, all the roots of Bp(z) lie on the unit circle.

Whitening Property Suppose that the random process X(n) is an
AR(p) stationary random process that is generated by passing white noise
with variance σ2

W through an all-pole filter with system function

H(z) =
1

1 +
∑p

k=1 akz−1 (14.107)

Then the prediction-error filter of order p has the system function

Ap(z) = 1 +
p∑

k=1

ap(k)z−k (14.108)

where the predictor coefficients ap(k) = ak. The response of the prediction-
error filter is a white noise process W(n). In this case, the prediction-error
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filter whitens the input process X(n) and is called a whitening filter, as
previously indicated in Section 14.2.

More generally, even if the input sequence X(n) is not an AR pro-
cess, the prediction-error filter attempts to remove the correlation among
the signal samples of the input process. As the order of the predictor is
increased, the predictor output X̂(n) becomes a closer approximation to
X(n) and, hence, the difference F(n) = X̂(n) − X(n) approaches white
noise sequence.

� EXAMPLE 14.16 The z-transform of the autocorrelation RXX(m)—that is, the complex PSD
SXX(z)—of an ARMA process is given as

SXX(z) = σ2
WH(z)H

(
z−1) =

4σ2
W

9
5 − 2z − 2z−1

10 − 3z−1 − 3z

(a) Determine the minimum-phase system function H(z).
(b) Determine the system function H(z) for a mixed-phase stable system.

Solution (a) The complex PSD can be factored as

SXX(z) =
4σ2

W(5 − 2z − 2z−1)
9(10 − 3z − 3z−1)

=
4σ2

W(2 − z−1)(2 − z)
9(3 − z−1)(3 − z)

= σ2
WH(z)H(z−1)

The minimum-phase system H(z) is obtained by choosing the pole and zero
inside the unit circle, or

H(z) =
(

2
3

)
2 − z−1

3 − z−1 =
(

4
9

)
1 − 1

2z−1

1 − 1
3z−1

(b) The mixed-phase stable system is obtained by choosing the pole inside and
zero outside the unit circle, or

H(z) =
(

4
3

) 1
2 − z−1

3 − z−1 =
(

2
9

)
1 − 2z−1

1 − 1
3z−1

�

Orthogonality of the Backward Prediction Errors The backward
prediction error processes Gm(k) from different stages in the FIR lattice
filter are orthogonal. That is,

E
[
Gm(n)G∗

� (n)
]

=

{
0, 0 ≤ � ≤ m − 1

Eb
m, � = m

(14.109)
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734 Chapter 14 LINEAR PREDICTION AND OPTIMUM LINEAR FILTERS

This property is easily proved by substituting for Gm(n) and G∗
� (n)

in (14.109) and carrying out the expectation. Thus

E
[
Gm(n)G∗

� (n)
]

=
m∑

k=0

bm(k)
�∑

j=0

b∗
� (j)E

[
X(n − k)X∗(n − j)

]

=
�∑

j=0

b∗
� (j)

m∑
k=0

bm(k)RXX(j − k) (14.110)

But the normal equations for the backward linear predictor require that

m∑
k=0

bm(k)RXX(j − k) =

{
0, j = 1, 2, . . . , m − 1

Eb
m, j = m

(14.111)

Therefore,

E
[
Gm(n)G∗

� (n)
]

=

{
Eb

m = Ef
m, m = �

0, 0 ≤ � ≤ m − 1
(14.112)

14.5 AR LATTICE AND ARMA LATTICE-LADDER FILTERS

In Section 14.2, we developed the all-zero FIR lattice structure and showed
its relationship to linear prediction. The linear predictor with transfer
function

Ap(z) = 1 +
p∑

k=1

ap(k)z−k (14.113)

when excited by an input random process X(n) produces an output that
approaches a white noise sequence as p → ∞. On the other hand, if
the input process is an AR(p), then the output of Ap(z) is white. Since
Ap(z) generates an MA(p) when excited by a white noise sequence, the
all-zero lattice is sometimes called an MA lattice. We develop the lattice
structure for the inverse filter 1/Ap(z), which we call the AR lattice, and
the lattice-ladder structure for an ARMA process.

14.5.1 AR LATTICE STRUCTURE
Let us consider an all-pole system with system function

H(z) =
1

1 +
∑p

k=1 ap(k)z−k
(14.114)
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The difference equation for this IIR system is

y(n) = −
p∑

k=1

ap(k)y(n − k) + x(n) (14.115)

Now, suppose we interchange the roles of the input and output, that is,
interchange x(n) with y(n), in (14.115). Thus we obtain the difference
equation

x(n) = −
p∑

k=1

ap(k)x(n − k) + y(n)

or equivalently,

y(n) = x(n) +
p∑

k=1

ap(k)x(n − k) (14.116)

We observe that (14.116) is a difference equation for an FIR system with
system function Ap(z). Thus an all-pole IIR system can be converted to an
all-zero system by interchanging the roles of the input and output. Based
on this observation, we can obtain the structure of an AR(p) lattice from
an MA(p) lattice by interchanging the input with the output. Since the
MA(p) lattice has y(n) = fp(n) as output and x(n) = f0(n) as input,
we let

x(n) = fp(n)
y(n) = f0(n)

(14.117)

These definitions dictate that the quantities fm(n) be computed in de-
scending order. This computation can be accomplished by rearranging the
recursive equation for fm(n) in (14.34) and solving for fm−1(n) in terms
of fm(n). Thus we obtain

fm−1(n) = fm(n) − Kmgm−1(n − 1), m = p, p − 1, . . . , 1

The equation for gm(n) remains unchanged. The result of these changes
is the set of equations

x(n) = fp(n)
fm−1(n) = fm(n) − Kmgm−1(n − 1)

gm(n) = K∗
mfm−1(n) + gm−1(n − 1)

y(n) = f0(n) = g0(n)

(14.118)

The corresponding structure for the AR(p) lattice is shown in Figure 14.20.
Note that the all-pole lattice structure has an all-zero path with input
g0(n) and output gp(n), which is identical to the all-zero path in the
MA(p) lattice structure. This is not surprising, since the equation for
gm(n) is identical in the two lattice structures.
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z 1z 1 z 1

Input Output

f0(n)  y (n)x(n)  fp(n)

gp(n)

f1(n)f2(n)fp 1(n)

Kp K2 K2 K1 K1

g2(n) g1(n) g0(n)

**Kp
*

FIGURE 14.20 Lattice structure for an all-pole AR(p) system

MATLAB Implementation We observe that the AR(p) and MA(p)
lattice structures are characterized by the same parameters, namely, the
reflection coefficients Ki. Consequently, the equations given in (14.57)
and (14.59)—for converting between the system parameters ap(k) in the
direct form realizations of the all-zero system Ap(z) and the lattice pa-
rameters Ki of the MA(p) lattice structure—apply as well to the all-pole
structures. Hence the MATLAB functions fir2latc and latc2fir or
tf2latc and latc2tf discussed in Section 14.2.3 for MA(p) lattice struc-
tures are also applicable to AR(p) lattice structures. In the case of the
tf2latc function, the needed invocation is K = tf2latc(1,a). The im-
plementation of the AR(p) lattice given in (14.118) will be discussed in
the next section.

� EXAMPLE 14.17 Sketch the lattice filter obtained in Example 14.14 for generating x(n) from a
white noise excitation.

Solution The structure is shown in Figure 14.21. �

w (n )
+ + +

+ + +z−1 z−1 z−1

x(n )

47

128−
47

128

2

3−
2

3

−
1

21

2

FIGURE 14.21 The AR(3) lattice filter structure in Example 14.17
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14.5.2 ARMA PROCESSES AND LATTICE-LADDER FILTERS
The all-pole lattice provides the basic building block for lattice-type struc-
tures that implement IIR systems that contain both poles and zeros.
To construct the appropriate structure, let us consider an IIR system
with system function

H(z) =
∑q

k=0 cq(k)z−k

1 +
∑p

k=1 ap(k)z−z
=

Cq(z)
Ap(z)

(14.119)

Without loss of generality, we assume that p ≥ q. This system is described
by the difference equations

v(n) = −
p∑

k=0

ap(k)v(n − k) + x(n)

y(n) =
q∑

k=0

cq(k)v(n − k)

(14.120)

which are obtained by viewing the system as a cascade of an all-pole
system followed by an all-zero system. From (14.120), we observe that
the output y(n) is simply a linear combination of delayed outputs from
the all-pole system.

Since zeros will result from forming a linear combination of previous
outputs, we may carry over this observation to construct a pole-zero sys-
tem by using the all-pole lattice structure as the basic building block. We
have observed that gm(n) in the all-pole lattice may be expressed as a
linear combination of present and past outputs. In fact, the system

Hb(z) ≡ Gm(z)
Y (z)

= Bm(z) (14.121)

is an all-zero system. Therefore, any linear combination of gm(n) is also
an all-zero filter.

Let us begin with an all-pole lattice filter with coefficients Km, 1 ≤
m ≤ p, and add a ladder component by taking as the output a weighted
linear combination of gm(n). The result is a pole-zero filter that has the
lattice-ladder structure shown in Figure 14.22. Its output is

y(n) =
q∑

k=0

βkgk(n) (14.122)

where βk are the parameters that determine the zeros of the system. The
system function corresponding to (14.122) is

H(z) =
Y (z)
X(z)

=
q∑

k=0

βk
Gk(z)
X(z)

(14.123)
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FIGURE 14.22 Lattice ladder structure for pole-zero system

Since X(z) = Fp(z) and F0(z) = G0(z), (14.123) may be expressed as

H(z) =
q∑

k=0

βk
Gk(z)
G0(z)

F0(z)
Fp(z)

=
1

Ap(z)

q∑
k=0

βkBk(z) (14.124)

Therefore,

Cq(z) =
q∑

k=0

βkBk(z) (14.125)

This is the desired relationship, which can be used to determine the
weighting coefficients βk.

Given the polynomials Cq(z) and Ap(z), where p ≥ q, the reflection
coefficients Ki are determined first from the coefficients ap(k). By means
of the step-down recursive relation given by (14.58), we also obtain the
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polynomials Bk(z), k = 1, 2, . . . , p. Then, the ladder parameters can be
obtained from (14.125), which can be expressed as

Cm(z) =
m−1∑
k=0

βkBk(z) + βmBm(z)

= Cm−1(z) + βmBm(z) (14.126)

or equivalently,

Cm−1(z) = Cm(z) − βmBm(z), m = p, p − 1, . . . , 1 (14.127)

By running this recursive relation backward, we can generate all the
lower-degree polynomials, Cm(z), m = p − 1, . . . , 1. Since bm(m) = 1,
the parameters βm are determined from (14.127) by setting

βm = cm(m), m = p, p − 1, . . . , 1, 0 (14.128)

This lattice-ladder filter structure, when excited by a white noise
sequence, generates an ARMA(p, q) process that has a power density
spectrum

SXX(f) = σ2
W

|Cq(f)|2

|Ap(f)|2
(14.129)

and an autocorrelation function that satisfies (14.18), where σ2
W is the

variance of the input white noise sequence.

MATLAB Implementation To obtain a lattice-ladder structure for
a general rational IIR system, we can first obtain the lattice coefficients{
Km

}
from Ap(z) using the recursion (14.58) and (14.59). Then we can

solve (14.127) and (14.128) recursively for the ladder coefficients {βm}
to realize the numerator Cq(z). This is done in the MATLAB function
iir2ladr. It can also be used to determine the AR(p) lattice parameters
when the array b is set to b=1.

function [K,beta] = iir2ladr(b,a)
% IIR Direct form to pole-zero Lattice/Ladder form Conversion
% -----------------------------------------------------------
% [K,beta] = iir2ladr(b,a)
% K = lattice coefficients (reflection coefficients), [K1,...,KN]
% beta = ladder coefficients, [C0,...,CN]
% b = numerator polynomial coefficients (deg <= Num deg)
% a = denominator polynomial coefficients
%
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a1 = a(1); a = a/a1; b = b/a1;
q = length(b); p = length(a);
if q > p

error(’ *** length of b must be <= length of a ***’)
end
b = [b, zeros(1,p-q)]; K = zeros(1,p-1);
A = zeros(p-1,p-1); beta = b;
for m = p-1:-1:1

A(m,1:m) = -a(2:m+1)*beta(m+1);
K(m) = a(m+1); J = fliplr(a);
a = (a-K(m)*J)/(1-K(m)*K(m)); a = a(1:m);
beta(m) = b(m) + sum(diag(A(m:p-1,1:p-m)));

end

It should be noted that to use this function, p ≥ q. If q > p, the numerator
Ap(z) should be divided into the denominator Cq(z) using the deconv
function to obtain a proper rational part and a polynomial part. The
proper rational part can be implemented using a lattice-ladder structure,
while the polynomial part is implemented using a direct structure.

To convert a lattice-ladder form into a direct form, we first use the
recursive procedure in (14.57) on

{
Km

}
coefficients to determine

{
aq(k)

}
and then solve (14.126) recursively to obtain

{
bq(k)

}
. This is done in the

following MATLAB function, ladr2iir.

function [b,a] = ladr2iir(K,beta)
% Lattice/ladder form to IIR direct form conversion
% -------------------------------------------------
% [b,a] = ladr2iir(K,beta)
% b = numerator polynomial coefficients
% a = denominator polymonial coefficients
% K = lattice coefficients (reflection coefficients)
% beta = ladder coefficients
%
p = length(K); q = length(beta);
beta = [beta, zeros(1,p-q+1)];
J = 1; a = 1; A = zeros(p,p);
for m=1:1:p

a = [a,0]+conv([0,K(m)],J);
A(m,1:m) = -a(2:m+1); J = fliplr(a);

end
b(p+1) = beta(p+1);
for m = p:-1:1

A(m,1:m) = A(m,1:m)*beta(m+1);
b(m) = beta(m) - sum(diag(A(m:p,1:p-m+1)));

end
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The lattice-ladder filter is implemented using (14.34) and (14.122).
This is done in the MATLAB function ladrfilter. It should be noted
that, due to the recursive nature of this implementation along with the
feedback loops, this MATLAB function is neither an elegant nor an effi-
cient method of implementation. It is not possible to exploit MATLAB’s
inherent parallel processing capabilities in implementing this lattice-
ladder structure.

function [y] = ladrfilter(K,beta,x)
% LATTICE/LADDER form realization of IIR filters
% ----------------------------------------------
% [y] = ladrfilter(K,beta,x)
% y = output sequence
% K = LATTICE (reflection) coefficient array
% beta = LADDER coefficient array
% x = input sequence
%
Nx = length(x); y = zeros(1,Nx);
p = length(beta); f = zeros(p,Nx); g = zeros(p,Nx+1);
f(p,:) = x;
for n = 2:1:Nx+1

for m = p:-1:2
f(m-1,n-1) = f(m,n-1) - K(m-1)*g(m-1,n-1);
g(m,n) = K(m-1)*f(m-1,n-1) + g(m-1,n-1);

end
g(1,n) = f(1,n-1);

end
y = beta*g(:,2:Nx+1);

� EXAMPLE 14.18 Determine the parameters of the lattice-ladder filter structure for the system
with system function

H(z) =
1 + 1

4z−1 − 1
8z−2

1 + 3
8z−1 + 1

2z−2

Solution From the denominator of H(z), we determine that

B2(z) =
1
2

+
3
8
z−1 + z−2

B1(z) =
1
4

+ z−1

and that the reflection coefficients are K1 = 1
4 and K2 = 1

2 . Then from the
numerator of H(z),

C(z) = β0B0(z) + β1B1(z) + β2B2(z)

= β0 + β1

(
1
4

+ z−1
)

+ β2

(
1
2

+
3
8
z−1 + z−2

)

1 +
3
8
z−1 +

1
2
z−2 =

(
β0 +

1
4
β1 +

1
2
β2

)
+
(

β1 +
3
8
β2

)
z−1 + β2z

−2
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Solving, in a step-down recursion, we obtain β2 = − 1
8 , β1 = 19

64 , and β0 = 253
256 .

The MATLAB verification is obtained using

>> b = [1,1/4,-1/8]; a = [1,3/8,1/2];
>> [K,beta] = iir2ladr(b,a)
K =

0.2500 0.5000
beta =

0.9883 0.2969 -0.1250

�

� EXAMPLE 14.19 Convert the following pole-zero IIR system into a lattice-ladder structure:

H(z) =
1 + 2z−1 + 2z−2 + z−3

1 + 13
24z−1 + 5

8z−2 + 1
3z−3

Solution The MATLAB script is

>> b = [1,2,2,1] a = [1, 13/24, 5/8, 1/3];
>> [K,beta] = iir2ladr(b,a)
K =

0.2500 0.5000 0.3333
beta =

-0.2695 0.8281 1.4583 1.0000

Hence

K1 = 1
4 , K2 = 1

5 , K3 = 1
3 ;

and

β0 = −0.2695, β1 = 0.8281, β2 = 1.4583, β3 = 1

The resulting direct form and the lattice-ladder form structures are shown in
Figure 14.23. To check that our lattice-ladder structure is correct, let us compute
the first eight samples of its impulse response using both forms.

FIGURE 14.23 IIR system structures in Example 14.19: (a) direct form
(b) lattice-ladder form
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>> [x,n]=impseq(0,0,7) format long; hdirect = filter(b,a,x)
hdirect =
Columns 1 through 4
1.00000000000000 1.45833333333333 0.58506944444444 -0.56170428240741

Columns 5 through 8
-0.54752302758488 0.45261700163162 0.28426911049255 -0.25435705167494

>> hladder = ladrfilter(K,C,x)
hladder =
Columns 1 through 4
1.00000000000000 1.45833333333333 0.58506944444444 -0.56170428240741

Columns 5 through 8
-0.54752302758488 0.45261700163162 0.28426911049255 -0.25435705167494

�
We note that the SP toolbox functions discussed earlier can also be

used to obtain IIR (ARMA) lattice-ladder structures or to implement
them. The invocation [K,beta] = tf2latc(b,a) computes the lattice
parameters in array K and the ladder parameters in beta, normalized
by a(1). Note that an error is generated if one or more of the lattice
parameters are exactly equal to 1. Similarly, the invocation [b,a] =
latc2tf(K,beta) computes the numerator and denominator polynomial
coefficients of the system function from K and beta.

Finally, the invocation [f,g] = latcfilt(k,v,x) filters input in ar-
ray x using the IIR lattice reflection coefficients K and ladder coefficients
beta. The forward lattice filter output (or forward prediction error) is in
array f, and the backward lattice filter output (or backward prediction
error) is in array g. If |K| ≤ 1, f corresponds to the minimum-phase output
and g corresponds to the maximum-phase output.

14.6 WIENER FILTERS FOR FILTERING AND PREDICTION

In many practical applications, we are given an input signal x(n), which
consists of the sum of a desired signal s(n) and an undesired noise or inter-
ference w(n), and we are asked to design a filter that will suppress the un-
desired interference component. In such a case, the objective is to design a
system that filters out the additive interference while preserving the char-
acteristics of the desired signal s(n). We assume that these signals are sam-
ple sequences of random processes X(n), S(n), and W(n), respectively.4

4According to our notation, lowercase variables, such as x(n), are sample sequences,
while uppercase variables, such as X(n), are random processes. In general discussion
and in filtering equations, we will use lowercase variables; for expectation purposes, we
will use uppercase variables. The distinction between a process and its sample sequence
should be clear from the context.
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Optimum
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Noise

FIGURE 14.24 Model for linear estimation problem

In this section, we treat the problem of signal estimation in the
presence of an additive noise disturbance. The estimator is constrained
to be a linear filter with impulse response h(n), which is designed so
that its output approximates some specified desired signal process D(n),
with sample sequence d(n). Figure 14.24 illustrates the linear estimation
problem.

The filter’s input sequence is x(n) = s(n) + w(n) and its output
sequence is y(n)—that is, a sample sequence of the process Y(n). The
difference between the desired signal and the filter output is the error
sequence e(n)

�
= d(n) − y(n), with the underlying process denoted by

E(n). We distinguish three special cases:

(a) If d(n) = s(n), the linear estimation problem is referred to as filtering.
(b) If d(n) = s(n + D), where D > 0, the linear estimation problem is

referred to as signal prediction. Note that this problem is different
than the prediction considered in the previous section, where d(n) =
x(n + D), D ≥ 0.

(c) If d(n) = s(n − D), where D > 0, the linear estimation problem is
referred to as signal smoothing.

Our treatment will concentrate on filtering and prediction.
The criterion selected for optimizing the filter impulse response h(n)

is the minimization of the mean-square error. This criterion has the advan-
tages of simplicity and mathematical tractability. The basic assumptions
are that the processes S(n), W(n), and D(n) are zero mean and wide-sense
stationary. The linear filter will be assumed to be either FIR or IIR. If it is
IIR, we assume that the input data x(n) is available over the infinite past.
We begin with the design of the optimum FIR filter. The optimum linear
filter, in the sense of minimum mean-square error (MMSE), is called a
Wiener filter.
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14.6.1 FIR WIENER FILTER
Suppose that the filter is constrained to be of length M with coefficients
h(k), 0 ≤ k ≤ M − 1. Hence its output y(n) depends on the finite data
record x(n), x(n − 1), . . . , x(n − M + 1),

y(n) =
M−1∑
k=0

h(k)x(n − k) (14.130)

The mean-square value of the error between the desired output d(n) and
the actual output y(n) is

EM = E
[
|E(n)|2

]

= E

⎡
⎣
∣∣∣∣∣D(n) −

M−1∑
k=0

h(k)X(n − k)

∣∣∣∣∣
2
⎤
⎦ (14.131)

Since this is a quadratic function of the filter coefficients, the minimization
of EM yields the set of linear equations

M−1∑
k=0

h(k)RXX(� − k) = RDX(�), � = 0, 1, . . . , M − 1 (14.132)

where RDX(k) = E
[
D(n)X∗(n − k)

]
is the cross-correlation between the

desired process D(n) and the input process X(n), 0 ≤ n ≤ M − 1, and
RXX(k) is the autocorrelation of the input process X(n). This set of linear
equations that specifies the optimum filter is called the Wiener–Hopf
equation. (These equations are also called the normal equations, which
we encountered earlier in this chapter in the context of linear one-step
prediction.)

In general, the equations in (14.132) can be expressed in matrix
form as

TMhM = RD (14.133)

where TM is an M × M (Hermitian) Toeplitz matrix with elements
T�k = RXX(� − k), and RD is the M × 1 cross-correlation vector with
elements RDX(�), � = 0, 1, . . . , M − 1. The solution for the optimum filter
coefficients is

hopt = T −1
M RD (14.134)

and the resulting minimum MSE achieved by the Wiener filter is

MMSEM = min
hm

EM = σ2
D −

M−1∑
k=0

hopt(k)R∗
DX(k) (14.135)

or equivalently,
MMSEM = σ2

D − R∗t
D T −1

M RD (14.136)

where σ2
D = E

[
|D(n)|2

]
.
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Let us consider some special cases of (14.132). If we are dealing with
filtering, then D(n) = S(n). Furthermore, if S(n) and D(n) are uncorre-
lated random sequences, as is usually the case in practice, then

RXX(k) = RSS(k) + RWW(k)
RDX(k) = RSS(k)

(14.137)

and the normal equations in (14.132) become

M−1∑
k=0

h(k)
[
RSS(� − k) + RWW(l − k)

]
= RSS(�), � = 0, 1, . . . , M − 1

(14.138)
If we are dealing with prediction, then D(n) = D(n+D) where D > 0.

Assuming that S(n) and W(n) are uncorrelated random sequences, we
have

RDX(k) = RSS(k + D) (14.139)

Hence the equations for the Wiener prediction filter become

M−1∑
k=0

h(k)
[
RSS(l − k) + RWW(l − k)

]
= RSS(� + D) � = 0, 1, . . . , M − 1

(14.140)
In all these cases, the correlation matrix to be inverted is Toeplitz.

Hence the (generalized) Levinson–Durbin algorithm may be used to solve
for the optimum filter coefficients.

� EXAMPLE 14.20 Let us consider a signal x(n) = s(n) + w(n), where s(n) is a sample sequence
of an AR(1) process S(n) that satisfies the difference equation

s(n) = 0.6s(n − 1) + v(n)

where v(n) is a sample sequence of a white noise process V(n) with variance
σ2

V = 0.64 and w(n) is a sample sequence of a white noise process W(n) with
variance σ2

W = 1.

a. Design a Wiener FIR filter of length M = 2 to estimate the desired signal
S(n).

b. Use MATLAB to design the optimum FIR Wiener filter for lengths M = 3, 4,
and 5, and the corresponding MMSE for these cases. Comment on how the
MMSE changes as M is increased from M = 2 to M = 5.

Solution Since S(n) is obtained by exciting a single-pole filter by white noise, the power
spectral density of S(n) is

SSS(f) = σ2
V

∣∣H
(
ej2πf)∣∣2 =

0.64∣∣1 − 0.6e−j2πf
∣∣2

=
0.64

1.36 − 1.2 cos(2πf)
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Using the procedure given in Example 13.14, the corresponding autocorrelation
sequence RSS(m) is

RSS(m) = (0.6)|m|

a. The equations for the filter coefficients are

2h(0) + 0.6h(1) = 1,

0.6h(0) + 2h(1) = 0.6

Solution of these equations yields the result

h(0) = 0.451 h(1) = 0.165

The corresponding minimum MSE is

MMSE2 = 1 − h(0)RSS(0) − h(1)RSS(1)

= 1 − 0.451 − (0.165)(0.6) = 0.45

MATLAB script:

>> varW = 1; M = 2; m = 0:M-1;
>> Rss = 0.6.ˆm; TM = toeplitz(Rss) + varW*eye(M);
>> RD = Rss’;
>> hopt2 = TM\RD
hopt2 =

0.4505
0.1648

>> MMSE2 = Rss(1) - RD’*hopt2
MMSE2 =

0.4505

b. The filter coefficients and the corresponding MMSE values are obtained
using the following MATLAB script.

>> M = 3; m = 0:M-1;
>> Rss = 0.6.ˆm; TM = toeplitz(Rss) + varW*eye(M); RD = Rss’;
>> hopt3 = TM\RD; MMSE3 = Rss(1) - RD’*hopt3
MMSE3 =

0.4451
>> M = 4; m = 0:M-1;
>> Rss = 0.6.ˆm; TM = toeplitz(Rss) + varW*eye(M); RD = Rss’;
>> hopt4 = TM\RD; MMSE4 = Rss(1) - RD’*hopt4
MMSE4 =

0.4445
>> M = 5; m = 0:M-1;
>> Rss = 0.6.ˆm; TM = toeplitz(Rss) + varW*eye(M); RD = Rss’;
>> hopt5 = TM\RD; MMSE5 = Rss(1) - RD’*hopt5
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Filter Order m

M
M

S
E
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FIGURE 14.25 Plot of MMSE vs. filter order in Example 14.20

MMSE5 =
0.4445

>> MMSE = [MMSE2,MMSE3,MMSE4,MMSE5];
>> % Plotting commands follow

The resulting plot of the MMSE vs. filter order is given in Figure 14.25. �

� EXAMPLE 14.21 a. Repeat Example 14.20 when the variance of V(n) is σ2
V = 0.64 and the

variance of the additive noise W(n) is σ2
W = 0.1.

b. Generate the AR(1) signal sequence s(n) and the corresponding received
sequence

x(n) = s(n) + w(n), 0 ≤ n ≤ 1000

Filter the sequence x(n), 0 ≤ n ≤ 1000, by the Wiener filter with M =
2, 3, 4, 5 and plot the output y2(n), y3(n), y4(n), and y5(n), along with the
derived signal s(n). Comment on the effectiveness of the Wiener filter in
estimating the derived signal s(n).

Solution From Example 14.20, the PSD and autocorrelation of S(n), respectively, are
given by

SSS(f) =
0.64

1.36 − 1.2 cos 2πf
,

RSS(m) = (0.6)|m|

a. Using σ2
W = 0.1, we develop and solve new sets of Wiener–Hopf equations

to obtain new Wiener filters and their corresponding MMSEs. The details
are given in the following MATLAB script.
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>> varW = 0.1; M = 2; m = 0:M-1;
>> Rss = 0.6.ˆm; TM = toeplitz(Rss) + varW*eye(M);
>> RD = Rss’;
>> hopt2 = TM\RD;
>> MMSE2 = Rss(1) - RD’*hopt2
MMSE2 =

0.0871
>> M = 3; m = 0:M-1;
>> Rss = 0.6.ˆm; TM = toeplitz(Rss) + varW*eye(M); RD = Rss’;
>> hopt3 = TM\RD; MMSE3 = Rss(1) - RD’*hopt3
MMSE3 =

0.0870
>> M = 4; m = 0:M-1;
>> Rss = 0.6.ˆm; TM = toeplitz(Rss) + varW*eye(M); RD = Rss’;
>> hopt4 = TM\RD; MMSE4 = Rss(1) - RD’*hopt4
MMSE4 =

0.0870
>> M = 5; m = 0:M-1;
>> Rss = 0.6.ˆm; TM = toeplitz(Rss) + varW*eye(M); RD = Rss’;
>> hopt5 = TM\RD; MMSE5 = Rss(1) - RD’*hopt5
MMSE5 =

0.0870
>> % Plotting commands follow

Clearly, the MMSE values are very small and quickly settle into a
steady-state value of 0.0807. The plot of MMSE vs. filter order is shown in
Figure 14.26.

Filter Order m

2 543

M
M

S
E

0.0870

0.0870

0.0870

0.0870

0.0871

0.0871
Performance of FIR Wiener Filter

FIGURE 14.26 Plot of MMSE vs. filter order in Example 14.21(a)
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Example 14.21(b)

b. Signal generation and Wiener filtering operations are given in the following
MATLAB script.

>> n = 0:1000; varW = 0.1;
>> varV = 0.64; vn = sqrt(varV)*randn(1,length(n));
>> sn = filter(1,[1-0.6],vn);
>> wn = sqrt(varW)*randn(1,length(n));
>> xn = sn + wn;
>> yn2 = filter(hopt2,1,xn);
>> yn3 = filter(hopt3,1,xn);
>> yn4 = filter(hopt4,1,xn);
>> yn5 = filter(hopt5,1,xn);

The plot of signal estimates, containing samples from n = 100 to n = 150,
is shown in Figure 14.27. From it, we conclude that all estimates are very
close to each other and that they also follow the signal s(n) closely. �

� EXAMPLE 14.22 Consider the signal x(n) = s(n) + w(n), where s(n) is a sample function of an
AR process S(n) that satisfies the difference equation

s(n) = 0.8s(n − 1) + v(n)

where v(n) is a sample function of a white Gaussian noise process V(n) with
variance σ2

V = 0.49 and w(n) is a sample function of a white Gaussian noise
process W(n) with variance σ2

W = 0.1. The processes V(n) and W(n) are
uncorrelated.

a. Determine the autocorrelation sequence RSS(m) and RXX(m).
b. Use MATLAB to design a Wiener filter of length M = 2, 3, 4, 5 and the

corresponding MMSE.
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c. Generate the signal sequence s(n) and the received sequence x(n) = s(n) +
w(n) for 0 ≤ n ≤ 1000. Filter the sequence x(n), 0 ≤ n ≤ 1000, by the
Wiener filter for M = 2, 3, 4, 5 and plot the output y2(n), y3(n), y4(n), and
y5(n), along with the derived signal s(n). Comment on the effectiveness of
the Wiener filter in estimating the derived signal s(n).

Solution Since S(n) is obtained by exciting a single-pole filter by white noise, the power
spectral density of S(n) is

SSS(f) = σ2
V

∣∣H
(
ej2πf)∣∣2 =

0.49∣∣1 − 0.8e−j2πf
∣∣2

=
0.49

1.64 − 1.6 cos(2πf)

a. Using the procedure given in Example 13.14, the corresponding autocorre-
lation sequence RSS(m) is

RSS(m) =
( 7

6

)2 (0.8)|m| = 1.3611(0.8)|m|

The autocorrelation of X(n) is then given by

RXX(m) = RSS(m) + RVV(m) = 1.3611(0.8)|m| + 0.1δ(m)

b. MATLAB script for Wiener filter design:

>> varW = 0.1; M = 2; m = 0:M-1;
>> Rss = 1.3611*0.8.ˆm; TM = toeplitz(Rss) + varW*eye(M);
>> RD = Rss’;
>> hopt2 = TM\RD;
>> MMSE2 = Rss(1) - RD’*hopt2
MMSE2 =

0.084606379865379
>> M = 3; m = 0:M-1;
>> Rss = 1.3611*0.8.ˆm; TM = toeplitz(Rss) + varW*eye(M); RD = Rss’;
>> hopt3 = TM\RD; MMSE3 = Rss(1) - RD’*hopt3
MMSE3 =

0.084475619407793
>> M = 4; m = 0:M-1;
>> Rss = 1.3611*0.8.ˆm; TM = toeplitz(Rss) + varW*eye(M); RD = Rss’;
>> hopt4 = TM\RD; MMSE4 = Rss(1) - RD’*hopt4
MMSE4 =

0.084473602242929
>> M = 5; m = 0:M-1;
>> Rss = 1.3611*0.8.ˆm; TM = toeplitz(Rss) + varW*eye(M); RD = Rss’;
>> hopt5 = TM\RD; MMSE5 = Rss(1) - RD’*hopt5
MMSE5 =

0.084473571121205
>> % Plotting commands follow
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Filter Order m
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FIGURE 14.28 Plot of MMSE vs. filter order in Example 14.22(a)

Again, the MMSE values are very small and quickly settle into a steady-
state value of 0.0845. The plot of MMSE vs. filter order is shown in
Figure 14.28.

c. Signal generation and FIR Wiener filtering operations are given in the fol-
lowing MATLAB script.

>> n = 0:1000; varW = 0.1;
>> varV = 0.49; vn = sqrt(varV)*randn(1,length(n));
>> sn = filter(1,[1-0.8],vn);
>> wn = sqrt(varW)*randn(1,length(n));
>> xn = sn + wn;
>> yn2 = filter(hopt2,1,xn);
>> yn3 = filter(hopt3,1,xn);
>> yn4 = filter(hopt4,1,xn);
>> yn5 = filter(hopt5,1,xn);

The plot of signal estimates, containing samples from n = 100 to n = 150, is
shown in Figure 14.29. From it we conclude that all estimates are very close to
each other and that they also follow the signal s(n) closely. �

14.6.2 ORTHOGONALITY PRINCIPLE IN LINEAR MEAN-SQUARE
ESTIMATION

The Wiener–Hopf equation for the optimum filter coefficients given
by (14.132) can be obtained directly by applying the orthogonality prin-
ciple in linear mean-square estimation. Simply stated, the mean-square
error EM in (14.131) is a minimum if the filter coefficients h(k) are
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FIGURE 14.29 Plots of signal s(n) and Wiener filter estimates
{
yk(n)

}5
k=2 in

Example 14.22(b)

selected such that the error is orthogonal to each of the data points in
the estimate,

E
[
E(n)X∗(n − �)

]
= 0, � = 0, 1, . . . , M − 1 (14.141)

where

e(n) = d(n) −
M−1∑
k=0

h(k)x(n − k) (14.142)

Conversely, if the filter coefficients satisfy (14.141), then the resulting
MSE is a minimum.

When viewed geometrically, the output of the filter, which is the
estimate

d̂(n) =
M−1∑
k=0

h(k)x(n − k) (14.143)

is a vector in the subspace spanned by the data x(k), 0 ≤ k ≤ M −1. The
error e(n) is a vector from d(n) to d̂(n)—that is, d(n) = e(n) + d̂(n)—as
shown in Figure 14.30. The orthogonality principle states that the length
EM = E

[∣∣E(n)
∣∣2] is a minimum when e(n) is perpendicular to the data

subspace—that is, e(n) is orthogonal to each data point x(k), 0 ≤ k ≤
M − 1.

We note that the solution obtained from the normal equations
in (14.132) is unique if the data x(n) in the estimate d̂(n) are linearly
independent. In that case, the correlation matrix TM is nonsingular. On
the other hand, if the data are linearly dependent, then the rank of TM is
less than M and, hence, the solution is not unique. In this case, the
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h(1)x(2)

d(n)ˆ

FIGURE 14.30 Geometric interpretation of linear MSE problem

estimate d̂(n) can be expressed as a linear combination of a reduced set
of linearly independent data points equal to the rank of TM .

Since the MSE is minimized by selecting the filter coefficients to sat-
isfy the orthogonality principle, then the residual minimum MSE is simply

MMSEM = E
[
E(n)D∗(n)

]
(14.144)

which yields the result given in (14.135).

� EXAMPLE 14.23 Derive the Wiener–Hopf equation in (14.142) and the residual MMSE in equa-
tion (14.136) by application of the orthogonality principle.

Solution The derived signal is d(n) and the estimate of d(n) is

d̂(n) =
∞∑

k=0

h(k)x(n − k)

where x(n) is the observed data sequence. The error sequence is defined as

e(n) = d(n) − d̂(n)

= d(n) −
∞∑

k=0

h(k)x(n − k)

The impulse response {h(k)} of the optimum filter that minimizes the MSE is
obtained when the error e(n) is orthogonal to the data in the estimate. Thus

E
[
E(n)X∗(n − �)

]
= 0 for � = 0, 1, . . .

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Wiener Filters for Filtering and Prediction 755

Hence

E

[{
D(n) −

∞∑

k=0

h(k)X(n − k)
}

X∗(n − �)

]
= 0, � = 0, 1, . . .

E
[
D(n)x∗(n − �)

]
=

∞∑

k=0

h(k)E
[
X(n − k)X∗(n − �)

]

RDX(�) =
∞∑

k=0

h(k)RXX(� − k), � ≥ 0

The minimum MSE (MMSE) is

E
[
E(n)D∗(n)

]
= E

[∣∣D(n)
∣∣2]−

∞∑

k=0

h(k)E
[
D∗(n)X(n − k)

]

= σ2
D −

∞∑

k=0

h(k)R∗
DX(k)

�

14.6.3 IIR WIENER FILTER
In the previous section, we constrained the filter to be FIR and obtained
a set of M linear equations for the optimum filter coefficients. In this
section, we shall allow the filter to be infinite in duration (IIR), and the
data sequence will also be infinite. Hence the filter output is

y(n) =
∞∑

k=0

h(k)x(n − k) (14.145)

The filter coefficients are selected to minimize the mean-square error
between the desired output d(n) and y(n), that is,

E∞ = E
[∣∣E(n)

∣∣2]

= E

[∣∣∣D(n) −
∞∑

k=0

h(k)X(n − k)
∣∣∣
2]

(14.146)

Application of the orthogonality principle leads to the Wiener–Hopf
equation

∞∑
k=0

h(k)RXX(� − k) = RDX(�), � ≥ 0 (14.147)

The residual MMSE is simply obtained by application of the condition
given by (14.144). Thus we obtain

MMSE∞ = min
h

E∞ = σ2
D −

∞∑
k=0

hopt(k)R∗
DX(k) (14.148)
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The Wiener–Hopf equation given by (14.147) cannot be solved
directly with z-transform techniques, because the equation holds only
for � ≥ 0. We shall solve for the optimum IIR Wiener filter based on the
innovations representation of the stationary random process X(n).

Recall that a stationary random process X(n) with autocorrelation
RXX(k) and power spectral density SXX(f) may be represented by an
equivalent innovations process by passing X(n) through a noise-whitening
filter with system function 1/G(z), where G(z) is the minimum-phase
component obtained from the spectral factorization of SXX(z), that is,

SXX(z) = σ2
I G(z)G(z−1) (14.149)

Hence G(z) is analytic in the region |z| > r1, where r1 < 1.
Now, the optimum Wiener filter may be viewed as the cascade of the

whitening filter 1/G(z) with a second filter—say, Q(z)—whose output
y(n) is identical to the output of the optimum Wiener filter. Since

y(n) =
∞∑

k=0

q(k)i(n − k) (14.150)

where i(n) is a sample sequence of the innovations process I(n), and
e(n) = d(n) − y(n), application of the orthogonality principle yields the
new Wiener–Hopf equation as

∞∑
k=0

q(k)RII(� − k) = RDI(�), � ≥ 0 (14.151)

But, since I(n) is white, it follows that RII(� − k) = 0, unless � = k. Thus
we obtain the solution as

q(�) =
RDI(�)
RII(0)

=
RDI(�)

σ2
I

, � ≥ 0 (14.152)

The z-transform of the sequence q(�) is

Q(z) =
∞∑

k=0

q(k)z−k =
1
σ2

i

∞∑
k=0

RDI(k)z−k (14.153)

If we denote the z-transform of the two-sided cross-correlation
sequence RDI(k) by SDI(z),

SDI(z) =
∞∑

k=−∞
RDI(k)z−k (14.154)

and define [SDI(z)]+,

[
SDI(z)

]
+ =

∞∑
k=0

RDI(k)z−k (14.155)
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then
Q(z) =

1
σ2

i

[
SDI(z)

]
+ (14.156)

To determine [SDI(z)]+, we begin with the output of the noise-
whitening filter, which may be expressed as

i(n) =
∞∑

k=0

v(k)x(n − k) (14.157)

where v(k), k ≥ 0, is the impulse response of the noise-whitening filter,

1
G(z)

≡ V (z) =
∞∑

k=0

v(k)z−k (14.158)

Then

RDI(k) = E
[
D(n)I∗(n − k)

]

=
∞∑

m=0

v(m)E
[
d(n)x∗(n − m − k)

]

=
∞∑

m=0

v(m)RDX(k + m) (14.159)

The z-transform of the cross-correlation RDI(k) is

SDI(z) =
∞∑

k=−∞

[ ∞∑
m=0

v(m)RDX(k + m)

]
z−k

=
∞∑

m=0

v(m)
∞∑

k=−∞
RDX(k + m)z−k

=
∞∑

m=0

v(m)zm
∞∑

k=−∞
RDX(k)z−k

= V (z−1)SDX(z) =
SDX(z)
G(z−1)

(14.160)

Therefore,

Q(z) =
1
σ2

I

[
SDX(z)
G(z−1)

]

+
(14.161)

Finally, the optimum IIR Wiener filler has the system function

Hopt(z) =
Q(z)
G(z)

=
1

σ2
I G(z)

[
SDX(z)
G(z−1)

]

+
(14.162)
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In summary, the solution for the optimum IIR Wiener filter requires
that we perform a spectral factorization of RXX(z) to obtain G(z), which
is the minimum-phase component, and then we solve for the causal part
of SDX(z)/G(z−1). The following example illustrates the procedure.

� EXAMPLE 14.24 Let us determine the optimum IIR Wiener filter for the signal given in Exam-
ple 14.20. For this signal, we have

SXX(z) = SSS(z) + 1 =
1.8
(
1 − 1

3z−1)(1 − 1
3z)(

1 − 0.6z−1
)
(1 − 0.6z)

where σ2
I = 1.8 and

G(z) =
1 − 1

3z−1

1 − 0.6z−1

The z-transform of the cross-correlation RDX(m) is

SDX(z) = SSS(z) =
0.64(

1 − 0.6z−1
)
(1 − 0.6z)

Hence
[

SDX(z)
G
(
z−1

)
]

+

=
[

0.64
(1 − 1

3z)(1 − 0.6z−1)

]

+

=
[

0.8
1 − 0.6z−1 +

0.266z

1 − 1
3z

]

+

=
0.8

1 − 0.6z−1

The optimum IIR filter has the system function

Hopt(z) =
1

1.8

(
1 − 0.6z−1

1 − 1
3z−1

)(
0.8

1 − 0.6z−1

)
=

4
9

1 − 1
3z−1

and impulse response

hopt(n) =
4
9

(
1
3

)n

, n ≥ 0

�

We conclude this section by expressing the minimum MSE given
by (14.148) in terms of the frequency domain characteristics of the
filter. First, we note that σ2

D ≡
{
E
[
|D(n)|2

]}
is simply the value of the

autocorrelation sequence RDD(k) evaluated at k = 0. Since

RDD(k) =
1

2πj

∮

C

SDD(z)zk−1 dz (14.163)

it follows that

σ2
D = RDD(0) =

1
2πj

∮

C

SDD(z)
z

dz (14.164)
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where the contour integral is evaluated along a closed path encircling the
origin in the region of convergence of SDD(z).

The second term in (14.148) is also easily transformed to the fre-
quency domain by application of Parseval’s theorem. Since hopt(k) = 0,
for k < 0, we have

∞∑
k=−∞

hopt(k)R∗
DX(k) =

1
2πj

∮

C

Hopt(z)SDX
(
z−1)z−1 dz (14.165)

where C is a closed contour encircling the origin that lies within the com-
mon region of convergence of Hopt(z)SDX

(
z−1

)
. By combining (14.164)

with (14.165), we obtain the desired expression for the MMSE, in the
form

MMSE∞ =
1

2πj

∮

C

[
SDD(z) − Hopt(z)SDX

(
z−1)]z−1 dz (14.166)

We note that SDD(z) = SSS(z) and SDX
(
z−1

)
= SSS

(
z−1

)
.

� EXAMPLE 14.25 For the optimum Wiener filter derived in Example 14.24, the minimum MSE is

MMSE∞ =
1

2πj

∮

C

[
0.3555(

z − 1
3

)
(1 − 0.6z)

]
dz

There is a single pole inside the unit circle at z = 1
3 . By evaluating the residue

at the pole, we obtain

MMSE∞ = 0.444

We observe that this MMSE is only slightly smaller than that for the optimum
two-tap Wiener filter in Example 14.20. �

� EXAMPLE 14.26 Determine the optimum causal IIR Wiener filter for the estimation of the signal

s(n) = 0.8s(n − 1) + v(n)

from the observation

x(n) = s(n) + w(n)

where v(n) is a sample sequence of a white noise process V(n) with σ2
v = 0.49

and w(n) is a sample sequence of a white noise process W(n) with variance
σ2

W = 1. The process V(n) and W(n) are uncorrelated.

Solution The complex cross- and auto-PSDs are given by

SDX(z) = SSS(z) =
0.49(

1 − 0.8z−1
)
(1 − 0.8z)

(14.167)
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from which the auto-PSD of X(n) is

SXX(z) = SSS(z) + 1 =
1.78

(
1 − 0.45z−1)(1 − 0.45z)(

1 − 0.8z−1
)
(1 − 0.8z)

This gives the whitening filter

G(z) =

(
1 − 0.45z−1)
(
1 − 0.8z−1

)

The causal part is then given by
[

SDX(z)
G
(
z−1

)
]

+

=

[
0.49(

1 − 0.8z−1
)
(1 − 0.45z)

]

+

=

[
0.766(

1 − 0.8z−1
) +

0.345z

(1 − 0.45z)

]

+

=
0.766(

1 − 0.8z−1
)

Now the system function of the optimum Wiener filter is

Hopt(z) =
1

1.78

(
1 − 0.8z−1

1 − 0.45z−1

)(
0.766

1 − 0.8z−1

)
=

0.43
1 − 0.45z−1

and the corresponding impulse response is

hopt(n) = 0.43(0.45)nu(n)

Finally, the MMSE for the causal IIR Wiener filter is given by

MMSE∞ =
1

2πj

∮

C

[
SSS(z) − Hopt(z)SSS

(
z−1)]z−1 dz

=
1

2πj

∮

C

0.28
(z − 0.45)(1 − 0.8z)

dz =
0.28

1 − 0.8z

∣∣∣∣
z=0.45

= 0.438
�

� EXAMPLE 14.27 Consider the design of the optimum causal IIR Wiener filter for the signal s(n)
given in Example 14.26, where now the variance of the additive noise w(n) is
σ2

W = 0.1.

a. Determine the system function for the optimum causal IIR filter and the
minimum MSE.

b. Generate the signal sequence s(n) and the received sequence x(n) for
0 ≤ n ≤ 1000, where

s(n) = 0.8s(n − 1) + v(n)

x(n) = s(n) + w(n)

Filter the sequence x(n), 0 ≤ n ≤ 1000, by the optimum causal Wiener
filter obtained in part (a), and plot the output sequence y(n) along with the
desired sequence s(n). Comment on the effectiveness of the causal Wiener
filter in estimating the desired signal.
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Solution From (14.167), the complex PSD SSS(z) is

SSS(z) =
0.49(

1 − 0.8z−1
)
(1 − 0.8z)

a. For σ2
W = 0.1, the auto-PSD of X(n) is

SXX(z) = SSS(z) + 0.1 =
0.6441

(
1 − 0.1242z−1)(1 − 0.1242z)(
1 − 0.8z−1

)
(1 − 0.8z)

(14.168)

This gives the whitening filter

G(z) =

(
1 − 0.1242z−1)
(
1 − 0.8z−1

)

The causal part is then given by

[
SDX(z)
G
(
z−1

)
]

+

=

[
0.49(

1 − 0.8z−1
)
(1 − 0.1242z)

]

+

=

[
0.5441(

1 − 0.8z−1
) +

0.0676z

(1 − 0.1242z)

]

+

=
0.5441(

1 − 0.8z−1
)

Now the system function of the optimum Wiener filter is

Hopt(z) =
1

0.6441

(
1 − 0.8z−1

1 − 0.1242z−1

)(
0.5441

1 − 0.8z−1

)
=

0.8447
1 − 0.1242z−1

and the corresponding impulse response is

hopt(n) = 0.8447(0.1242)nu(n)

Finally, the MMSE for the causal IIR Wiener filter is given by

MMSE∞ =
1

2πj

∮

C

[
SSS(z) − Hopt(z)SSS

(
z−1)]z−1 dz

=
1

2πj

∮

C

0.0761
(z − 0.1242)(1 − 0.8z)

dz =
0.0761

1 − 0.8z

∣∣∣∣
z=0.1242

= 0.08447.

Clearly, this error is lower than the minimum mean-squared errors given in
Example 14.22. The above calculations were performed using the following
MATLAB script.
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>> varW = 0.1; varV = 0.49; a = 0.8;
>> Ss_num = varV*[0,-1/a]; Ss_den = conv([1,-a],[1,-1/a]);
>> Sx_num = varW*Ss_den + [Ss_num,0]; Sx_den = Ss_den;
>> Sx_num0 = Sx_num(1);
>> Sx_num_roots = roots(Sx_num/Sx_num0);
>> Sx_den0 = Sx_den(1);
>> Sx_den_roots = roots(Sx_den/Sx_den0);
>> Sx_num_factor = [1,-1/Sx_num_roots(1); 1,- Sx_num_roots(2)];
>> Sx_den_factor = [1,-1/Sx_den_roots(1); 1,- Sx_den_roots(2)];
>> Sx_constant = (Sx_num0*Sx_num_roots(1))/(Sx_den0*Sx_den_roots(1));
>> G_num = Sx_num_factor(2,:); G_den = Sx_den_factor(2,:);
>> [R,p,C] = residuez(varV*[0,-Sx_num_roots(1)],...

conv([1,-Sx_den_roots(2)],[1,->> Sx_num_roots(1)]));
>> causal_part_num = R(2);
>> anticausal_part_num = R(1)*(-Sx_num_roots(2));
>> Hopt_num = causal_part_num/Sx_constant;
>> Hopt_den = [1,-Sx_num_roots(2)];
>> DHopt_num = Hopt_den-[Hopt_num,0];
>> Int_num = conv(Ss_num,[0,DHopt_num]);
>> MMSEc = Int_num(end)/(1-Sx_den_roots(2)*Sx_num_roots(2));
MMSEc =

0.084473570633519

b. Signal generation and causal IIR Wiener filtering operations are given in the
following MATLAB script.

>> n = 0:1000; varW = 0.1;
>> varV = 0.49; vn = sqrt(varV)*randn(1,length(n));
>> sn = filter(1,[1-0.8],vn);
>> wn = sqrt(varW)*randn(1,length(n));
>> xn = sn + wn;
>> yn = filter(Hopt_num,Hopt_den,xn);

Plot of signal and its estimate, containing samples from n = 100 to n = 150,
is shown in Figure 14.31. From it, we conclude that the estimated signal
y(n) is very close to the signal s(n). �

14.6.4 NONCAUSAL WIENER FILTER
In the previous section, we constrained the optimum Wiener filter to be
causal—that is, hopt(n) = 0 for n < 0. In this section, we shall drop this
condition and allow the filter to include both the infinite past and the
infinite future of the sequence x(n) in forming the output y(n),

y(n) =
∞∑

k=−∞
h(k)x(n − k) (14.169)
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FIGURE 14.31 Plots of signal s(n) and causal IIR Wiener filter estimate y(n)
in Example 14.27(b)

The resulting filter is physically unrealizable. It may also be viewed as
a smoothing filter in which the infinite future signal values are used to
smooth the estimate d̂(n) = y(n) of the desired signal d(n).

Application of the orthogonality principle yields the Wiener–Hopf
equation for the noncausal filter in the form

∞∑
k=−∞

h(k)RXX(� − k) = RDX(�), −∞ < � < ∞ (14.170)

and the resulting MMSEnc as

MMSEnc = σ2
D −

∞∑
k=−∞

h(k)R∗
DX(k) (14.171)

Since (14.170) holds for −∞ < � < ∞, this equation can be transformed
directly to yield the optimum noncausal Wiener filter as

Hnc(z) =
SDX(z)
SXX(z)

(14.172)

The MMSEnc can also be simply expressed in the z-domain as

MMSEnc =
1

2πj

∮

C

[
SDD(z) − Hnc(z)SDX

(
z−1)]z−1dz (14.173)

The following example serves to compare the form of the optimal
noncausal filter with the optimal causal filter obtained in the previous
section.
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� EXAMPLE 14.28 The optimum noncausal Wiener filter for the signal characteristics given in
Example 14.20 is given by (14.172), where

SDX(z) = SSS(z) =
0.64(

1 − 0.6z−1
)
(1 − 0.6z)

and

SXX(z) = SSS(z) + 1 =
2
(
1 − 0.3z−1 − 0.3z

)
(
1 − 0.6z−1

)
(1 − 0.6z)

Then

Hnc(z) =
0.3556(

1 − 1
3z−1

)(
1 − 1

3z
)

This filter is clearly noncausal.
The minimum MSE achieved by this filter is determined from evaluat-

ing (14.173). The integrand is

1
z
SSS(z)

[
1 − Hnc(z)

]
=

0.3555(
z − 1

3

)(
1 − 1

3z
)

The only pole inside the unit circle is z = 1/3. Hence the residue is

0.3555
1 − 1

3z

∣∣∣∣
z= 1

3

=
0.3555

8
9

∣∣∣∣ = 0.40

Hence the minimum achievable MSE obtained with the optimum noncausal
Wiener filter is

MMSEnc = 0.40

Note that this is lower than the MMSE for the causal filter, as expected. �

� EXAMPLE 14.29 a. Determine the system function for the noncausal IIR Wiener filter for the
signal given in Example 14.27, where σ2

V = 0.49 and σ2
W = 0.1.

b. Determine the MMSE for this filter and compare this to the MMSE for the
optimum IIR causal Wiener filter in Example 14.27.

c. Generate the signal sequence s(n) and the received sequence x(n) for
0 ≤ n ≤ 1000. Filter x(n) by the optimum noncausal Wiener filter obtained
in part (a), and plot the output sequence y(n) along with the desired se-
quence s(n). Comment on the effectiveness of the noncausal Wiener filter
in estimating the desired signal.

Solution From (14.167), the complex PSD SSS(z) is

SSS(z) =
0.49(

1 − 0.8z−1
)
(1 − 0.8z)
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a. From (14.168), the complex PSD SXX(z) is

SXX(z) = SSS(z) + 0.1 =
0.6441

(
1 − 0.1242z−1)(1 − 0.1242z)(
1 − 0.8z−1

)
(1 − 0.8z)

Hence the optimum noncausal IIR wiener filter is

Hnc(z) =
SSS(z)
SXX(z)

=
0.7608(

1 − 0.1242z−1
)
(1 − 0.1242z)

(14.174)

with impulse response

hnc(n) = 0.7727(0.1242)|n|

which is a noncausal filter.
b. The minimum MSE achieved by this filter is determined from evaluat-

ing (14.173). The integrand is

1
z
SSS(z)

[
1 − Hnc(z)

]
=

0.07608
(z − 0.1242)(1 − 0.1242z)

The only pole inside the unit circle is z = 0.1242. Hence the residue is

0.07608
1 − 0.1242

∣∣∣∣
z=0.1242

=
0.07608
0.9846

∣∣∣∣ = 0.0773

Hence the minimum achievable MSE obtained with the optimum noncausal
Wiener filter is

MMSEnc = 0.0773

which is lower than the MMSE of 0.08447 for the causal filter, as expected.
c. Note that the noncausal filter in (14.174) can be expressed as a product of

a causal and an anticausal filter—that is,

Hnc(z) = Hc(z)Hc
(
z−1) =

( √
0.7608

1 − 0.1242z−1

)( √
0.7608

1 − 0.1242z

)
(14.175)

Thus the causal filter part is

Hc(z) =
0.8722

1 − 0.1242z−1 (14.176)

This filter will be used in the filtfilt function to implement the noncausal
filter Hnc(z). This function filters the input data in the forward direction
through Hc(z), then reverses the resulting output and filters it through
Hc(z) again as a backward pass, and then reverses the resulting output to
obtain the output of the noncausal filter. This also amounts to zero-phase
filtering, as expected. Signal generation and noncausal IIR Wiener filtering
operations are given in the following MATLAB script.
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FIGURE 14.32 Plots of signal s(n) and noncausal IIR Wiener filter estimate
y(n) in Example 14.29(c)

n = 0:1000; varW = 0.1;
varV = 0.49; vn = sqrt(varV)*randn(1,length(n));
sn = filter(1,[1-0.8],vn);
wn = sqrt(varW)*randn(1,length(n));
xn = sn + wn;
Hc_num = sqrt(0.7608); Hc_den = [1,-0.1242];
yn = filtfilt(Hc_num,Hc_den,xn);

Plot of signal and its estimate, containing samples from n = 100 to n = 150,
is shown in Figure 14.32. From it we conclude that the estimated signal y(n)
is very close to the signal s(n). �

14.7 SUMMARY AND REFERENCES

The major focal point in this chapter was the design of optimum linear
systems for linear prediction and filtering. The criterion for optimality
was the minimization of the mean-square error between a specified desired
filter output and the actual filter output.

In the development of linear prediction, we demonstrated that the
equations for the forward and backward prediction errors specified a
lattice filter whose parameters, the reflection coefficients Km, were sim-
ply related to the filter coefficients am(k) of the direct form FIR linear
predictor and the associated prediction-error filter. The optimum filter
coefficients Km and am(k) are easily obtained from the solution of the
normal equations.
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We described two computationally efficient algorithms for solving the
normal equations, the Levinson–Durbin and Schur algorithms. Both algo-
rithms are suitable for solving a Toeplitz system of linear equations and
have a computational complexity of o(p2) when executed on a single pro-
cessor. However, with full parallel processing, the Schur algorithm solves
the normal equations in o(p) time units, whereas the Levinson–Durbin
algorithm requires o(p log p).

In addition to the all-zero lattice filter that resulted from linear pre-
diction, we also derived the AR lattice (all-pole) filter structure and the
ARMA lattice-ladder (pole-zero) filter structure. Finally, we described the
design of the class of optimum linear filters, called Wiener filters.

Linear estimation theory has had a rich history of development over
the past four decades. Kailath [41] presents a historical account of the
first three decades. The pioneering work of Wiener [98] on optimum lin-
ear filtering for statistically stationary signals is especially significant.
The generalization of the Wiener filter theory to dynamical systems with
random inputs was developed by Kalman [46] and Kalman and Bucy
[47]. Kalman filters are treated in Meditch [66], Brown [3], and Chui and
Chen [6]. The monograph by Kailath [42] treats both Wiener and Kalman
filters.

There are numerous references on linear prediction and lattice filters.
Tutorial treatments on these subjects have been published in the journal
papers by Makhoul [57, 58, 59] and Friedlander [17, 18]. Haykin [30],
Markel and Gray [63], and Tretter [92] provide comprehensive treatments
of these subjects. Applications of linear prediction to spectral analysis are
found in Kay [48], Kay and Marple [49], and Marple [64], to geophysics
in Robinson and Treitel [86, 87], and to adaptive filtering in Haykin [30].

The Levinson–Durbin algorithm for recursively solving the normal
equations was given by Levinson [54] and later modified by Durbin [14].
Variations of this classical algorithm, called split Levinson algorithms,
have been developed by Delsarte and Genin [12] and Krishna [51]. These
algorithms exploit additional symmetries in the Toeplitz correlation ma-
trix and save about a factor of two in the number of multiplications.

The Schur algorithm was originally described by Schur [88] in a pa-
per published in German. An English translation of this paper appears
in Gohberg [26]. The Schur algorithm is intimately related to the poly-
nomials Am(z), which may be interpreted as orthogonal polynomials. A
treatment of orthogonal polynomials is given in Szegö [91], Grenander and
Szegö [28], and Geronimus [22]. The thesis of Vieira [94] and the papers by
Kailath, Vieira, and Morf [45], Delsarte, Genin, and Kamp [13], and Youla
and Kazanjian [100] provide additional results on orthogonal polynomi-
als. Kailath [43, 44] provides tutorial treatments of the Schur algorithm
and its relationship to orthogonal polynomials and the Levinson–Durbin
algorithm. The pipelined parallel processing structure for computing the
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reflection coefficients based on the Schur algorithm, and the related prob-
lem of solving Toeplitz systems of linear equations, is described in the
paper by Kung and Hu [52]. Finally, we should mention that some addi-
tional computational efficiency can be achieved in the Schur algorithm, by
further exploiting symmetry properties of Toeplitz matrices, as described
by Krishna [51]. This leads to the so-called split Schur algorithm, which
is analogous to the split Levinson algorithm.
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C H A P T E R 15
Adaptive Filters

In contrast to filter design techniques described in Chapter 14, which were
based on knowledge of the second-order statistics of the signals, there
are many digital signal processing applications in which these statistics
cannot be specified a priori. Examples of such applications include channel
equalization and echo cancellation in data communication systems, and
system identification and system modeling in control systems. In such
applications, the coefficients of the filter to be designed cannot be specified
a priori, because they depend on the characteristics of the communication
channel or the control system. Such filters, with adjustable parameters, are
usually called adaptive filters, especially when they incorporate algorithms
that allow the filter coefficients to adapt to changes in the signal statistics.

Adaptive filters have received considerable attention from researchers
over the past 35 years. As a result, many computationally efficient al-
gorithms for adaptive filtering have been developed. In this chapter, we
describe two basic algorithms: the least-mean-square (LMS) algorithm,
which is based on a gradient optimization for determining the coefficients,
and the class of recursive least-squares algorithms. Before we describe the
algorithms, we present several practical applications in which adaptive
filters have been successfully used in the estimation of signals corrupted
by noise and other interference.

15.1 APPLICATIONS OF ADAPTIVE FILTERS

Adaptive filters have been used widely in communication systems,
control systems, and various other systems in which the statistical
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characteristics of the signals to be filtered are either unknown a priori or,
in some cases, slowly time-variant (nonstationary signals). Numerous ap-
plications of adaptive filters have been described in the literature. Some of
the more noteworthy applications include (1) adaptive antenna systems,
in which adaptive filters are used for beam steering and for providing
nulls in the beam pattern to remove undesired interference (Widrow,
Mantey, and Griffiths [97]); (2) digital communication receivers, in which
adaptive filters are used to provide equalization of intersymbol interfer-
ence and for channel identification (Lucky [55], Proakis and Miller [80],
Gersho [23], George, Bowen, and Storey [21], Proakis [77, 78], Magee
and Proakis [56], Picinbono [75], and Nichols, Giordano, and Proakis
[70]); (3) adaptive noise canceling techniques, in which adaptive filters
are used to estimate and eliminate a noise component in a desired signal
(Widrow et al. [96], Hsu and Giordano [34], and Ketchum and Proakis
[50]); (4) system modeling, in which adaptive filters are used as models
to estimate the characteristics of an unknown system. These are just a
few of the best-known examples of the use of adaptive filters.

Although both IIR and FIR filters have been considered for adaptive
filtering, the FIR filter is by far the most practical and widely used. The
reason for this preference is quite simple: the FIR filter has only adjustable
zeros; hence it is free of stability problems associated with adaptive IIR fil-
ters, which have adjustable poles as well as zeros. We should not conclude,
however, that adaptive FIR filters are always stable. On the contrary, the
stability of the filter depends critically on the algorithm for adjusting its
coefficients, as will be demonstrated in Sections 15.2 and 15.3.

Of the various FIR filter structures that are possible, the direct form
and the lattice form are the ones used in adaptive filtering applications.
The direct form FIR filter structure with adjustable coefficients h(n) is
illustrated in Figure 15.1. On the other hand, the adjustable parameters in
an FIR lattice structure are the reflection coefficients Kn. In this chapter,
we consider only direct form FIR filter structures.

An important consideration in the use of an adaptive filter is the
criterion for optimizing the adjustable filter parameters. The criterion
must not only provide a meaningful measure of filter performance, but it
must also result in a practically realizable algorithm.

For example, a desirable performance index in a digital communi-
cation system is the average probability of error. Consequently, in im-
plementing an adaptive equalizer, we might consider the selection of the
equalizer coefficients to minimize the average probability of error as the
basis for our optimization criterion. Unfortunately, however, the perfor-
mance index (average probability of error) for this criterion is a highly
nonlinear function of the filter coefficients and the signal statistics. As a
consequence, the implementation of an adaptive filter that optimizes such
a performance index is complex and impractical.
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FIGURE 15.1 Direct form adaptive FIR filter

In some cases, a performance index that is a nonlinear function of the
filter parameters possesses many relative minima (or maxima), so that one
is not certain whether the adaptive filter has converged to the optimum
solution or to one of the relative minima (or maxima). For such reasons,
some desirable performance indices, such as the average probability of
error in a digital communication system, must be rejected on the grounds
that they are impractical to implement.

Two criteria that provide good measures of performance in adaptive
filtering applications are the least-squares criterion and its counterpart in
a statistical formulation of the problem, namely, the mean-square-error
(MSE) criterion. The least-squares (and MSE) criterion results in a qua-
dratic performance index as a function of the filter coefficients and, hence,
it possesses a single minimum. The resulting algorithms for adjusting the
coefficients of the filter are relatively easy to implement, as we demon-
strate in Section 15.2.

In this section, we describe several applications of adaptive filters that
serve as a motivation for the mathematical development of algorithms
derived in Section 15.2. We find it convenient to use the direct form FIR
structure in these examples. Although we will not develop the recursive
algorithms for automatically adjusting the filter coefficients in this section,
it is instructive to formulate the optimization of the filter coefficients
as a least-squares optimization problem. This development will serve to
establish a common framework for the algorithms derived in the next two
sections.

15.1.1 SYSTEM IDENTIFICATION OR SYSTEM MODELING
In system identification or system modeling, we have an unknown system,
called a plant, that we wish to identify. The system is modeled by an FIR
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filter with adjustable coefficients. Both the plant and model are excited
by an input sequence x(n). If y(n) denotes the output of the plant and
ŷ(n) denotes the output of the model,

ŷ(n) =
M−1∑
k=0

h(k)x(n − k) (15.1)

we may form the error sequence

e(n) = y(n) − ŷ(n), n = 0, 1, . . . (15.2)

and select the coefficients h(k) to minimize the sum of squared errors,
that is,

EM =
N∑

n=0

[
y(n) −

M−1∑
k=0

h(k)x(n − k)

]2

(15.3)

where N + 1 is the number of observations. This is the least-squares
criterion for determining the filter coefficients, which results in the set of
linear equations

M−1∑
k=0

h(k)rxx(� − k) = ryx(�), � = 0, 1, . . . , M − 1 (15.4)

where rxx(�) is the autocorrelation (time average) of the sequence x(n)
and ryx(�) is the cross-correlation (time average) of the system output
with the input sequence, defined as1

rxx(�) =
N∑

n=0

x(n)x(n − �) (15.5a)

ryx(�) =
N∑

n=0

y(n)x(n − �) (15.5b)

By solving (15.4), we obtain the filter coefficients for the model. Since
the filter parameters are obtained directly from measurement data at the
input and output of the system, without prior knowledge of the plant, we
call the FIR filter model an adaptive filter.

If our only objective were to identify the system by use of the FIR
model, the solution of (15.4) would suffice. In control systems applications,
however, the system being modeled may be time-variant, changing slowly
with time, and our purpose for having a model is to ultimately use it for

1In this chapter, we use lowercase rxx(�) and ryx(�) to denote the time-average auto-
correlations and cross-correlations functions obtained directly from the data sequences.
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FIGURE 15.2 Application of adaptive filtering to system identification

designing a controller that controls the plant. Furthermore, measurement
noise is usually present at the output of the plant. This noise introduces
uncertainty in the measurements and corrupts the estimates of the filter
coefficients in the model. Such a scenario is illustrated in Figure 15.2.
In this case, the adaptive filter must identify and track the time-variant
characteristics of the plant in the presence of measurement noise at the
output of the plant. The algorithms to be described in Section 15.2 are
applicable to this system identification problem.

� EXAMPLE 15.1 System Identification
Consider the system identification problem as illustrated in Figure 15.2. Suppose
the unknown system has two complex-conjugate poles with a system function

H(z) =
1

1 − 2Re(p)z−1 + |p|2z−2

where p is one of the poles. The additive noise sequence w(n) is a sample
sequence of a white, zero-mean Gaussian process W(n) with variance σ2

W = 0.02.
The excitation sequence x(n) is also a sample sequence of a white, zero-mean
Gaussian process X(n) with variance σ2

X = 1. The processes W(n) and X(n) are
uncorrelated. The FIR filter model has impulse response h(n) for 0 ≤ n ≤ M−1.

a. Generate the output sequence y(n) for 0 ≤ n ≤ 1000 and the corresponding
desired sequence d(n) for 0 ≤ n ≤ 1000, when p = 0.8ejπ/4 and M = 15.

b. Compute the autocorrelation sequence rxx(m) and the cross-correlation se-
quence ryx(m) for 0 ≤ m ≤ M −1. Then compute the FIR filter coefficients
from the least-sequence equation in (15.4).

c. Plot and compare the impulse response of the unknown system with that of
the FIR filter model. Also plot and compare the frequency response of the
unknown system with that of the model.
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d. Repeat parts (a), (b), and (c) when the sequence x(n) is the output of a
first-order AR process described by the difference equation

x(n) =
1
2
x(n − 1) + v(n)

where v(n) is a sample function of a white Gaussian noise process with
variance σ2

V = 1.

Solution This solution is obtained using MATLAB.

a. MATLAB script:

>> varW = 0.02; % Additive noise variance
>> varX = 1; % Excitation seq Variance
>> N = 1000; n = 0:N; % # of samples and indices
>> p = 0.8*exp(1j*pi/4); % Pole location
>> a = [1,-2*real(p),abs(p)ˆ2]; % Plant denominator coeff
>> M = 15; % FIR filter model order
>> xn = sqrt(varX)*randn(N+1,1); % Input sequence
>> wn = sqrt(varW)*randn(N+1,1); % Noise sequence
>> dn = filter(1,a,xn); % Output of the plant
>> yn = dn+wn; % Noisy plant output

b. MATLAB script:

>> [rxx,lags] = xcorr(xn,M-1); % ACRS of x(n)
>> Rxx = toeplitz(rxx(M:end)); % ACRM of x(n)
>> ryx = xcorr(yn,xn,M-1); % CCRS between y(n) and x(n)
>> ryx = ryx(M:end); % CCRV between y(n) and x(n)
>> hm = Rxx\ryx; % Model coeff (or Imp resp)
>> hp = impz(1,a,M+5); % Plant impulse response

c. MATLAB script:

>> om = linspace(0,1,1001)*pi;
>> Hm = freqz(hm,1,om);
>> Hm_mag = abs(Hm);
>> Hm_pha = angle(Hm)/pi;
>> Hp = freqz(1,a,om);
>> Hp_mag = abs(Hp);
>> Hp_pha = angle(Hp)/pi;
>> % Plotting commands follow

The resulting plots are shown in Figure 15.3. Comparing the impulse re-
sponse plots, we note that the model FIR impulse response is very close to the
plant IIR impulse response for the first M = 15 samples. Similarly, the fre-
quency responses of the two systems are very close to each other. In these
plots, a dotted line represents the phase response. A slight ripple in the
model frequency response is the result of windowing effect due to FIR model
assumption.
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FIGURE 15.3 Plots of the impulse and frequency responses of the plant and FIR
model systems in Example 15.1(c). The dotted lines represent phase responses

d. The only change in this set up is how the excitation sequence is generated
using a first-order AR process.

>> varW = 0.02; % Additive noise variance
>> varV = 1; % Excitation seq Variance
>> N = 1000; n = 0:N; % Number of samples and indices
>> p = 0.8*exp(1j*pi/4); % Pole location
>> a = [1,-2*real(p),abs(p)ˆ2]; % Plant denominator coeff
>> M = 15; % FIR filter model order
>> vn = sqrt(varV)*randn(N+1,1); % Gaussian seq for Input x(n)
>> xn = filter(1,[1,-1/2],vn); % Input sequence x(n)
>> wn = sqrt(varW)*randn(N+1,1); % Noise sequence
>> dn = filter(1,a,xn); % Output of the plant
>> yn = dn+wn; % Noisy plant output
>> [rxx,lags] = xcorr(xn,M-1); % ACRS of x(n)
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>> Rxx = toeplitz(rxx(M:end)); % ACRM of x(n)
>> ryx = xcorr(yn,xn,M-1); % CCRS between y(n) and x(n)
>> ryx = ryx(M:end); % CCRV
>> hm = Rxx\ryx; % Model coeff (or Imp resp)
>> hp = impz(1,a,M+5); % Plant impulse response
>> om = linspace(0,1,1001)*pi;
>> Hm = freqz(hm,1,om);
>> Hm_mag = abs(Hm); Hm_pha = angle(Hm)/pi;
>> Hp = freqz(1,a,om);
>> Hp_mag = abs(Hp); Hp_pha = angle(Hp)/pi;

The resulting plots are shown in Figure 15.4. Comparisons of the impulse
and frequency response plots are similar to those in part (c). Furthermore,
the results in part (c) and (d) are almost identical. �
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FIGURE 15.4 Plots of the impulse and frequency responses of the plant and FIR
model systems in Example 15.1(d). The dotted lines represent phase responses
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15.1.2 ADAPTIVE CHANNEL EQUALIZATION
Figure 15.5 shows a block diagram of a digital communication system
in which an adaptive equalizer is used to compensate for the distortion
caused by the transmission medium (channel). The digital sequence of
information symbols a(n) is fed to the transmitting filter, whose output is

s(t) =
∞∑

k=0

a(k)p(t − kTs) (15.6)

where p(t) is the impulse response of the filter at the transmitter and
Ts is the time interval between information symbols—that is, 1/Ts is the
symbol rate. For purposes of this discussion, we may assume that a(n) is
a multilevel sequence that takes on values from the set ±1,±3,±5, . . . ,
±(K − 1), where K is the number of possible symbol values.

Typically, the pulse p(t) is designed to have the characteristics illus-
trated in Figure 15.6. Note that p(t) has amplitude p(0) = 1 at t = 0
and p(nTs) = 0 at t = nTs, n = ±1,±2, . . . . As a consequence, successive
pulses transmitted sequentially every Ts seconds do not interfere with one
another when sampled at the time instants t = nTs. Thus a(n) = s(nTs).

The channel, which is usually well modeled as a linear filter, dis-
torts the pulse and, thus, causes intersymbol interference. For example,
in telephone channels, filters are used throughout the system to separate
signals in different frequency ranges. These filters cause phase and ampli-
tude distortion. Figure 15.7 illustrates the effect of channel distortion on
the pulse p(t) as it might appear at the output of a telephone channel.
Now, we observe that the samples taken every Ts seconds are corrupted
by interference from several adjacent symbols. The distorted signal is also
corrupted by additive noise, which is usually wideband.

Transmitter
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(Filter)

Channel
(Time-Variant

Filter) SamplerData
Sequence

Error Signal

a(n)

â(n)
â(n)

d(n)

Noise
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Algorithm

Decision
Device

Reference
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FIGURE 15.5 Application of adaptive filtering to adaptive channel equalization
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–5Ts 5Ts–4Ts 4Ts–3Ts 3Ts–2Ts 2Ts

1

0
t

p(t )

Ts–Ts

FIGURE 15.6 Pulse shape for digital transmission of symbols at a rate of 1/Ts

symbols per second

At the receiving end of the communication system, the signal is first
passed through a filter that is designed primarily to eliminate the noise
outside of the frequency band occupied by the signal. We may assume
that this filter is a linear-phase FIR filter that limits the bandwidth of the
noise but causes negligible additional distortion on the channel-corrupted
signal.

Samples of the received signal at the output of this filter reflect the
presence of intersymbol interference and additive noise. If we ignore for

0
t

q(t)

–5Ts 5Ts–4Ts 4Ts–3Ts 3Ts–2Ts 2TsTs–Ts

FIGURE 15.7 Effect of channel distortion on the signal pulse in Figure 15.6
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the moment the possible time variations in the channel, we may express
the sampled output at the receiver as

x(nTs) =
∞∑

k=0

a(k)q(nTs − kTs) + w(nTs)

= a(n)q(0) +
∞∑

k=0
k �=n

a(k)q(nTs − kTs) + w(nTs) (15.7)

where w(t) represents the additive noise and q(t) represents the distorted
pulse at the output of the receiver filter.

To simplify our discussion, we assume that the sample q(0) is normal-
ized to unity by means of an automatic gain control (AGC) contained in
the receiver. Then the sampled signal given in (15.7) may be expressed as

x(n) = a(n) +
∞∑

k=0
k �=n

a(k)q(n − k) + w(n) (15.8)

where x(n) ≡ x(nTs), q(n) ≡ q(nTs), and w(n) ≡ w(nTs). The term a(n)
in (15.8) is the desired symbol at the nth sampling instant. The second
term,

∞∑
k=0
k �=n

a(k)q(n − k)

constitutes the intersymbol interference due to the channel distortion, and
w(n) represents the additive noise in the system.

In general, the channel distortion effects embodied through the sam-
pled values q(n) are unknown at the receiver. Furthermore, the channel
may vary slowly with time such that the intersymbol interference effects
are time-variant. The purpose of the adaptive equalizer is to compensate
the signal for the channel distortion, so that the resulting signal can be
detected reliably. Let us assume that the equalizer is an FIR filter with
M adjustable coefficients h(n). Its output may be expressed as

â(n) =
M−1∑
k=0

h(k)x(n + D − k) (15.9)

where D is some nominal delay in processing the signal through the filter
and â(n) represents an estimate of the nth information symbol. Initially,
the equalizer is trained by transmitting a known data sequence d(n).
Then, the equalizer output, â(n), is compared with d(n) and an error is
generated that is used to optimize the filter coefficients.
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If we again adopt the least-squares error criterion, we select the coef-
ficients h(k) to minimize the quantity

EM =
N∑

n=0

[
d(n) − â(n)

]2 =
N∑

n=0

[
d(n) −

M−1∑
k=0

h(k)x(n + D − k)

]2

(15.10)

The result of the optimization is a set of linear equations of the form

M−1∑
n=0

h(k)rxx(� − k) = rdx(� − D), � = 0, 1, 2, . . . , M − 1 (15.11)

where rxx(�) is the autocorrelation of the sequence x(n) and rdx(�) is
the cross-correlation between the desired sequence d(n) and the received
sequence x(n).

Although the solution of (15.11) is obtained recursively in practice (as
demonstrated in the following two sections), in principle we observe that
these equations result in values of the coefficients for the initial adjustment
of the equalizer. After the short training period, which usually lasts less
than 1 second for most channels, the transmitter begins to transmit the
information sequence a(n). In order to track the possible time variations
in the channel, the equalizer coefficients must continue to be adjusted in
an adaptive manner while receiving data. As illustrated in Figure 15.5,
this is usually accomplished by treating the decisions at the output of
the decision device as correct, and using the decisions in place of the
reference d(n) to generate the error signal. This approach works quite well
when decision errors occur infrequently (e.g., less than one decision error
per hundred symbols). The occasional decision errors cause only small
misadjustments in the equalizer coefficients. In Sections 15.2 and 15.3, we
describe the adaptive algorithms for recursively adjusting the equalizer
coefficients.

� EXAMPLE 15.2 Channel Equalization
Consider the system configuration illustrated in Figure 15.8, below. The channel
filter system function is

C(z) = 1 − 2Re(z0)z−1 + |z0|2z−1

and the equalizer system function is

H(z) =
M−1∑

k=0

h(k)z−k

The zeros of C(z) are located at z0 = 0.8ejπ/4 and z∗
0 = 0.8e−jπ/4. The in-

put sequence a(n) is a pseudo-random sequence of ±1. The additive noise
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y (n )a (n ) â (n )

FIGURE 15.8 Channel equalization for Example 15.2

w(n) is a sample sequence of a white Gaussian noise process with variance
σ2

W = 0.1.

a. Generate the sequence a(n) and x(n) for 0 ≤ n ≤ 1000.
b. For M = 7 and D = 10, compute the equalizer coefficients h(k), 0 ≤ k ≤ 6

based on the least-squares solution
6∑

k=0

h(k)rxx(� − k) = rdx(�), � = 0, 1, . . . , 6

where d(n) = a(n), 0 ≤ n ≤ 1000.
c. Plot the frequency response of the channel filter C(z), the equalizer filter

H(z), and the frequency response of the cascade filter C(z)H(z). Comment
on the results.

Solution This solution is obtained using MATLAB.

a. MATLAB script:

>> z0 = 0.8*exp(1j*pi/4); % Zero of C(z)
>> Cb = [1,-2*real(z0),abs(z0)ˆ2]; % Numerator of C(z) or imp resp
>> N = 1000; n = 0:N; % Length and timing indices
>> varW = 0.1; % Additive noise variance
>> M = 7; % FIR Equalizer length
>> an = 2*randi([0,1],N+1,1)-1; % Pseudorandom symbol sequence
>> yn = filter(Cb,1,an); % Distorted symbol sequence
>> wn = sqrt(varW)*randn(N+1,1); % Additive noise sequence
>> xn = yn+wn; % Noisy distorted symbols

b. MATLAB script:

>> [rxx,lags] = xcorr(xn,M-1); % ACRS of x(n)
>> Rxx = toeplitz(rxx(M:end)); % ACRM of x(n)
>> rdx = xcorr(an,xn,M-1); % CCRS between d(n) and x(n)
>> rdx = rdx(M:end); % CCRV
>> heq = Rxx\rdx; % Equalizer coeff (or Imp resp)
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c. The frequency response plots of the channel, equalizer, and the cascade filter
are computed using the following MATLAB script and shown in Figure 15.9.

om = linspace(0,1,1001)*pi;
Heq = freqz(heq,1,om);
Heq_mag = abs(Heq); Heq_pha = angle(Heq)/pi;
Cz = freqz(Cb,1,om);
Cz_mag = abs(Cz); Cz_pha = angle(Cz)/pi;
CzHeq = Cz.*Heq;
CzHeq_mag = abs(CzHeq); CzHeq_pha = angle(CzHeq)/pi;

The frequency response of the cascade filter is very nearly that of an allpass filter
indicating that the equalizer is very close to an inverse filter for the channel.�
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FIGURE 15.9 Frequency response plots of the channel, equalizer, and the cascade
filter in Example 15.2(c). The dotted lines represent phase responses.
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15.1.3 ECHO CANCELLATION IN DATA TRANSMISSION
OVER TELEPHONE CHANNELS

In the transmission of data over telephone channels, modems (modula-
tors/demodulators) are used to provide an interface between the digital
data sequence and the analog channel. Shown in Figure 15.10 is a block
diagram of a communication system in which two terminals, labeled A and
B, transmit data by using modems A and B to interface to a telephone
channel. As shown, a digital sequence a(n) is transmitted from terminal
A to terminal B while another digital sequence b(n) is transmitted from
terminal B to A. This simultaneous transmission in both directions is
called full-duplex transmission.

As described, the two transmitted signals may be represented as

sA(t) =
∞∑

k=0

a(k)p(t − kTs) (15.12)

sB(t) =
∞∑

k=0

b(k)p(t − kTs) (15.13)

where p(t) is a pulse as shown in Figure 15.6.
When a subscriber wishes to transmit data over the dial-up switched

telephone network, the local communication link between the subscriber
and the local central telephone office is a two-wire line, called the local
loop. At the central office, the subscriber two-wire line is connected to
the main four-wire telephone channels that interconnect different central
offices, called trunk lines, by a device called a hybrid. By using transformer
coupling, the hybrid is tuned to provide isolation between the transmis-
sion and reception channels in full-duplex operation. However, due to
impedance mismatch between the hybrid and the telephone channel, the
level of isolation is often insufficient, and, consequently, some of the signal
on the transmitter side leaks back and corrupts the signal on the receiver
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Transmitter
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Modem BModem A Four-Wire
Telephone
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FIGURE 15.10 Full-duplex data transmission over telephone channels
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side, causing an “echo” that is often heard in voice communications over
telephone channels.

To mitigate the echoes in voice transmissions, the telephone compa-
nies employ a device called an echo suppressor. In data transmission, the
solution is to use an echo canceller within each modem. The echo can-
cellers are implemented as adaptive filters with automatically adjustable
coefficients, just as in the case of transversal (FIR) equalizers.

With the use of hybrids to couple a two-wire to a four-wire channel,
and echo cancellers at each modem to estimate and subtract the echoes,
the data communication system for the dial-up switched network takes the
form shown in Figure 15.11. A hybrid is needed at each modem to isolate
the transmitter from the receiver and to couple to the two-wire local loop.
Hybrid A is physically located at the central office of subscriber A, while
hybrid B is located at the central office to which subscriber B is connected.
The two central offices are connected by a four-wire line, one pair used for
transmission from A to B and the other pair used for transmission in the
reverse direction, from B to A. An echo at terminal A due to the hybrid
A is called a near-end echo, while an echo at terminal A due to the hybrid
B is termed a far-end echo. Both types of echoes are usually present in
data transmission and must be removed by the echo canceller.

Suppose we neglect the channel distortion for purposes of this discus-
sion and deal with the echoes only. The signal received at modem A may
be expressed as

sRA(t) = A1sB(t) + A2sA(t − d1) + A3sA(t − d2) (15.14)

where sB(t) is the desired signal to be demodulated at modem A; sA(t−d1)
is the near-end echo due to hybrid A, sA(t − d2) is the far-end echo due
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FIGURE 15.11 Block diagram model of a digital communication system that uses
echo cancellers in modems
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to hybrid B; Ai, i = 1, 2, 3 are the corresponding amplitudes of the three
signal components; and d1 and d2 are the delays associated with the echo
components. A further disturbance that corrupts the received signal is
additive noise, so that the received signal at modem A is

rA(t) = sRA(t) + w(t) (15.15)

where w(t) represents the sample function of an additive process.
The adaptive echo canceller attempts to estimate adaptively the two

echo components. If its coefficients are h(n), n = 0, 1, . . . , M − 1, its
output is

ŝA(n) =
M−1∑
k=0

h(k)a(n − k) (15.16)

which is an estimate of the echo signal components. This estimate is sub-
tracted from the sampled received signal, and the resulting error signal
can be minimized in the least-squares sense to optimally adjust the co-
efficients of the echo canceller. There are several possible configurations
for placement of the echo canceller in the modem, and for forming the
corresponding error signal. Figure 15.12 illustrates one configuration, in
which the canceller output is subtracted from the sampled output of the
receiver filter with input rA(t). Figure 15.13 illustrates a second configu-
ration, in which the echo canceller is generating samples at the Nyquist
rate instead of the symbol rate; in this case, the error signal used to ad-
just the coefficients is simply the difference between rA(n), the sampled
received signal, and the canceller output. Finally, Figure 15.14 illustrates
the canceller operating in combination with an adaptive equalizer.

Application of the least-squares criterion in any of the configurations
shown in Figures 15.12–15.14 leads to a set of linear equations for the
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FIGURE 15.12 Symbol-rate echo canceller
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FIGURE 15.14 Modem with adaptive equalizer and echo canceller

coefficients of the echo canceller. The reader is encouraged to derive the
equations corresponding to the three configurations.

� EXAMPLE 15.3 Echo Cancellation
Consider the system configuration shown in Figure 15.15, below, in which an
echo canceller is used to suppress the interference in the detection of the desired
information sequence {b(n)}. The received sequence y(n) is expressed as

y(n) = b(n) + sA(n) + w(n)
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FIGURE 15.15 Echo cancellation for Example 15.3

where b(n) represents the desired received information sequence, w(n) repre-
sents the additive noise, and sA(n) represents the undesired echo to be sup-
pressed. The desired sequence b(n) is a pseudo-random sequence of ±1. The
additive noise sample sequence w(n) is white Gaussian with variance σ2

W = 0.1.
The echo signal sequence is expressed as

sA(n)
4∑

l=0

c(�)a(n − �)

where the echo coefficients are given by the vector

c = [−0.25, −0.5, 0.75, 0.36, 0.25]

and the sequence a(n) is a pseudo-random sequence that takes the values ±1.
The echo canceller is an FIR filter with coefficients h(k), 0 ≤ k ≤ M − 1,

whose output is an estimate of the undesired echo, that is,

ŝA(n) =
M−1∑

k=0

h(k)a(n − k)

a. Generate the sequences y(n) and sA(n), 0 ≤ n ≤ 1000, and use the least-
squares criterion to minimize the sum of squares

N∑

n=0

[
y(n) − sA(n)

]2 =
N∑

n=0

[
y(n) −

M−1∑

k=0

h(k)a(n − k)

]2

(15.17)

and, thus, solve for the coefficients h(k), 0 ≤ k ≤ M − 1, of the echo
canceller. Select M = 10.

b. Compare the coefficients of the echo canceller with the echo coefficients
c(k), 0 ≤ k ≤ 4, and comment on the results.

Solution The minimization of the sum of squares in (15.17) lead to the following set of
equations:

M−1∑

k=0

h(k)raa(� − k) = rya(�), � = 0, 1, . . . , M − 1
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where raa(�) is the estimated autocorrelation sequence of a(n) and rya(�) is the
estimated cross-correlation between y(n) and a(n).

a. The echo canceller coefficients are obtained using the following MATLAB script.

>> c = [-0.25,-0.5,0.75,0.36,0.25]; % Echo coefficients
>> N = 1000; n = 0:N; % Length and timing indices
>> varW = 0.1; % Additive noise variance
>> an = 2*randi([0,1],N+1,1)-1; % Pseudorandom symbol seq at Modem-A
>> bn = 2*randi([0,1],N+1,1)-1; % Pseudorandom symbol seq at Modem-B
>> sAn = filter(c,1,an); % Echo signal sequence at modem-A
>> wn = sqrt(varW)*randn(N+1,1); % Additive noise sequence
>> yn = bn + sAn + wn; % Received signal at Modem-A
>> M = 10; % FIR echo canceller order
>> [raa,lags] = xcorr(an,M-1); % ACRS of a(n)
>> Raa = toeplitz(raa(M:end)); % ACRM of a(n)
>> rya = xcorr(yn,an,M-1); % CCRS between y(n) and a(n)
>> rya = rya(M:end); % CCRV
>> hec = Raa\rya; % Echo canceller coeff (or Imp resp)
>> hec’
ans =

-0.2540 -0.4982 0.7943 0.3285 0.2291
0.0272 0.0139 0.0017 -0.0446 0.0319

b. The echo coefficients are

c = [−0.25, −0.5, 0.75, 0.36, 0.25]

From the echo canceller coefficients
{
h(k)

}
from (a), we observe that the first

five coefficients are close to the echo coefficients while the remaining coefficients
are very small. �

15.1.4 SUPPRESSION OF NARROWBAND INTERFERENCE
IN A WIDEBAND SIGNAL

We now discuss a problem that arises in practice, especially in signal
detection and in digital communications. Let us assume that we have a
signal sequence v(n) that consists of a desired wideband signal sequence
w(n) corrupted by an additive narrowband interference sequence x(n).
The two corresponding processes W(n) and X(n), respectively, are un-
correlated. These sequences result from sampling an analog signal v(t)
at the Nyquist rate (or faster) of the wideband signal w(t). Figure 15.16
illustrates the spectral characteristics of w(n) and x(n). Usually, the in-
terference |X(ej2πf )| is much larger than |W (ej2πf )| within the narrow
frequency band that it occupies.

In digital communications and signal detection problems that fit the
above model, the desired signal sequence w(n) is often a spread-spectrum
signal, while the narrowband interference represents a signal from another
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user of the frequency band or intentional interference from a jammer who
is trying to disrupt the communications or detection system.

Our objective from a filtering viewpoint is to employ a filter that
suppresses the narrowband interference. In effect, such a filter will have a
notch in the frequency band occupied by |X(ej2πf )|, and in practice, the
band occupied by |X(ej2πf )| is unknown. Moreover, if the interference is
nonstationary, its frequency band occupancy may vary with time. Hence
an adaptive filter is desired.

From another viewpoint, the narrowband characteristics of the inter-
ference allow us to estimate x(n) from past samples of the sequence v(n)
and to subtract the estimate from v(n). Since the bandwidth of x(n) is
narrow compared to the bandwidth of the sequence w(n), the samples
x(n) are highly correlated due to the high sampling rate. On the other
hand, the samples w(n) are not highly correlated, since the samples are
taken at the Nyquist rate of w(n). By exploiting the high correlation be-
tween x(n) and past samples of the sequence v(n), it is possible to obtain
an estimate of x(n), which can be subtracted from v(n).

The general configuration is illustrated in Figure 15.17. The signal
v(n) is delayed by D samples, where D is selected sufficiently large so
that the wideband signal components w(n) and w(n − D) contained in
v(n) and v(n − D), respectively, are uncorrelated. Usually, a choice of
D = 1 or 2 is adequate. The delayed signal sequence v(n − D) is passed
through an FIR filter, which is best characterized as a linear predictor of
the value x(n) based on M samples v(n − D − k), k = 0, 1, . . . , M − 1.
The output of the linear predictor is

x̂(n) =
M−1∑
k=0

h(k)v(n − D − k) (15.18)
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FIGURE 15.17 Adaptive filler for estimating and suppressing a narrowband
interference in a sideband signal

This predicted value of x(n) is subtracted from v(n) to yield an estimate
of w(n), as illustrated in Figure 15.17. Clearly, the quality of the estimate
x(n) determines how well the narrowband interference is suppressed. It is
also apparent that the delay D must be kept as small as possible in order
to obtain a good estimate of x(n), but must be sufficiently large so that
w(n) and w(n − D) are uncorrelated.

Let us define the error sequence

e(n) = v(n) − x̂(n)

= v(n) −
M−1∑
k=0

h(k)v(n − D − k) (15.19)
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If we apply the least-squares criterion to optimally select the prediction
coefficients, we obtain the set of linear equations

M−1∑
k=0

h(k)rvv(� − k) = rvv(� + D), � = 0, 1, . . . , M − 1 (15.20)

where rvv(�) is the autocorrelation sequence of v(n). Note, however, that
the right-hand side of (15.20) may be expressed as

rvv(� + D) =
N∑

n=0

v(n)v(n − � − D)

=
N∑

n=0

[w(n) + x(n)][w(n − � − D) + x(n − � − D)]

= rww(� + D) + rxx(� + D) + rwx(� + D) + rxw(� + D)
(15.21)

The correlations in (15.21) are time-average correlation sequences.
The expected value of rww(� + D) is

E[rww(� + D)] = 0, l = 0, 1, . . . , M − 1 (15.22)

because w(n) is wideband and D is large enough that w(n) and w(n−D)
are uncorrelated. Also,

E[rxw(� + D)] = E[rwx(� + D)] = 0 (15.23)

by assumption. Finally,

E[rxx(� + D)] = RX(� + D) (15.24)

Therefore, the expected value of rvv(� + D) is simply the statistical auto-
correlation of the narrowband process X(n). Furthermore, if the wideband
signal is weak relative to the interference, the autocorrelation rvv(�) in the
left-hand side of (15.20) is approximately rxx(�). The major influence of
w(n) is to the diagonal elements of rvv(�). Consequently, the values of
the filter coefficients determined from the linear equations in (15.20) are
a function of the statistical characteristics of the interference X(n).

The overall filter structure in Figure 15.17 is an adaptive FIR
prediction-error filter with coefficients

h′(k) =

⎧
⎪⎨
⎪⎩

1, k = 0
− h(k − D), k = D, D + 1, . . . , D + M − 1
0, otherwise

(15.25)
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FIGURE 15.18 Log-magnitude response characteristics of an adaptive notch
filter

and a frequency response

H(ejω) =
D+M−1∑

k=0

h′(k)e−jωk (15.26)

This overall filter acts as a notch filter for the interference. For exam-
ple, Figure 15.18 illustrates the magnitude of the frequency response of
an adaptive filter with M = 15 coefficients, which attempts to suppress
a narrowband interference that occupies 20% of the frequency band of a
desired spread-spectrum signal sequence. The data was generated pseudo-
randomly by adding a narrowband interference consisting of 100 randomly
phased, equal-amplitude sinusoids to a pseudo-noise spread-spectrum sig-
nal. The coefficients of the filter were obtained by solving the equations
in (15.20), with D = 1, where the correlation rvv(l) was obtained from
the data. We observe that the overall interference suppression filter has
the characteristics of a notch filter. The depth of the notch depends
on the power of the interference relative to the wideband signal. The
stronger the interference, the deeper the notch.
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FIGURE 15.19 System for narrowband interference suppression in Example 15.4

The algorithms presented in Section 15.2 are appropriate for estimat-
ing the predictor coefficients continuously, in order to track a nonstation-
ary narrowband interference signal.

� EXAMPLE 15.4 Suppression of Narrowband Interference
Consider the system configuration shown in Figure 15.19. The input sequence
v(n) is the sum of a wideband signal sequence w(n) and a narrowband inter-
ference sequence x(n). The sequence w(n) is a white Gaussian noise sequence
with variance σ2

w = 1. The narrowband interference sequence consists of a sum
of sinusoids and is expressed as

x(n) = A
100∑

i=0

cos(2πfin + θi)

where fi = 0.1i/100, i = 0, 1, . . . , 99, θi is uniformly distributed on the interval
(0, 2π) for each i, and the scale factor A = 1. Note that the bandwidth of x(n)
is 0.1 cycles/sample. The estimate of the narrowband interference at the output
of the linear predictor is

x̂(n) =
M−1∑

k=0

h(k)v(n − 1 − k)

and the error sequence e(n) = v(n)−x̂(n) produces an estimate of the wideband
signal sequence w(n). Application of the least-squares criterion results in the
set linear equations given in (15.20) for the predictor coefficients.

a. Let M = 15, and generate 2000 samples of the sequence v(n) and solve
(15.20) for the predictor coefficients h(k), k = 0, 1, . . . , 14.

b. The FIR prediction-error filter having coefficients h′(k), k = 0, 1, . . . , 15, is
defined by (15.25) and its frequency response is

H
(
ej2πf)

=
M∑

k=0

h′(k)e−j2πfk, |f | ≤ 1
2

Compute H
(
ej2πf

)
and thus illustrate via a plot of 20 log

[∣∣H
(
ej2πf

)∣∣] that
the prediction-error filter is a notch filter that suppresses the narrow band
interference contained in the sequence v(n).

c. Repeat parts (a) and (b) when the amplitude of the interference term
A = 1/10.
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Solution The narrowband interference signal is obtained using the following MATLAB
script.

>> i = (0:100)’; fi = 0.1*i/100; thetai = 2*pi*rand(length(i),1);
>> A = 1;
>> N = 2000; n = 0:N;
>> xn = sum(A*cos(2*pi*fi*n+thetai*ones(1,N+1))); xn = xn’;

a. The predictor coefficients are obtained using this MATLAB script:

>> M = 15; D = 1;
>> varW = 1;
>> wn = sqrt(varW)*randn(N+1,1);
>> vn = xn+wn;
>> [rvv,lags] = xcorr(vn,M-1+D); % ACRS of v(n)
>> Rvv = toeplitz(rvv(M+D:2*M+D-1)); % ACRM of v(n)
>> rv = rvv(M+2*D:end);
>> h = Rvv\rv;

b. Using (15.25), we obtain the predictor error coefficients and its log-magnitude
response:

>> h1 = zeros(M+D,1);
>> h1(1) = 1;
>> h1(D+1:D+M) = -h;
>> f = linspace(0,1,1001)*0.5;
>> H1 = freqz(h1,1,2*pi*f);
>> H1db = 20*log10(abs(H1)/max(abs(H1)));
>> % Plotting commands follow

The plot of the log-magnitude response is shown in Figure 15.20, from which
we observe that the prediction error filter creates a notch of about 20 dB down
at the bandwidth of the narrowband interfering signal.

c. The scale factor is now reduced to A = 1/10 and new results are obtained.

>> i = (0:100)’; fi = 0.1*i/100; thetai = 2*pi*rand(length(i),1);
>> A = 1/10;
>> N = 2000; n = 0:N;
>> xn = sum(A*cos(2*pi*fi*n+thetai*ones(1,N+1))); xn = xn’;
>> M = 15;
>> D = 1;
>> varW = 1;
>> wn = sqrt(varW)*randn(N+1,1);
>> vn = xn+wn;
>> [rvv,lags] = xcorr(vn,M-1+D); % ACRS of v(n)
>> Rvv = toeplitz(rvv(M+D:2*M+D-1)); % ACRM of v(n)
>> rv = rvv(M+2*D:end);
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FIGURE 15.20 Log-magnitude response of the prediction-error filter in Example
15.4(b)

>> h = Rvv\rv;
>> h1 = zeros(M+D,1);
>> h1(1) = 1;
>> h1(D+1:D+M) = -h;
>> f = linspace(0,1,1001)*0.5;
>> H1 = freqz(h1,1,2*pi*f);
>> H1db = 20*log10(abs(H1)/max(abs(H1)));
>> % Plotting commands follow

The resulting log-magnitude response is shown in Figure 15.21. Now the notch
in the frequency response is much shallower at around 5 dB down. �

15.1.5 ADAPTIVE LINE ENHANCER
In the preceding example, the adaptive linear predictor was used to es-
timate the narrowband interference for the purpose of suppressing the
interference from the input sequence v(n). An adaptive line enhancer
(ALE) has the same configuration as the interference suppression filter
in Figure 15.17, except that the objective is different.

In the adaptive line enhancer, x(n) is the desired signal and w(n) rep-
resents a wideband noise component that masks x(n). The desired signal
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FIGURE 15.21 Log-magnitude response of the prediction-error filter in
Example 15.4(c)

x(n) is either a spectral line or a relatively narrowband signal. The linear
predictor shown in Figure 15.17(b) operates in exactly the same fashion
as that in Figure 15.17(a) and provides an estimate of the narrowband
signal x(n). It is apparent that the ALE (i.e., the FIR prediction filter)
is a self-tuning filter that has a peak in its frequency response at the
frequency of the sinusoid or, equivalently, in the frequency band of the
narrowband signal x(n). By having a narrow bandwidth, the noise w(n)
outside of the band is suppressed and, thus, the spectral line is enhanced
in amplitude relative to the noise power in w(n). This explains why the
FIR predictor is called an ALE. Its coefficients are determined by the
solution of (15.20).

� EXAMPLE 15.5 Estimation of Narrowband Signal in Wideband Noise
Consider the system configuration given in Example 15.4, where now the se-
quence x(n) is defined as

x(n) = A cos(2πf0n + θ0)

The objective is now to estimate x(n) in the presence of the wideband noise
sequence w(n).
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a. Let M = 15, A = 1, f0 = 0.2, and θ0 = 0, and generate 2000 samples
of the sequence v(n). Solve (15.20) for the predictor coefficients h(k), k =
0, 1, . . . , 14. Then plot given signal x(n), the noisy signal v(n), and the
estimated signal x̂(n) for 50 < n ≤ 150. Comment on the quality of the
estimate.

b. Compute the frequency response H
(
ej2πf

)
of the FIR prediction filter and

plot 20 log
[∣∣H

(
ej2πf

)∣∣] for |f | ≤ 1
2 . Comment on the characteristic of the

filter.
c. Repeat parts (a) and (b) when A = 1

10 and when A = 10.
d. Repeat parts (a) and (b) when the sequence x(n) contains two frequency

components of the form

x(n) = A cos(2πf1n + θ1) + B cos(2πf2n + θ2)

where f1 = 0.1, f2 = 0.3, θ1 = 0, θ2 = π, and A = B = 1. Comment on the
results of x̂(n) and H

(
ej2πf

)
.

Solution The sequence x(n) is obtained using

>> N = 2000; n = (0:N-1)’;
>> xn = A*cos(2*pi*f0*n+th0);

a. The predictor coefficients and the plots are obtained using the following
MATLAB script.

>> M = 15; A = 1; f0 = 0.2; th0 = 0; D = 1;
>> varW = 1;
>> wn = sqrt(varW)*randn(N,1);
>> vn = xn + wn;
>> [rvv] = xcorr(vn,M-1+D); % ACRS of v(n)
>> Rvv = toeplitz(rvv(M+D:2*M+D-1)); % ACRM of v(n)
>> rv = rvv(M+2*D:end);
>> h = Rvv\rv;
>> xhatn = filter(h,1,[zeros(D,1);vn]);
>> % Plotting commands follow

The plots are shown in Figure 15.22 in which we show samples from n = 50
to n = 150 for clarity. The optimal filter has a remarkable performance given
how noisy the signal v(n) is. The single tone signal x(n) is clearly enhanced.

b. MATLAB script:

>> f = linspace(-0.5,0.5,1001);
>> Hf = freqz(h,1,2*pi*f);
>> Hfdb = 20*log10(abs(Hf)/max(abs(Hf)));
>> % Plotting commands follow
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FIGURE 15.22 Plots of the original signal, noisy signal, and estimated signal in
Example 15.5(a)

The log-magnitude plot in decibels is shown in Figure 15.23. Observe that
the response has a peak at f = ±0.2 and all other peaks are approximately
10 dB below these peaks.

c. The scripts are almost similar with obvious changes to the scale factor A.

>> % A = 1/10
>> M = 15; A = 1/10; f0 = 0.2; th = 0; D = 1;
>> N = 2000; n = (0:N-1)’;
>> xn = A*cos(2*pi*f0*n+th);
>> varW = 1;
>> wn = sqrt(varW)*randn(N,1);
>> vn = xn + wn;
>> [rvv,lags] = xcorr(vn,M-1+D); % ACRS of v(n)
>> Rvv = toeplitz(rvv(M+D:2*M+D-1)); % ACRM of v(n)
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FIGURE 15.23 Log-magnitude plot in Example 15.5(b)

>> rv = rvv(M+2*D:end);
>> h = Rvv\rv;
>> xhatn = filter(h,1,[zeros(D,1);vn]);
>> f = linspace(-0.5,0.5,1001);
>> Hf = freqz(h,1,2*pi*f);
>> Hfdb = 20*log10(abs(Hf)/max(abs(Hf)));
>>
>> % A = 10
>> M = 15; A = 10; f0 = 0.2; th = 0; D = 1;
>> N = 2000; n = (0:N-1)’;
>> xn = A*cos(2*pi*f0*n+th);
>> varW = 1;
>> wn = sqrt(varW)*randn(N,1);
>> vn = xn + wn;
>> [rvv,lags] = xcorr(vn,M-1+D); % ACRS of v(n)
>> Rvv = toeplitz(rvv(M+D:2*M+D-1)); % ACRM of v(n)
>> rv = rvv(M+2*D:end);
>> h = Rvv\rv;
>> xhatn = filter(h,1,[zeros(D,1);vn]);
>> f = linspace(-0.5,0.5,1001);
>> Hf = freqz(h,1,2*pi*f);
>> Hfdb = 20*log10(abs(Hf)/max(abs(Hf)));

The plots are shown in Figure 15.24. The plots in the left-hand column
correspond to A = 1/10. Clearly, the noise is stronger in this case, and
consequently the estimation of x(n) suffers. Although most of the noise is
eliminated, the signal is also distorted. This is also evident from the filter’s
log-magnitude plot. Although there is a peak at f = 0.2, there are other
significant peaks also present in the response. The plots in the right-hand
column correspond to A = 10. In this case, the signal x(n) is much stronger

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



800 Chapter 15 ADAPTIVE FILTERS

n
50 70 90 110

A
m

pl
itu

de

–1

0

1

A = 1/10

Original Signal x(n)

n
50 70 90 110

A
m

pl
itu

de

–1

0

1

Noisy Signal v(n)

n
50 70 90 110

A
m

pl
itu

de

–1

0

1

Estimated Signal x(n)

Normalized Frequency f
–0.5 –0.2 0 0.2 0.5

D
ec

ib
el

s

–20

–10

0

Log-Magnitude Response

n
50 70 90 110

A
m

pl
itu

de

–10

–5

0

5

10

A = 10

Original Signal x(n)

n
50 70 90 110

A
m

pl
itu

de
–10

–5

0

5

10

Noisy Signal v(n)

n
50 70 90 110

A
m

pl
itu

de

–10

–5

0

5

10

Estimated Signal x(n)

Normalized Frequency f
–0.5 –0.2 0 0.2 0.5

D
ec

ib
el

s

–20

–10

0

Log-Magnitude Response

FIGURE 15.24 Signal and log-magnitude plots in Example 15.5(c)
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than noise, and consequently the estimation of x(n) is almost distortion-
free. The filter’s log-magnitude plot shows a stronger and narrower peak at
f = 0.2, thus eliminating most of the noise.

d. In this case, we change x(n) by adding another sinusoid and then execute
the previous script.

>> M = 15; D = 1;
>> A = 1; f1 = 0.1; th1 = 0;
>> B = 1; f2 = 0.3; th2 = pi;
>> N = 2000; n = (0:N-1)’;
>> xn = A*cos(2*pi*f1*n+th1) + B*cos(2*pi*f2*n+th2);
>> varW = 1;
>> wn = sqrt(varW)*randn(N,1);
>> vn = xn + wn;
>> [rvv,lags] = xcorr(vn,M-1+D); % ACRS of v(n)
>> Rvv = toeplitz(rvv(M+D:2*M+D-1)); % ACRM of v(n)
>> rv = rvv(M+2*D:end);
>> h = Rvv\rv;
>> xhatn = filter(h,1,[zeros(D,1);vn]);
>> f = linspace(-0.5,0.5,1001);
>> Hf = freqz(h,1,2*pi*f);
>> Hfdb = 20*log10(abs(Hf)/max(abs(Hf)));

The signal and log-magnitude plots are shown in Figure 15.25. The filter’s
log-magnitude plot shows that although the response peaks are at the correct
locations, f1 = 0.1 and f2 = 0.3 cycles/sample, these peaks are broad and let
some noise power go through. Consequently, the estimation of two sinusoid
is not perfect and the waveform is somewhat distorted. �

15.1.6 ADAPTIVE NOISE CANCELLING
Echo cancellation, the suppression of narrowband interference in a wide-
band signal, and the ALE are related to another form of adaptive filtering
called adaptive noise cancelling. A model for the adaptive noise canceller
is illustrated in Figure 15.26.

The primary input signal consists of a desired signal sequence x(n)
corrupted by an additive noise sequence w1(n) and an additive inter-
ference (noise) w2(n). The additive interference (noise) is also observ-
able after it has been filtered by some unknown linear system that yields
v2(n) and is further corrupted by an additive noise sequence w3(n). Thus
we have available a secondary signal sequence, which may be expressed
as v(n) = v2(n) + w3(n). The sequences w1(n), w2(n), and w3(n) are
assumed to be mutually uncorrelated and zero mean.

As shown in Figure 15.26, an adaptive FIR filter is used to esti-
mate the interference sequence w2(n) from the secondary signal v(n) and
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FIGURE 15.25 Signal and log-magnitude plots in Example 15.5(d)

subtract the estimate ŵ2(n) from the primary signal. The output se-
quence, which represents an estimate of the desired signal x(n), is the
error signal

e(n) = y(n) − ŵ2(n)

= y(n) −
M−1∑
k=0

h(k)v(n − k) (15.27)

This error sequence is used to adaptively adjust the coefficients of the
FIR filter.
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FIGURE 15.26 Example of an adaptive noise-cancelling system

If the least-squares criterion is used to determine the filter coefficients,
the result of the optimization is the set of linear equations

M−1∑
k=0

h(k)rvv(� − k) = ryv(�), � = 0, 1, . . . , M − 1 (15.28)

where rvv(�) is the sample (time-average) autocorrelation of the sequence
v(n) and ryv(�) is the sample cross-correlation of the sequences y(n) and
v(n). Clearly, the noise cancelling problem is similar to the last three
adaptive filtering applications described above.

� EXAMPLE 15.6 Noise Cancellation
Consider the system configuration shown in Figure 15.27. The sequence x(n) is
a sample sequence of a broadband signal that is modeled as a white Gaussian
noise process with variance σ2

X. The sequences w2(n) and w3(n) are sample
sequences of white Gaussian noise processes with equal variance σ2

W. Sequences
x(n), w2(n), and w3(n) are mutually uncorrelated. The linear system has a
system function

H(z) =
1

1 − 1
2
z−1

The objective is to design a linear prediction filter that estimates and cancels
out the noise component w2(n).

a. Consider the following parameters: predictor order M = 10,σ2
W = 1,σ2

X = 2.
Generate 2000 samples of the sequences x(n), w2(n), and w3(n), and the
sequences y(n), v2(n), and v(n). Then determine the predictor coefficients
that are optimal in the least-squares sense.

b. Plot y(n), x(n), and x̂(n) on the same graph and comment on the quality
of the noise cancellation scheme.

c. Repeat parts (a) and (b) when σ2
X = 5 and when σ2

X = 0.5. Comment on
the results.
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FIGURE 15.27 Noise cancellation in Example 15.6

Solution The unknown linear system is specified using

>> Hzb = 1; Hza = [1-0.5]; % Unknown LTI system parameters

a. The specified signal and the predictor coefficients are obtained using the
following MATLAB script.

>> M = 10; varW = 1; varX = 2;
>> N = 2000; n = 0:N-1;
>> xn = sqrt(varX)*randn(N,1);
>> w2n = sqrt(varW)*randn(N,1);
>> w3n = sqrt(varW)*randn(N,1);
>> v2n = filter(Hzb,Hza,w2n);
>> yn = xn+w2n;
>> vn = v2n+w3n;
>> rvv = xcorr(vn,M-1);
>> Rvv = toeplitz(rvv(M:end)); % ACRM of v(n)
>> ryv = xcorr(yn,vn,M-1); % CCRS between y(n) and v(n)
>> ryv = ryv(M:end); % CCRV
>> hnc = Rvv\ryv; % Noise canceller coeff (or Imp resp)

b. The x̂(n) is obtained using

>> w2hatn = filter(hnc,1,vn);
>> xhatn = yn - w2hatn;

The signal plots from n = 50 to n = 150 are shown in Figure 15.28. The
wideband signal x(n) is restored close to its original waveform from its noisy
observation, and thus its noise is almost cancelled.

c. We now execute the previous MATLAB script with different values for σX.

>> % (c1) VarX = 5
>> M = 10; varW = 1; varX = 5;
>> N = 2000; n = 0:N-1;
>> xn = sqrt(varX)*randn(N,1);
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FIGURE 15.28 Signal plots in Example 15.6(b)

>> w2n = sqrt(varW)*randn(N,1);
>> w3n = sqrt(varW)*randn(N,1);
>> v2n = filter(Hzb,Hza,w2n);
>> yn = xn+w2n;
>> vn = v2n+w3n;
>> rvv = xcorr(vn,M-1);
>> Rvv = toeplitz(rvv(M:end)); % ACRM of v(n)
>> ryv = xcorr(yn,vn,M-1); % CCRS between y(n) and v(n)
>> ryv = ryv(M:end); % CCRV
>> hnc = Rvv\ryv; % Noise canceller coeff (or Imp resp)
>> w2hatn = filter(hnc,1,vn);
>> xhatn = yn - w2hatn;
>> % Plotting commands follow

The resulting signal plots are shown in Figure 15.29. In this case, the sig-
nal is much stronger in power than noise samples. Hence the signal and its
estimated waveforms are almost identical.
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FIGURE 15.29 Signal plots in Example 15.6(c)1

>> % (c2) VarX = 0.5
>> M = 10; varW = 1; varX = 0.5;
>> N = 2000; n = 0:N-1;
>> xn = sqrt(varX)*randn(N,1);
>> w2n = sqrt(varW)*randn(N,1);
>> w3n = sqrt(varW)*randn(N,1);
>> v2n = filter(Hzb,Hza,w2n);
>> yn = xn+w2n;
>> vn = v2n+w3n;
>> rvv = xcorr(vn,M-1);
>> Rvv = toeplitz(rvv(M:end)); % ACRM of v(n)
>> ryv = xcorr(yn,vn,M-1); % CCRS between y(n) and v(n)
>> ryv = ryv(M:end); % CCRV
>> hnc = Rvv\ryv; % Noise canceller coeff (or Imp resp)
>> w2hatn = filter(hnc,1,vn);
>> xhatn = yn - w2hatn;
>> % Plotting commands follow
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FIGURE 15.30 Signal plots in Example 15.6(c)2

The resulting signal plots are shown in Figure 15.30. In this case, the signal
is much weaker in power than noise samples. Hence the estimated signal
waveform is distorted compared to the original signal. �

15.1.7 LINEAR PREDICTIVE CODING OF SPEECH SIGNALS
Various methods have been developed over the past four decades for dig-
ital encoding of speech signals. In the telephone system, for example, two
commonly used methods for speech encoding are pulse code modulation
(PCM) and differential PCM (DPCM). These are examples of waveform-
coding methods. Other waveform-coding methods have also been devel-
oped, such as delta modulation (DM) and adaptive DPCM.

Since the digital speech signal is ultimately transmitted from the
source to a destination, a primary objective in devising speech encoders
is to minimize the number of bits required to represent the speech sig-
nal while maintaining speech intelligibility. This objective has led to the
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development of a class of low bit-rate (10,000 bits per second and be-
low) speech-encoding methods that are based on constructing a model of
the speech source and transmitting the model parameters. Adaptive fil-
tering finds application in these model-based speech-coding systems. We
describe one very effective method called linear predictive coding (LPC).

In LPC, the vocal tract is modeled as a linear all-pole filter having
the system function

H(z) =
G

1 −
∑p

k=1 akz−k
(15.29)

where p is the number of poles, G is the filter gain, and ak are the parame-
ters that determine the poles. There are two mutually exclusive excitation
functions, used to model voiced and unvoiced speech sounds. On a short-
time basis, voiced speech is periodic with a fundamental frequency F0, or
a pitch period 1/F0, which depends on the speaker. Thus voiced speech
is generated by exciting the all-pole filter model by a periodic impulse
train with a period equal to the desired pitch period. Unvoiced speech
sounds are generated by exciting the all-pole filter model by the output
of a random-noise generator. This model is shown in Figure 15.31.

Given a short-time segment of a speech signal, the speech encoder at
the transmitter must determine the proper excitation function, the pitch
period for voiced speech, the gain parameter G, and the coefficients {ak}.
A block diagram that illustrates the source encoding system is given in
Figure 15.32. The parameters of the model are determined adaptively from
the data. Then the speech samples are synthesized by using the model,
and an error signal sequence is generated (as shown in Figure 15.32) by
taking the difference between the actual and the synthesized sequence.
The error signal and the model parameters are encoded into a binary
sequence and transmitted to the destination. At the receiver, the speech
signal is synthesized from the model and the error signal.

The parameters of the all-pole filter model are easily determined from
the speech samples by means of linear prediction. To be specific, consider

White
Noise

Generator

Periodic
Impulse

Generator

All-Pole
Filter

Voiced and
Unvoiced Switch Speech

Signal

FIGURE 15.31 Block diagram model for the generation of a speech signal
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the system shown in Figure 15.33 and assume that we have N signal
samples. The output of the FIR filter is

x̂(n) =
p∑

k=1

akx(n − k) (15.30)

and the corresponding error between the observed sample x(n) and the
estimate x̂(n) is

e(n) = x(n) −
p∑

k=1

akx(n − k) (15.31)

By applying the least-squares criterion, we can determine the model
parameters ak. The result of this optimization is a set of linear equations

p∑
k=1

akrxx(� − k) = rxx(�), � = 1, 2, . . . , p (15.32)

Adaptive
Algorithm

Adaptive
FIR

Predictor
z 1

Speech Samples
Error Signalx (n)

x̂(n)

FIGURE 15.33 Estimation of pole parameters in LPC
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where rxx(�) is the time-average autocorrelation of the sequence x(n).
The gain parameter for the filter can be obtained by noting that its input-
output equation is

x(n) =
p∑

k=1

akx(n − k) + Gv(n) (15.33)

where v(n) is the input sequence. Clearly,

Gv(n) = x(n) −
p∑

k=1

akx(n − k)

= e(n)

Then

G2
N−1∑
n=0

v2(n) =
N−1∑
n=0

e2(n) (15.34)

If the input excitation is normalized to unit energy by design, then

G2 =
N−1∑
n=0

e2(n)

= rxx(0) −
p∑

k=1

akrxx(k) (15.35)

Thus G2 is set equal to the residual energy resulting from the least-squares
optimization.

In this development, we have described the use of linear prediction
to adaptively determine the pole parameters and the gain of an all-pole
filter model for speech generation. In practice, due to the nonstationary
character of speech signals, this model is applied to short-time segments
(10 to 20 milliseconds) of a speech signal. Usually, a new set of parameters
is determined for each short-time segment. However, it is often advanta-
geous to use the model parameters measured from previous segments to
smooth out sharp discontinuities that usually exist in estimates of model
parameters obtained from segment to segment. Although our discussion
was totally in terms of the FIR filter structure, we should mention that
speech synthesis is usually performed by using the FIR lattice structure
and the reflection coefficients Ki. Since the dynamic range of the Ki is
significantly smaller than that of the ak, the reflection coefficients require
fewer bits to represent them. Hence the Ki are transmitted over the chan-
nel. Consequently, it is natural to synthesize the speech at the destination
using the all-pole lattice structure described previously in Section 14.5.1.
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FIGURE 15.34 Estimation of pole positions in Example 15.7

In our treatment of LPC for speech coding, we have not considered
algorithms for the estimation of the excitation and the pitch period. A
discussion of appropriate algorithms for these parameters of the model
would take us too far afield and, hence, are omitted. The interested reader
is referred to Rabiner and Schafer [84] and Deller, Hansen, and Proakis
[11] for a detailed treatment of speech analysis and synthesis methods.

� EXAMPLE 15.7 Estimation of Poles in an All-Pole System
Consider an autoregressive process described by the difference equation

x(n) = 1.26x(n − 1) − 0.81x(n − 2) + w(n) (15.36)

where w(n) is a sample sequence of a white Gaussian noise process with variance
σ2

W = 0.1. The system configuration for estimation of the poles is shown in
Figure 15.34.

a. Generate a sequence x(n) for 0 ≤ n ≤ 1000, and use the least-squares
criterion to determine the parameters of a second-order predictor.

b. Determine the zeros of the prediction-error filter and compare them to the
poles of the system that generated x(n).

c. Repeat parts (a) and (b) when σ2
W = 0.5 and when σ2

W = 1. Comment on
the results.

Solution The parameters of the second-order AR model are entered using

>> b = 1; a = [1,-1.26,0.81]; % Parameters of the AR model

a. Sequence generation and the parameters of the second-order predictor are
obtained using the following MATLAB script.

>> varW = 0.1; M = 2;
>> N = 1000; n = 0:N-1;
>> wn = sqrt(varW)*randn(N,1);
>> xn = filter(b,a,wn);
>> [rxx] = xcorr(xn,M); % ACRS of x(n)
>> Rxx = toeplitz(rxx(M+1:2*M)); % ACRM of x(n)
>> rdx = xcorr(xn,M-1); % CCRS between d(n) and x(n)
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>> rx = rxx(M+2:end); % CCRV
>> hpr = Rxx\rx; % Predictor coeff (or Imp resp)
>> hpr’
ans =

1.2416 -0.8206

The predictor coefficients almost agree with the coefficients on the right-hand
side of (15.36).

b. MATLAB script:

>> hpe = [1;-hpr]; % Prediction error imp response
>> hpe_zeros = roots(hpe);
>> fprintf(’Zeros and Poles when varW = 0.1\n’);
>> fprintf([’ Zeros of the Prediction Error Filter are: ’,...

’\n %6.4f+j%6.4f, %6.4f-j%6.4f\n\n’],...
real(hpe_zeros(1)),imag(hpe_zeros(1)),...
real(hpe_zeros(2)),-imag(hpe_zeros(2)));

>> AR_poles = roots(a);
>> fprintf([’ Poles of the AR Model are: ’,...

’\n %6.4f+j%6.4f, %6.4f-j%6.4f\n\n’],...
real(AR_poles(1)),imag(AR_poles(1)),...
real(AR_poles(2)),-imag(AR_poles(2)));

The screen printout is

Zeros and Poles when varW = 0.1
Zeros of the Prediction Error Filter are:
0.6208+j0.6597, 0.6208-j0.6597

Poles of the AR Model are:
0.6300+j0.6427, 0.6300-j0.6427

Clearly, the poles and zeros are close to each other.

c. A similar MATLAB script with different values for σ2
W gives similar results.

Zeros and Poles when varW = 0.5
Zeros of the Prediction Error Filter are:
0.6296+j0.6345, 0.6296-j0.6345

Poles of the AR Model are:
0.6300+j0.6427, 0.6300-j0.6427
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Zeros and Poles when varW = 1.0
Zeros of the Prediction Error Filter are:
0.6309+j0.6365, 0.6309-j0.6365

Poles of the AR Model are:
0.6300+j0.6427, 0.6300-j0.6427

Even though we change the AR model input variance, the estimation of pre-
dictor model coefficients are obtained by the ratio of autocorrelation values,
which remains unaffected within the statistical variation. �

15.1.8 ADAPTIVE ARRAYS
In the previous examples, we considered adaptive filtering performed on
a single data sequence. However, adaptive filtering has also been widely
applied to multiple data sequences that result from antenna, hydrophone,
and seismometer arrays, where the sensors (antennas, hydrophones, or
seismometers) are arranged in some spatial configuration. Each element
of the array of sensors provides a signal sequence. By properly combining
the signals from the various sensors, it is possible to change the direc-
tivity pattern of the array. For example, consider a linear antenna array
consisting of five elements, as shown in Figure 15.35(a). If the signals are
simply linearly summed, we obtain the sequence

x(n) =
5∑

k=1

xk(n) (15.37)

which results in the antenna directivity pattern shown in Figure 15.35(a).
Now, suppose that an interference signal is received from a direction cor-
responding to one of the sidelobes in the array. By properly weighting
the sequences xk(n) prior to combining, it is possible to alter the side-
lobe pattern such that the array contains a null in the direction of the
interference, as shown in Figure 15.35(b). Thus we obtain

x(n) =
5∑

k=1

hkxk(n) (15.38)

where the hk are the weights.
We may also change or steer the direction of the main antenna lobe

by simply introducing delays in the output of the sensor signals prior to
combining. Hence from K sensors, we have a combined signal of the form

x(n) =
K∑

k=1

hkxk(n − nk) (15.39)
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Look Direction
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x3(n)

x4(n)
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FIGURE 15.35 Linear antenna array: (a) linear antenna array with antenna
pattern; (b) linear antenna array with a null placed in the direction of the
interference

where the hk are the weights and nk corresponds to an nk-sample delay
in the signal x(n). The choice of weights may be used to place nulls in
specific directions.
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More generally, we may simply filter each sequence prior to combining.
In such a case, the output sequence has the general form

y(n) =
K∑

k=1

yk(n)

=
K∑

k=1

M−1∑
�=0

hk(�)xk(n − nk − �) (15.40)

where hk is the impulse response of the filter for processing the kth sensor
output and the nk are the delays that steer the beam pattern.

The LMS algorithm described in Section 15.2.2 is frequently used in
adaptively selecting the weights hk or the impulse responses hk(�). The
more powerful recursive least-squares algorithms described can also be
applied to the multisensor (multichannel) data problem.

In the treatment given in this chapter, we deal with single-channel
(sensor) signals.

15.2 ADAPTIVE DIRECT-FORM FIR FILTERS

From the examples of the previous section, we observed that there is a
common framework in all the adaptive filtering applications. The least-
squares criterion that we have adopted leads to a set of linear equations
for the filter coefficients, which may be expressed as

M−1∑
k=0

h(k)rxx(� − k) = rdx(� + D), � = 0, 1, 2, . . . , M − 1 (15.41)

where rxx(�) is the autocorrelation of the sequence x(n) and rdx(�) is the
cross-correlation of the sequences d(n) and x(n). The delay parameter D
is zero in some cases and nonzero in others.

We observe that the autocorrelation rxx(�) and the cross-correlation
rdx(�) are obtained from the data and, hence, represent estimates of the
true (statistical) autocorrelation and cross-correlation sequences. As a
result, the coefficients h(k) obtained from (15.41) are estimates of the
true coefficients. The quality of the estimates depend on the length of the
data record that is available for estimating rxx(�) and rdx(�). This is one
problem that must be considered in the implementation of an adaptive
filter.

A second problem that must be considered is that the underlying ran-
dom process x(n) is usually nonstationary. For example, in channel equal-
ization, the frequency response characteristics of the channel may vary
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816 Chapter 15 ADAPTIVE FILTERS

with time. As a consequence, the statistical autocorrelation and cross-
correlation sequences—and, hence, their estimates—vary with time. This
implies that the coefficients of the adaptive filter must change with time
to incorporate the time-variant statistical characteristics of the signal into
the filter. This also implies that the quality of the estimates cannot be
made arbitrarily high by simply increasing the number of signal sam-
ples used in the estimation of the autocorrelation and cross-correlation
sequences.

There are several ways by which the coefficients of the adaptive filter
can be varied with time to track the time-variant statistical characteristics
of the signal. The most popular method is to adapt the filter recursively on
a sample-by-sample basis, as each new signal sample is received. A second
approach is to estimate rxx(�) and rdx(�) on a block-by-block basis, with
no attempt to maintain continuity in the values of the filter coefficients
from one block of data to another. In such a scheme, the block size must
be relatively small, encompassing a time interval that is short compared
to the time interval over which the statistical characteristics of the data
change significantly. In addition to this block-processing method, other
block-processing schemes can be devised that incorporate some block-to-
block continuity in the filter coefficients.

In our treatment of adaptive filtering algorithms, we consider only
time-recursive algorithms that update the filter coefficients on a sample-
by-sample basis. In particular, we consider two types of algorithms, the
LMS algorithm, which is based on a gradient-type search for tracking the
time-variant signal characteristics, and the class of recursive least-squares
algorithms, which are significantly more complex than the LMS algorithm,
but which provide faster convergence to changes in signal statistics.

15.2.1 MINIMUM MEAN-SQUARE-ERROR CRITERION
The LMS algorithm that is described in the following subsection is most
easily obtained by formulating the optimization of the FIR filter coeffi-
cients as an estimation problem based on the minimization of the mean-
square error. Let us assume that we have available the (possibly complex-
valued) data sequence x(n), which consists of samples from a stationary
random process X(n) with autocorrelation sequence

RXX(m) = E
[
X(n)X∗(n − m)

]
(15.42)

From these samples, we form an estimate of the desired sequence D(n)
by passing the observed data x(n) through an FIR filter with coefficients
h(n), 0 ≤ n ≤ M − 1. The filter output may be expressed as

d̂(n) =
M−1∑
k=0

h(k)x(n − k) (15.43)
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where d̂(n) represents samples of an estimate D̂(n) of D(n). The estimation
error process is defined as

E(n) = D(n) − D̂(n)

= D(n) −
M−1∑
k=0

h(k)X(n − k) (15.44)

The mean-square error as a function of the filter coefficients is

EM = E
[
|E(n)|2

]

= E

⎡
⎣
∣∣∣∣∣D(n) −

M−1∑
k=0

h(k)X(n − k)

∣∣∣∣∣
2
⎤
⎦

= E

{
|D(n)|2 − 2Re

[
M−1∑
k=0

h∗(�)D(n)X∗(n − �)

]

+
M−1∑
k=0

M−1∑
�=0

h∗(�)h(k)X∗(n − �)X(n − k)

}

= σ2
D − 2Re

[
M−1∑
�=0

h∗(�)RDX(�)

]
+

M−1∑
k=0

M∑
�=0

h∗(�)h(k)RXX(� − k)

(15.45)

where, by definition, σ2
D = E

[
|D(n)|2

]
.

We observe that the MSE is a quadratic function of the filter coeffi-
cients. Consequently, the minimization EM with respect to the coefficients
leads to the set of M linear equations,

M−1∑
k=0

h(k)RXX(� − k) = RDX(�), � = 0, 1, . . . , M − 1 (15.46)

The filter with coefficients obtained from (15.46), which is the Wiener–
Hopf equation previously derived in Section 14.6.1, is called the Wiener
filter.

If we compare (15.46) with (15.41), it is apparent that these equations
are similar in form. In (15.41), we use estimates of the autocorrelation and
cross-correlation to determine the filter coefficients, whereas in (15.46)
the statistical autocorrelation and cross-correlation are employed. Hence
(15.46) yields the optimum (Wiener) filter coefficients in the MSE sense,
whereas (15.41) yields estimates of the optimum coefficients.

The equations in (15.46) may be expressed in matrix form as

TMhM = RD (15.47)
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818 Chapter 15 ADAPTIVE FILTERS

where hM denotes the vector of coefficients, TM is an M ×M (Hermitian)
Toeplitz matrix with elements T�k = RXX(� − k), and RD is an M × 1
cross-correlation vector with elements RDX(�), � = 0, 1, . . . , M − 1. The
complex-conjugate of hM is denoted as h∗

M and the transpose as ht
M . The

solution for the optimum filter coefficients is

hopt = T −1
M RD (15.48)

and the resulting minimum MSE achieved with the optimum coefficients
given by (15.48)

EMmin = σ2
D −

M−1∑
k=0

hopt(k)R∗
DX(k)

= σ2
D − RH

DT −1
M RD (15.49)

where the exponent H denotes the conjugate transpose.
Recall that the set of linear equations in (15.46) can also be obtained

by invoking the orthogonality principle in mean-square estimation (see
Section 14.6.2). According to the orthogonality principle, the mean-square
estimation error is minimized when the error E(n) is orthogonal, in the
statistical sense, to the estimate D̂(n), that is,

E
[
E(n)D̂

∗
(n)

]
= 0 (15.50)

But the condition in (15.50) implies that

E

[
M−1∑
k=0

h(k)E(n)X∗(n − k)

]
=

M−1∑
k=0

h(k)E
[
E(n)X∗(n − k)

]
= 0

or equivalently,

E
[
E(n)X∗(n − �)

]
= 0, � = 0, 1, . . . , M − 1 (15.51)

If we substitute for E(n) in (15.51) using the expression for E(n) given
in (15.44), and perform the expectation operation, we obtain the equations
given in (15.46).

Since D̂(n) is orthogonal to E(n), the residual (minimum) mean-
square error is

EMmin = E
[
E(n)D∗(n)

]

= E
[
|D(n)|2

]
−

M−1∑
k=0

hopt(k)R∗
DX(k) (15.52)

which is the result given in (15.49).
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The optimum filter coefficients given by (15.48) can be solved effi-
ciently by using the Levinson–Durbin algorithm. However, we shall con-
sider the use of a gradient method for solving for hopt iteratively. This
development leads to the LMS algorithm for adaptive filtering.

� EXAMPLE 15.8 Parameter Estimation Based on MSE Criterion
Consider the random process

X(n) = Gv(n) + W(n), n = 0, 1, . . . , M − 1

where v(n) is a known sequence, G is a random variable with E[G] = 0, and
E[G2] = σ2

G. The sequence W(n) is a white noise sequence with variance σ2
W.

a. Determine the coefficients of the linear estimator for G, given as

Ĝ =
M−1∑

n=0

h(n)X(n)

that minimize the mean-square error

E = E
[(

G − Ĝ
)2]

.

b. Determine the values of
{
h(n)

}
when

{
v(n)

}
=

{
1, 1, 1, −1, −1, −1,

1, −1, −1, 1, −1
}
, which is the Barker sequence of length M = 11, σ2

G = 1,
and σ2

W = 0.1.

Solution a. The MSE is given by

E = E

⎡

⎣
(

G −
M−1∑

n=0

h(n)X(n)

)2
⎤

⎦

The minimum MSE is obtained by performing

∂E

∂h(k)
= 0 ⇒ E

[
2

(
G −

M−1∑

n=0

h(n)X(n)

)
X(k)

]
= 0, k = 0, 1, . . . , M − 1

Thus

E
[
G X(k)

]
= E

[
M−1∑

n=0

h(n)X(n)X(k)

]
, k = 0, 1, . . . , M − 1 (15.53)

Now,

E
[
G X(k)

]
= E

[
G

{
G v(k) + W(k)

}]
= σ2

Gv(k), k = 0, 1, . . . , M − 1 (15.54)

assuming that G and W(k) are uncorrelated. Also,

E

[
M−1∑

n=0

h(n)X(n)X(k)

]
=

M−1∑

n=0

h(n)E
[
X(n)X(k)

]
(15.55)
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It is easily shown that

E
[
X(n)X(k)

]
= σ2

Gv(k)v(n) + σ2
Wδnk (15.56)

Therefore, substituting (15.54)–(15.56) into (15.53), we have

σ2
Gv(k) = σ2

G

M−1∑

n=0

h(n)v(k)v(n) + σ2
Wh(k) (15.57)

Hence the filter coefficients are the solution of the linear equations

(σ2
Gvvt + σ2

WI)h = σ2
Gv (15.58)

where

v =
[
v(0), v(1), . . . , v(M − 1)

]t
,

h =
[
h(0), h(1), . . . , h(M − 1)

]t

b. When
{
v(n)

}
=

{
1, 1, 1, −1, −1, −1, 1, −1, −1, 1, −1

}
, σ2

G = 1, and σ2
W = 0.1,

the solution to the linear equations yields

{
h(n)

}
=

{
0.0901, 0.0901, 0.0901, −0.0901, −0.0901, −0.0901, 0.0901,

− 0.0901, −0.0901, 0.0901, −0.0901
}

�

15.2.2 THE LMS ALGORITHM
There are various numerical methods that can be used to solve the set of
linear equations given by (15.46) or (15.47) for the optimum FIR filter
coefficients. In the following, we consider recursive methods that have
been devised for finding the minimum of a function of several variables.
In our problem, the performance index is the MSE given by (15.45),
which is a quadratic function of the filter coefficients. Hence this func-
tion has a unique minimum, which we shall determine by an iterative
search.

For the moment, let us assume that the autocorrelation matrix TM

and the cross-correlation vector RD are known. Hence EM is a known
function of the coefficients h(n), 0 ≤ n ≤ M−1. Algorithms for recursively
computing the filter coefficients and, thus, searching for the minimum EM

have the form

hM (n + 1) = hM (n) +
1
2
∆(n)V (n), n = 0, 1, . . . (15.59)

where hM (n) is the vector of filter coefficients at the nth iteration, ∆(n)
is a step size at the nth iteration, and V (n) is a direction vector for
the nth iteration. The initial vector hM (0) is chosen arbitrarily. In this
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treatment, we exclude methods that require the computations of T −1
M ,

such as Newton’s method, and consider only search methods based on
the use of gradient vectors.

The simplest method for finding the minimum of EM recursively is
based on a steepest-descent search (see Murray [69]). In the method of
steepest descent, the direction vector V (n) = −g(n), where g(n) is the
gradient vector at the nth iteration, defined as

g(n) =
dEM (n)
dhM (n)

= 2[TMhM (n) − RD], n = 0, 1, 2, . . . (15.60)

Hence we compute the gradient vector at each iteration and change the
values of hM (n) in a direction opposite the gradient. Thus the recursive
algorithm based on the method of steepest descent is

hM (n + 1) = hM (n) − 1
2
∆(n)g(n) (15.61)

or equivalently,

hM (n + 1) = [I − ∆(n)TM ]hM (n) + ∆(n)RD. (15.62)

We state without proof that the algorithm leads to the convergence of
hM (n) to hopt in the limit as n → ∞, provided that the sequence of step
sizes ∆(n) is absolutely summable, with ∆(n) → 0 as n → ∞. It follows
that as n → ∞, g(n) → 0.

Other candidate algorithms that provide faster convergence are the
conjugate-gradient algorithm and the Fletcher–Powell algorithm. In the
conjugate-gradient algorithm, the direction vectors are given as

V (n) = β(n − 1)V (n − 1) − g(n) (15.63)

where β(n) is a scalar function of the gradient vectors (see Beckman [1]).
In the Fletcher–Powell algorithm, the direction vectors are given as

V (n) = −H(n)g(n) (15.64)

where H(n) is an M × M positive definite matrix, computed iteratively,
that converges to the inverse of TM (see Fletcher and Powell [16]). Clearly,
the three algorithms differ in the manner in which the direction vectors are
computed. These three algorithms are appropriate when TM and RD are
known. However, this is not the case in adaptive filtering applications, as
we have previously indicated. In the absence of knowledge of TM and RD,
we may substitute estimates, V̂ (n), of the direction vectors in place of the
actual vectors, V (n). We consider this approach for the steepest-descent
algorithm.
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First, we note that the gradient vector given by (15.60) may also be
expressed in terms of the orthogonality conditions given by (15.50). In
fact, the conditions in (15.50) are equivalent to the expression

E
[
E(n)X∗

M (n)
]

= RD − TMhM (n) (15.65)

where XM (n) is the vector with elements X(n − �), � = 0, 1, . . . , M − 1.
Therefore, the gradient vector is simply

g(n) = −2E
[
E(n)X∗

M (n)
]

(15.66)

Clearly, the gradient vector g(n) = 0 when the error is orthogonal to the
data in the estimate D̂(n).

An unbiased estimate of the gradient vector at the nth iteration is
simply obtained from (15.66) as

ĝ(n) = −2E(n)X∗
M (n) (15.67)

where E(n) = D(n) − D̂(n) and XM (n) is the set of M signal samples in
the filter at the nth iteration. Thus, with ĝ substituted for g(n), we have
the algorithm

hM (n + 1) = hM (n) + ∆(n)E(n)X∗
M (n) (15.68)

where h(n) is now a vector random process with vector sample sequence
given by h(n). This is called a stochastic-gradient-descent algorithm. As
given by (15.68), it has a variable step size.

It has become common practice in adaptive filtering to use a fixed
step-size algorithm for two reasons. The first is that a fixed step-size al-
gorithm is easily implemented in either hardware or software. The second
is that a fixed step size is appropriate for tracking time-variant signal
statistics, whereas if ∆(n) → 0 as n → ∞, adaptation to signal variations
cannot occur. For these reasons, (15.68) is modified to the algorithm

hM (n + 1) = hM (n) + ∆ E(n)X∗
M (n) (15.69)

where ∆ is now the fixed step size. This algorithm was first proposed by
Widrow and Hoff [95] and is now widely known as the LMS (least-mean-
squares) algorithm. Clearly, it is a stochastic-gradient algorithm.

The LMS algorithm is relatively simple to implement. For this rea-
son, it has been widely used in many adaptive filtering applications. Its
properties and limitations have also been thoroughly investigated. In the
following section, we provide a brief treatment of its important properties
concerning convergence, stability, and the noise resulting from the use of
estimates of the gradient vectors. Subsequently, we compare its properties
with the more complex recursive least-squares algorithm.
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MATLAB Implementation The SP Toolbox does not provide any
function for implementing the LMS algorithm, although it is available
in the Communication Systems Toolbox and DSP Systems Toolbox as
an object in an object-oriented programming environment. This discus-
sion is beyond the scope of this book. In Section 11.1, we provided the
function [h,y] = lms(x,d,delta,M) that computes adaptive filter co-
efficients

{
h(n), 0 ≤ n ≤ M − 1

}
in array h given the input sequence{

x(n)
}
, the desired sequence

{
d(n)

}
, step size ∆, and the desired adaptive

FIR filter length M in respective arrays x, d, delta, and M. In addition,
the lms function provides the output

{
y(n)

}
of the adaptive filter in the

array y. It is given below again for easy reference.

function [h,y] = lms(x,d,delta,M)
% LMS Algorithm for Coefficient Adjustment
% ----------------------------------------
% [h,y] = lms(x,d,delta,N)
% h = estimated FIR filter
% y = output array y(n)
% x = input array x(n)
% d = desired array d(n), length must be same as x
% delta = step size
% M = length of the FIR filter
%
N = length(x); y = zeros(1,N);
h = zeros(1,M);
for n = M:N

x1 = x(n:-1:n-M+1);
y = h * x1’;
e = d(n) - y;
h = h + delta*e*x1;

end

Several variations of the basic LMS algorithm have been proposed
in the literature and implemented in adaptive filtering applications. One
variation is obtained if we average the gradient vectors over several itera-
tions prior to making adjustments of the filter coefficients. For example,
the average over K gradient vectors is

ĝ(nK) = − 2
K

K−1∑
k=0

E(nK + k)X∗
M (nK + k) (15.70)

and the corresponding recursive equation for updating the filter coeffi-
cients once every K iterations is

hM

(
(n + 1)K

)
= hM (nK) − 1

2
∆ĝ(nK) (15.71)
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824 Chapter 15 ADAPTIVE FILTERS

In effect, the averaging operation performed in (15.70) reduces the noise
in the estimate of the gradient vector, as shown by Gardner [20].

An alternative approach is to filter the gradient vectors by a lowpass
filter and use the output of the filter as an estimate of the gradient vector.
For example, a simple lowpass filter for the gradients yields as an output

V̂(n) = βV̂(n − 1) − ĝ(n), V(0) = −ĝ(0) (15.72)

where the choice of 0 ≤ β < 1 determines the bandwidth of the lowpass
filter. When β is close to unity, the filter bandwidth is small and the
effective averaging is performed over many gradient vectors. On the other
hand, when β is small, the lowpass filter has a large bandwidth and,
hence, it provides little averaging of the gradient vectors. With the filtered
gradient vectors given by (15.72) in place of ĝ(n), we obtain the filtered
version of the LMS algorithm, given by

hM (n + 1) = hM (n) +
1
2
∆V̂(n) (15.73)

An analysis of the filtered-gradient LMS algorithm is given in Proakis [78].

15.2.3 PROPERTIES OF THE LMS ALGORITHM
In this section, we consider the basic properties of the LMS algorithm
given by (15.69). In particular, we focus on its convergence properties, its
stability, and the excess noise generated as a result of using noisy gradient
vectors in place of the actual gradient vectors. The use of noisy estimates
of the gradient vectors implies that the filter coefficients will fluctuate
randomly, and, hence, an analysis of the characteristics of the algorithm
should be performed in statistical terms.

Convergence and Stability
The convergence and stability of the LMS algorithm may be investigated
by determining how the mean value of hM (n) converges to the optimum
coefficients hopt. If we take the expected value of (15.69), we obtain

hM (n + 1) = hM (n) + ∆ E
[
E(n)X∗

M (n)
]

= hM (n) + ∆[RD − TMhM (n)]

= (I − ∆ TM )hM (n) + ∆ RD (15.74)

where hM (n) = E
[
hM (n)

]
, and I is the identity matrix.

The recursive relation in (15.74) may be represented as a closed-loop
control system, as shown in Figure 15.36. The convergence rate and the
stability of this closed-loop system are governed by our choice of the step-
size parameter ∆. To determine the convergence behavior, it is convenient
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FIGURE 15.36 Closed-loop control system representation of recursive Equation
(15.74)

to decouple the M simultaneous difference equations given in (15.74), by
performing a linear transformation of the mean coefficient vector hM (n).
The appropriate transformation is obtained by noting that the autocor-
relation matrix TM is Hermitian and, hence, can be represented (see
Gantmacher [19]) as

TM = UΛUH (15.75)

where U is the normalized modal matrix of TM and Λ is a diagonal matrix
with diagonal elements λk, 0 ≤ k ≤ M −1, equal to the eigenvalues of TM .

When (15.75) is substituted into (15.74), the latter may be ex-
pressed as

h
o
M (n + 1) = (I − ∆Λ)h

o
M (n) + ∆Ro

D (15.76)

where the transformed (orthogonalized) vectors are h
o
M (n) = UHhM (n)

and Ro
D = UHRD. The set of M first-order difference equations in (15.76)

are now decoupled. Their convergence and their stability is determined
from the homogeneous equation

h
o
M (n + 1) = (I − ∆Λ)h

o
M (n) (15.77)

If we focus our attention on the solution of the kth equation in (15.77),
we observe that

h̄o(k, n) = C(1 − ∆λk)n
u(n), k = 0, 1, 2, . . . , M − 1 (15.78)

where C is an arbitrary constant and u(n) is the unit step sequence.
Clearly, h̄o(k, n) converges to zero exponentially, provided that

|1 − ∆λk| < 1

or equivalently,

0 < ∆ <
2
λk

, k = 0, 1, . . . , M − 1 (15.79)

The fastest convergence rate is obtained when ∆ = 1/λk.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



826 Chapter 15 ADAPTIVE FILTERS

The condition given by (15.79) for convergence of the homogeneous
difference equation for the kth normalized filter coefficient (kth mode
of the closed-loop system) must be satisfied for all k = 0, 1, . . . , M − 1.
Therefore, the range of values of ∆ that ensures the convergence of the
mean of the coefficient vector in the LMS algorithm is

0 < ∆ <
2

λmax
(15.80)

where λmax is the largest eigenvalue of TM .
Since TM is an autocorrelation matrix, its eigenvalues are nonnega-

tive. Hence an upper bound on λmax is

λmax <

M−1∑
k=0

λk = trace TM = M RXX(0) (15.81)

where RXX(0) is the input signal power, which is easily estimated from
the received signal. Therefore, an upper-bound on the step size ∆ is
2/MRXX(0).

From (15.78), we observe that rapid convergence of the LMS algo-
rithm occurs when |1 − ∆λk| is small, that is, when the poles of the
closed-loop system in Figure 15.36 are far from the unit circle. However, we
cannot achieve this desirable condition and still satisfy the upper bound
in (15.79) when there is a large difference between the largest and smallest
eigenvalues of TM . In other words, even if we select ∆ to be 1/λmax, the
convergence rate of the LMS algorithm will be determined by the decay
of the mode corresponding to the smallest eigenvalue λmin. For this mode,
with ∆ = 1/λmax substituted in (15.78), we have

h̄o
M (k, n) = C

(
1 − λmin

λmax

)n

u(n)

Consequently, the ratio λmin/λmax ultimately determines the convergence
rate. If λmin/λmax is small (much smaller than unity), the convergence will
be slow. On the other hand, if λmin/λmax is close to unity, the convergence
rate of the algorithm is fast.

� EXAMPLE 15.9 Choice of Step Size in LMS Algorithm
Let us simulate an adaptive equalizer based on the LMS algorithm. The channel
characteristic is given by the following sample values taken at the symbol rate:

x =
[
0.05, −0.063, 0.088, −0.126, −0.25, 0.9047, 0.25, 0, 0.126, 0.038, 0.088

]

The autocorrelation matrix for this channel has an eigenvalue spread of
λmax/λmin = 11. The number of taps selected for the FIR equalizer is M = 11.
The received signal-plus-noise power is normalized to unity. We wish to illus-
trate the convergence characteristics of the LMS algorithm for three different
values of the step-size, ∆ = 0.045, 0.09, and 0.115. The upper bound for
stability of the algorithm is ∆ = 0.18.
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Solution Figure 15.37 illustrates the convergence characteristics of the LMS algorithm
for the three values of ∆. These graphs, called learning curves, were obtained
by averaging the estimated MSE in 200 simulation runs. By selecting ∆ = 0.09
(one-half of the upper bound), we obtain a rapidly decaying convergence rate,
as shown in Figure 15.37. If we divide ∆ by 2 to 0.045, the convergence rate is
reduced, but the excess MSE is also reduced, so the algorithm performs better in
a time-invariant signal environment; that is, the estimated equalizer coefficients
are closer to their optimum values. The MATLAB script for this example is
given below.

N=500; % length of the information sequence
K=5;
actual_isi=[0.05 -0.063 0.088 -0.126 -0.25 0.9047 0.25 0 0.126 0.038 0.088];
sigma=0.01;
delta=0.115;
Num_of_realizations=1000;
mse_av=zeros(1,N-2*K);
info = zeros(1,N);
noise = zeros(1,N);
mse = zeros(1,N);
for j=1:Num_of_realizations, % Compute the average over a number of

% realizations.
% The information sequence
for i=1:N,

if (rand<0.5),
info(i)=-1;

else
info(i)=1;

end
echo off;

end;
% the channel output
y=filter(actual_isi,1,info);
for i=1:2:N, [noise(i), noise(i+1)]=gngauss(sigma); end;
y=y+noise;
% Now the equalization part follows.
estimated_c=[0 0 0 0 0 1 0 0 0 0 0]; % Initial estimate of ISI
for k=1:N-2*K,

y_k=y(k:k+2*K);
z_k=estimated_c*y_k.’;
e_k=info(k)-z_k;
estimated_c=estimated_c+delta*e_k*y_k;
mse(k)=e_kˆ2;
echo off;

end;
mse_av=mse_av+mse;

end;
mse_av=mse_av/Num_of_realizations; % mean-squared error versus iterations
% Plotting commands follow

�
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FIGURE 15.37 Initial convergence characteristics of the LMS algorithm with
different step sizes

� EXAMPLE 15.10 Choice of the Step Size ∆ in Steepest-Descent
Consider the quadratic performance index

J = h2 − 40h + 28

Suppose that we search for the minimum of J by using the steepest-descent
algorithm

h(n + 1) = h(n) − 1
2
∆g(n), n = 0, 1, . . .

where g(n) in the gradient.

a. Determine the range of values for ∆ that provide an overdamped system
for the adjustment process.

b. Plot the expression for J as a function of n for a value of ∆ in this range.

Solution a. The gradient in the performance index is

g(n) =
∂J

∂h(n)
= 2h(n) − 40
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Therefore, the steepest-descent algorithm is

h(n + 1) = h(n) − 1
2
∆g(n) = (1 − ∆)h(n) + 20∆

For an overdamped system,

|1 − ∆| < 1 ⇒ 0 < ∆ < 2

b. Figure 15.38(a) contains a plot of J(n) vs. n. The step size ∆ was set to 0.5
and the initial value of h was set to 0. In Figure 15.38(b), we have plotted
J(h(n)) vs. h(n). As it is observed from the figures the minimum value of J
which is −372, is reached within five iterations of the algorithm. �

Analysis of Excess Noise
The other important characteristic of the LMS algorithm is the noise
resulting from the use of estimates of the gradient vectors. The noise in the
gradient-vector estimates causes random fluctuations in the coefficients
about their optimal values and, thus, leads to an increase in the MMSE
at the output of the adaptive filter. Hence the total MSE is EM,min + E∆,
where E∆ is called the excess mean-square error.

For any given set of filter coefficients hM (n), the total MSE at the
output of the adaptive filter may be expressed as

Et(n) = EM,min + (hM (n) − hopt)
t
TM (hM (n) − hopt)∗ (15.82)

where hopt represents the optimum filter coefficients defined by (15.48).
A plot Et(n) as a function of the iteration n is called a learning curve. If
we substitute (15.75) for TM and perform the linear orthogonal transfor-
mation used previously, we obtain

Et(n) = EM,min +
M−1∑
k=0

λk

∣∣ho(k, n) − ho
opt(k)

∣∣2 (15.83)

where the term
(
ho(k, n) − ho

opt(k)
)

represents the error in the kth fil-
ter coefficient (in the orthogonal coordinate system). The excess MSE is
defined as the expected value of the second term in (15.83),

E∆ =
M−1∑
k=0

λkE
[∣∣ho(k, n) − ho

opt(k)
∣∣2] (15.84)

To derive an expression for the excess MSE E∆, we assume that the
mean values of the filter coefficients hM (n) have converged to their op-
timum values hopt. Then the term ∆ E(n)X∗

M (n) in the LMS algorithm
given by (15.69) is a zero-mean noise vector. Its covariance is

cov[∆ E(n)X∗
M (n)] = ∆2E

[∣∣E(n)
∣∣2]XM (n)XH

M (n)] (15.85)
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FIGURE 15.38 Convergence characteristics of J for Example 15.10
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To a first approximation, we assume that
∣∣E(n)

∣∣2 is uncorrelated with the
signal vector. Although this assumption is not strictly true, it simplifies
the derivation and yields useful results. (The reader may refer to Mazo
[65], Jones, Cabin, and Reed [40], and Gardner [20] for further discussion
on this assumption). Then

cov[∆ E(n)X∗
M (n)] = ∆2E

[∣∣E(n)
∣∣2]E[XM (n)XH

M (n)
]

= ∆2EM,minTM (15.86)

For the orthogonalized coefficient vector ho
M (n) with additive noise, we

have the equation

ho
M (n + 1) = (I − ∆Λ)ho

M (n) + ∆Ro
D + Wo(n) (15.87)

where Wo(n) is the additive noise vector, which is related to the noise
vector ∆E(n)X∗

M (n) through the transformation

Wo(n) = UH[∆ E(n)X∗
M (n)]

= ∆ E(n)UHX∗
M (n) (15.88)

It is easily seen that the covariance matrix of the noise vector is

cov[Wo(n)] = ∆2EM,minUHTMU

= ∆2EM,minΛ (15.89)

Therefore, the M components of Wo(n) are uncorrelated and each com-
ponent has the variance σ2

k = ∆2EM,minλk, k = 0, 1, . . . , M − 1.
Since the noise components of Wo(n) are uncorrelated, we may con-

sider the M uncoupled difference equations in (15.87) separately. Each
first-order difference equation represents a filter with impulse response
(1 − ∆λk)n. When such a filter is excited with a noise sequence Wo

k(n),
the variance of the noise at the output of the filter is

E
[∣∣ho(k, n) − ho

opt(k)
∣∣2

]
=

∞∑

n=0

∞∑

m=0

(1 − ∆ λk)n(1 − ∆ λk)mE
[
Wo

k(n)Wo∗
k (m)

]

(15.90)

We make the simplifying assumption that the noise sequence Wo
k(n) is

white. Then (15.90) reduces to

E
[∣∣ho(k, n) − ho

opt(k)
∣∣2] =

σ2
k

1 − (1 − ∆ λk)2
=

∆2EM,minλk

1 − (1 − ∆ λk)2
(15.91)

If we substitute the result of (15.91) into (15.84), we obtain the
expression for the excess MSE as

E∆ = ∆2EM,min

M−1∑
k=0

λ2
k

1 − (1 − ∆ λk)2
(15.92)
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This expression can be simplified if we assume that ∆ is selected such
that ∆λk � 1 for all k. Then

E∆ ≈ ∆2EM,min

M−1∑
k=0

λ2
k

2∆ λk

≈ 1
2
∆EM,min

M−1∑
k=0

λk ≈ ∆MEM,minRXX(0)
2

(15.93)

where RXX(0) is the power of the input signal.
The expression for E∆ indicates that the excess MSE is proportional

to the step-size parameter ∆. Hence our choice of ∆ must be based on a
compromise between fast convergence and a small excess MSE. In prac-
tice, it is desirable to have E∆ < EM,min. Hence

E∆

EM,min
≈ ∆MRXX(0)

2
< 1

or equivalently,

∆ <
2

MRXX(0)
(15.94)

But this is just the upper bound that we had obtained previously for λmax.
In steady-state operation, ∆ should satisfy the upper bound in (15.94),
otherwise the excess MSE causes significant degradation in the perfor-
mance of the adaptive filter.

� EXAMPLE 15.11 Use of LMS Algorithm in System Identification
Use the LMS algorithm to estimate the impulse response of the two-pole system
given in Example 15.1. Initially, set h(k) = 0 for 0 ≤ k ≤ M − 1. The variance
of W(n) is σ2

W = 0.02 and the variance of X(n) is σ2
X = 1. Select the step

size ∆ in the LMS algorithm to satisfy (15.94). Carry out the simulation for
0 ≤ n ≤ 1000.

a. After 1000 iterations, plot and compare the impulse response of the two
pole filter with that of the FIR filter model. Also plot and compare the
frequency response of the unknown system with that of the model.

b. Compare the results in part (a) with the results obtained in part (c) of
Example 15.1.

Solution The adaptive filter order from Example 15.1 is M = 15. Since σ2
X = 1, the signal

power is also RXX(0) = 1. Hence from (15.94), the upper bound on the step size
is ∆ = 0.1333. We chose the value of ∆ = 0.05, which gives good convergence
and stability.
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a. MATLAB script:

>> varW = 0.02; varX = 1; % Noise and signal variances
>> N = 1000; n = 0:N; % Number of samples and indices
>> p = 0.8*exp(1j*pi/4); % Pole location
>> a = [1,-2*real(p),abs(p)ˆ2]; % Plant denominator coeff
>> M = 15; % FIR filter model order
>> xn = sqrt(varX)*randn(N+1,1); % Input sequence
>> wn = sqrt(varW)*randn(N+1,1); % Noise sequence
>> dn = filter(1,a,xn); % Output of the plant
>> yn = dn+wn; % Noisy plant output
>> % FIR filter model coefficients using LMS algorithm
>> delta = 0.05; %2/(M*varX)=0.1333;
>> [hm,yhatn] = lms(xn.’,yn,delta,M);
>> hp = impz(1,a,M+5); % Plant impulse response
>> % Plots of the impulse and frequency responses
>> om = linspace(0,1,1001)*pi;
>> Hm = freqz(hm,1,om); Hm_mag = abs(Hm); Hm_pha = angle(Hm)/pi;
>> Hp = freqz(1,a,om); Hp_mag = abs(Hp); Hp_pha = angle(Hp)/pi;
>> % Plotting commands follow

The resulting plots are shown in Figure 15.39. After 1000 iterations, the model
coefficients seem to converge to the plant coefficients with very small residual
noise. This is also evident in the frequency response plots. The peak of the
model magnitude response is at the correct location but the overall response
exhibit the effects of FIR truncation and residual noise.

b. Here, we compare the model coefficients and its frequency response obtained
using the LS method and the LMS algorithm.

>> varW = 0.02; varX = 1; % Noise and signal variances
>> N = 1000; n = 0:N; % Number of samples and indices
>> p = 0.8*exp(1j*pi/4); % Pole location
>> a = [1,-2*real(p),abs(p)ˆ2]; % Plant denominator coeff
>> M = 15; % FIR filter model order
>> xn = sqrt(varX)*randn(N+1,1); % Input sequence
>> wn = sqrt(varW)*randn(N+1,1); % Noise sequence
>> dn = filter(1,a,xn); % Output of the plant
>> yn = dn+wn; % Noisy plant output
>> % FIR filter model coefficients using LS method
>> [rxx] = xcorr(xn,M-1); % ACRS of x(n)
>> Rxx = toeplitz(rxx(M:end)); % ACRM of x(n)
>> ryx = xcorr(yn,xn,M-1); % CCRS between y(n) and x(n)
>> ryx = ryx(M:end); % CCRV
>> hls = Rxx\ryx; % Model coeff (or Imp resp)
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FIGURE 15.39 Plots of the impulse and frequency responses of the plant and
FIR model obtained using the LMS algorithm in Example 15.11(a). The dotted
lines represent phase responses

>> % Plots of the impulse and frequency responses
>> om = linspace(0,1,1001)*pi;
>> Hls = freqz(hls,1,om); Hls_mag = abs(Hls); Hls_pha = angle(Hls)/pi;
>> % Plotting commands follow

The resulting plots are shown in Figure 15.40. Observe that the impulse response
coefficients and the frequency responses obtained using LMS algorithm show the
effects of excess noise especially at high frequencies. �

� EXAMPLE 15.12 Use of LMS Algorithm in Channel Equalization
Consider the system configuration shown in Example 15.2. For M = 7 and
D = 10, generate the output sequence â(n) and discard the first 10 output
samples to compensate for the transient in the system. Thus â(11) corresponds
to a(1), â(12) corresponds to a(2), and so on. Use the LMS algorithm to adjust
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FIGURE 15.40 Comparison of FIR models obtained using the LS method and the
LMS algorithm in Example 15.11(b). The dotted lines represent phase responses

the equalizer filter coefficients h(k), 0 ≤ k ≤ 6. Carry out the simulation for
n = 1000 samples and stop.

a. Plot the frequency response of the channel filter C(z), the equalizer filter
H(z), and the frequency response of the cascade filter C(z)H(z). Comment
on the results.

b. Compare the results in part (a) with the results in Example 15.2, part (c),
which were obtained from the least-squares criterion.

Solution Various signals and the model coefficients using the LMS algorithm are com-
puted using the following MATLAB script.

>> z0 = 0.8*exp(1j*pi/4); % Zero of C(z)
>> Cb = [1,-2*real(z0),abs(z0)ˆ2]; % Numerator of C(z) or imp resp
>> N = 1000; n = 0:N-1; % Length and timing indices for sequences
>> varW = 0.1; % Variance of the additive noise
>> % Generation of Sequences a(n), x(n), and d(n)
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>> M = 7; % FIR equalizer length
>> D = 10; % Overall delay in processing
>> an = 2*randi([0,1],N,1)-1; % Pseudorandom symbol sequence
>> yn = filter(Cb,1,an); % Distorted symbol sequence
>> wn = sqrt(varW)*randn(N,1); % Additive noise sequence
>> xn = yn+wn; % Noisy distorted symbols
>> dn = [zeros(D,1);an(1:N)]; % Desired symbols (delayed)
>> % FIR equalizer coefficients using LMS algorithm
>> [rxx,lags] = xcorr(xn,M-1,’unbiased’); % ACRS of x(n)
>> delta = 0.05; %2/(M*rxx(M))=0.1012;
>> [heq,ahatn] = lms(xn.’,dn(D+1:end),delta,M);

a. MATLAB script:

>> om = linspace(0,1,1001)*pi;
>> Heq = freqz(heq,1,om);
>> Heq_mag = abs(Heq); Heq_pha = angle(Heq)/pi;
>> Cz = freqz(Cb,1,om);
>> Cz_mag = abs(Cz); Cz_pha = angle(Cz)/pi;
>> CzHeq = Cz.*Heq;
>> CzHeq_mag = abs(CzHeq); CzHeq_pha = angle(CzHeq)/pi;

The resulting plots are shown in Figure 15.41. The magnitude response of the
product filter is close to unity, with a small variation over the entire band due to
excess noise characteristics of the LMS algorithm. Overall, the LMS equalizer
provides an adequate performance.

b. Comparison of Figure 15.9 for the LS method and Figure 15.41 shows that the
two equalizer performances are similar over the entire band with LS equalizer
showing a smoother frequency response. �

� EXAMPLE 15.13 Use of LMS Algorithm in Echo Cancellation
Consider the echo cancellation system given in Example 15.3. Using the same
system parameters as in Example 15.3, use the LMS algorithm to adapt the
coefficients of the echo canceller by running the simulation for 1000 samples.

a. Compare the coefficients of the echo canceller with the echo coefficients
c(k), 0 ≤ k ≤ 4, and comment on the results.

b. Compare the results obtained with the LMS algorithm with the results
obtained by use of the least-squares method used in Example 15.3.

Solution From Example 15.3 the system parameters are.

>> c = [-0.25,-0.5,0.75,0.36,0.25]; % Echo coefficients>>
>> N = 1000; n = 0:N; % Length and timing indices
>> varW = 0.1; % Additive noise variance
>> an = 2*randi([0,1],N+1,1)-1; % Pseudorandom symbol sequence at Modem-A
>> bn = 2*randi([0,1],N+1,1)-1; % Pseudorandom symbol sequence at Modem-B
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FIGURE 15.41 MATLAB plot in Example 15.12(a)

a. The upper limit for the step size from (15.94) for this case is 0.2. However,
good convergence and stability results for 1000 iterations were obtained using
∆ = 0.01.

>> sAn = filter(c,1,an); % Echo signal sequence at modem-A
>> wn = sqrt(varW)*randn(N+1,1); % Additive noise sequence
>> yn = bn + sAn + wn; % Received signal at Modem-A
>> M = 10; % FIR echo canceller order
>> [raa,lags] = xcorr(an,M-1,’unbiased’); % ACRS of a(n)
>> delta = 0.01; %2/(M*raa(M))=0.2;
>> [hec,Sahatn] = lms(an.’,yn,delta,M);
>> hec(1:5)
hec =

-0.2988 -0.5861 0.7469 0.3010 0.2272

The resulting echo canceller coefficients are reasonable but noisy after 1000
iterations.
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b. The corresponding echo canceller coefficients using the LS method from Exam-
ple 15.3 were

>> hec’
ans =

-0.2540 -0.4982 0.7943 0.3285 0.2291

which were closer to the original echo canceller coefficients. This shows again
that the LMS algorithm does produce noisy yet usable results. �

� EXAMPLE 15.14 Use of LMS Algorithm in Suppression of Narrowband Interference
Consider the system configuration for the suppression of narrowband interfer-
ence given in Example 15.4. Using the same system parameters as in Exam-
ple 15.4, use the LMS algorithm to adapt the coefficients of the linear predictor
by running the simulation for 1000 iterations.

a. As in part (b) of Example 15.4, compute and plot the frequency response
of the prediction-error filter and, thus, verify that this filter is a notch filter
that suppresses the narrow band interference.

b. Compare the results obtained with the LMS algorithm with the results
obtained by use of the least-squares method used in Example 15.4.

Solution The signals x(n) and v(n) are generated using

>> i = (0:100)’; fi = 0.1*i/100; thetai = 2*pi*rand(length(i),1);
>> A = 1; N = 1000; n = 0:N;
>> xn = sum(A*cos(2*pi*fi*n+thetai*ones(1,N+1))); xn = xn’;
>> varW = 1; wn = sqrt(varW)*randn(N+1,1);
>> vn = xn+wn;
>> [rvv] = xcorr(vn,M-1+D,’unbiased’);

The upper limit for the step size from (15.94) for this case using rvv(0) is
0.0025. However, for the LMS algorithm the value of ∆ = 0.001 was selected
and coefficients of the predictor were computed after 1000 iterations.

>> M = 15; D = 1;
>> delta = 0.001; %2/(M*rvv(M))=0.0025;
>> [h,xhatn] = lms(vn(1:N-D).’,vn(D:N),delta,M);

a. The coefficients of the prediction-error filter and its frequency response were
computed using the following MATLAB script.

>> h1 = zeros(M+D,1); h1(1) = 1;
>> h1(D+1:D+M) = -h;
>> f = linspace(0,1,1001)*0.5;
>> H1 = freqz(h1,1,2*pi*f);
>> H1db = 20*log10(abs(H1)/max(abs(H1)));
>> % Plotting commands follow

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Adaptive Direct-Form FIR Filters 839

Normalized Frequency f 
0 0.1 0.5

D
ec

ib
el

s

–60

–50

–40

–30

–20

–10

0

Log-Magnitude Response of Prediction-Error Filter: A=1

FIGURE 15.42 Log-magnitude response of the prediction-error filter using the
LMS algorithm in Example 15.14(a)

The resulting plot is shown in Figure 15.42. Although the filter creates a notch of
more than 15 dB in the band of interfering signal, the passband has undesirable
ripple. In this case, LMS algorithm seems to perform barely well.

b. Comparing Figure 15.20 for the LS method with Figure 15.42 for the LMS
algorithm it is clear that the LMS algorithm is effectve in suppressing the nar-
rowband interference, but its overall performance is not as good as that of the
LS method. �

Discussion
The preceding analysis of the excess MSE is based on the assumption that
the mean values of the filter coefficients have converged to the optimum
solution hopt. Under this condition, the step size ∆ should satisfy the
bound in (15.94). On the other hand, we have determined that conver-
gence of the mean coefficient vector requires that ∆ < 2/λmax. While a
choice of ∆ near the upper bound 2/λmax may lead to initial convergence
of the deterministic (known) gradient algorithm, such a large value of ∆
will usually result in instability of the stochastic-gradient LMS algorithm.

The initial convergence or transient behavior of the LMS algorithm
has been investigated by several researchers. Their results clearly indicate
that the step size must be reduced in direct proportion to the length
of the adaptive filter, as in (15.94). The upper bound given in (15.94)
is necessary to ensure the initial convergence of the stochastic-gradient
LMS algorithm. In practice, a choice of ∆ < 1/MRXX(0) is usually made.
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Gitlin and Weinstein [24] and Ungerboeck [93] contain an analysis of the
transient behavior and the convergence properties of the LMS algorithm.

In a digital implementation of the LMS algorithm, the choice of
the step-size parameter becomes even more critical. In an attempt to
reduce the excess MSE, it is possible to reduce the step-size parame-
ter to the point at which the total output MSE actually increases. This
condition occurs when the estimated gradient components e(n)x∗(n − �),
� = 0, 1, M − 1, after multiplication by the small step-size parameter ∆,
are smaller than one-half of the least significant bit in the fixed-point
representation of the filter coefficients. In such a case, adaptation ceases.
Consequently, it is important for the step size to be large enough to bring
the filter coefficients in the vicinity of hopt. If it is desired to decrease
the step size significantly, it is necessary to increase the precision in the
filter coefficients. Typically, 16 bits of precision may be used for the filter
coefficients, with the 12 most significant bits used for arithmetic opera-
tions in the filtering of the data. The 4 least significant bits are required
to provide the necessary precision for the adaptation process. Thus the
scaled, estimated gradient components ∆e(n)x∗(n− �) usually affect only
the least significant bits. In effect, the added precision also allows for the
noise to be averaged out, since several incremental changes in the least
significant bits are required before any change occurs in the upper, more
significant bits used in arithmetic operations for filtering of the data. For
an analysis of round-off errors in a digital implementation of the LMS
algorithm, the reader is referred to Gitlin and Weinstein [24], Gitlin et al.
[25], and Caraiscos and Liu [4].

As a final point, we should indicate that the LMS algorithm is appro-
priate for tracking slowly time-variant signal statistics. In such a case, the
minimum MSE and the optimum coefficient vector will be time-variant.
In other words, EM,min is a function of time, and the M -dimensional error
surface is moving with the time index n. The LMS algorithm attempts to
follow the moving minimum EM,min in the M -dimensional space, but it is
always lagging behind due to its use of (estimated) gradient vectors. As a
consequence, the LMS algorithm incurs another form of error, called the
lag error, whose mean-square value decreases with an increase in the step
size ∆. The total MSE can now be expressed as

Etotal = EMmin + E∆ + El (15.95)

where El denotes the MSE due to the lag.
In any given nonstationary adaptive filtering problem, if we plot the

E∆ and El as a function of ∆, we expect these errors to behave as illus-
trated in Figure 15.43. We observe that E∆ increases with an increase in
∆, whereas El decreases with an increase in ∆. The total error will ex-
hibit a minimum, which will determine the optimum choice of the step-size
parameter.
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When the statistical time variations of the signals occur rapidly, the
lag error will dominate the performance of the adaptive filter. In such a
case, El � EMmin +E∆, even when the largest possible value of ∆ is used.
When this condition occurs, the LMS algorithm is inappropriate for the
application and one must rely on the more complex recursive least-squares
algorithms described in Section 15.2.4 to obtain faster convergence and
tracking.

15.2.4 RECURSIVE LEAST-SQUARES ALGORITHMS
FOR DIRECT-FORM FIR FILTERS

The major advantage of the LMS algorithm lies in its computational sim-
plicity. However, the price paid for this simplicity is slow convergence,
especially when the eigenvalues of the autocorrelation matrix TM have a
large spread—that is, when λmax/λmin � 1. From another point of view,
the LMS algorithm has only a single adjustable parameter for controlling
the convergence rate—namely, the step-size parameter ∆. Since ∆ is lim-
ited for purposes of stability to be less than the upper-bound in (15.94),
the modes corresponding to the smaller eigenvalues converge very slowly.

To obtain faster convergence, it is necessary to devise more complex
algorithms, which involve additional parameters. In particular, if the cor-
relation matrix TM has unequal eigenvalues λ0, λ1, . . . , λM−1, we should
use an algorithm that contains M parameters, one for each of the eigenval-
ues. In deriving more rapidly converging adaptive filtering algorithms, we
adopt the least-squares criterion instead of the statistical approach based
on the MSE criterion. Thus we deal directly with the data sequence x(n)
and obtain estimates of correlations from the data.
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It is convenient to express the least-squares algorithms in matrix form,
in order to simplify the notation. Since the algorithms will be recursive in
time, it is also necessary to introduce a time index in the filter-coefficient
vector and in the error sequence. Hence we define the filter-coefficient
vector at time n as

hM (n) =

⎡
⎢⎢⎢⎢⎢⎣

h(0, n)
h(1, n)
h(2, n)

...
h(M − 1, n)

⎤
⎥⎥⎥⎥⎥⎦

(15.96)

where the subscript M denotes the length of the filter. Similarly, the input
signal vector to the filter at time n is denoted as

XM (n) =

⎡
⎢⎢⎢⎢⎢⎣

x(n)
x(n − 1)
x(n − 2)

...
x(n − M + 1)

⎤
⎥⎥⎥⎥⎥⎦

(15.97)

We assume that x(n) = 0 for n < 0. This is usually called prewindowing
of the input data.

The recursive least-squares problem may now be formulated as fol-
lows. Suppose that we have observed the vectors XM (�), � = 0, 1, . . . , n,
and we wish to determine the filter-coefficient vector hM (n) that
minimizes the weighted sum of magnitude-squared errors

EM =
n∑

�=0

wn−�
∣∣eM (�, n)

∣∣2 (15.98)

where the error is defined as the difference between the desired sequence
d(�) and the estimate d̂(�, n),

eM (�, n) = d(�) − d̂(�, n)

= d(�) − ht
M (n)XM (�) (15.99)

and w is a weighting factor in the range 0 < w ≤ 1.
The purpose of the factor w is to weight the most recent data points

more heavily and, thus, allow the filter coefficients to adapt to time-
varying statistical characteristics of the data. This is accomplished by
using the exponential weighting factor with the past data. Alternatively,
we may use a finite-duration sliding window with uniform weighting over
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the window length. We find the exponential weighting factor more conve-
nient, both mathematically and practically. For comparison, an exponen-
tially weighted window sequence has an effective memory of

N =
∑∞

n=0 nwn

∑∞
n=0 wn

=
w

1 − w
(15.100)

and, hence, should be approximately equivalent to a sliding window of
length N .

The minimization of EM with respect to the filter-coefficient vector
hM (n) yields the set of linear equations

RM (n)hM (n) = DM (n) (15.101)

where RM (n) is the signal (estimated) correlation matrix defined as

RM (n) =
n∑

�=0

wn−�X∗
M (�)Xt

M (�) (15.102)

and DM (n) is the (estimated) cross-correlation vector

DM (n) =
n∑

�=0

wn−�X∗
M (�)d(�) (15.103)

The solution of (15.101) is

hM (n) = R−1
M (n)DM (n) (15.104)

Clearly, the matrix RM (n) is akin to the statistical autocorrelation
matrix TM , and the vector DM (n) is akin to the cross-correlation vector
Rd, defined previously. We emphasize, however, that RM (n) is not a
Toeplitz matrix, whereas TM is. We should also mention that for small
values of n, RM (n) may be ill conditioned, so that its inverse is not
computable. In such a case, it is customary to initially add the matrix
δIM to RM (n), where IM is an identity matrix and δ is a small positive
constant. With exponential weighting into the past, the effect of adding
δIM dissipates with time.

Now, suppose that we have the solution of (15.104) at time (n − 1)—
that is, we have hM (n−1) and we wish to compute hM (n). It is inefficient
and, hence, impractical to solve the set of M linear equations for each
new signal component. Instead, we may compute the matrix and vectors
recursively. First, RM (n) may be computed recursively as

RM (n) = wRM (n − 1) + X∗
M (n)Xt

M (n) (15.105)

We call (15.105) the time-update equation for RM (n).
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Since the inverse of RM (n) is needed, we use the matrix inversion
lemma (see Householder [32]),

R−1
M (n) =

1
w

[
R−1

M (n − 1) − R−1
M (n − 1)X∗

M (n)Xt
M (n)R−1

M (n − 1)
w + Xt

M (n)R−1
M (n − 1)X∗

M (n)

]

(15.106)
Thus R−1

M (n) may be computed recursively.
For convenience, we define PM (n) = R−1

M (n). It is also convenient
to define an M -dimensional vector KM (n), sometimes called the Kalman
gain vector, as

KM (n) =
1

w + µM (n)
PM (n − 1)X∗

M (n) (15.107)

where µM (n) is a scalar defined as

µM (n) = Xt
M (n)PM (n − 1)X∗

M (n) (15.108)

With these definitions, (15.106) becomes

PM (n) =
1
w

[
PM (n − 1) − KM (n)Xt

M (n)PM (n − 1)
]

(15.109)

Let us postmultiply (15.109) by X∗
M (n). Then

PM (n)X∗
M (n) =

1
w

[PM (n−1)X∗
M (n)−KM (n)Xt

M (n)PM (n−1)X∗
M (n)]

=
1
w

{[
w + µM (n)

]
KM (n) − KM (n)µM (n)

}
= KM (n)

(15.110)

Therefore, the Kalman gain vector may also be defined as PM (n)X∗
M (n).

Now we may use the matrix inversion lemma to derive an equation
for computing the filter coefficients recursively. Since

hM (n) = PM (n)DM (n) (15.111)

and
DM (n) = wDM (n − 1) + d(n)X∗

M (n) (15.112)

we have, upon substitution of (15.109) and (15.112) into (15.104),

hM (n) =
1
w

[PM (n − 1) − KM (n)Xt
M (n)PM (n − 1)]

× [wDM (n − 1) + d(n)X∗
M (n)]

= PM (n − 1)DM (n − 1) +
1
w

d(n)PM (n − 1)X∗
M (n)

−KM (n)Xt
M (n)PM (n − 1)DM (n − 1)

− 1
w

d(n)KM (n)Xt
M (n)PM (n − 1)X∗

M (n)

= hM (n − 1) + KM (n)[d(n) − Xt
M (n)hM (n − 1)] (15.113)
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We observe that Xt
M (n)hM (n−1) is the output of the adaptive filter

at time n based on use of the filter coefficients at time n − 1. Since

Xt
M (n)hM (n − 1) = d̂(n, n − 1) ≡ d̂(n) (15.114)

and
eM (n, n − 1) = d(n) − d̂(n, n − 1) ≡ eM (n) (15.115)

it follows that the time-update equation for hM (n) may be expressed as

hM (n) = hM (n − 1) + KM (n)eM (n) (15.116)

or equivalently,

hM (n) = hM (n − 1) + PM (n)X∗
M (n)eM (n) (15.117)

To summarize, suppose we have the optimum filter coefficients
hM (n − 1), the matrix PM (n − 1), and the vector XM (n − 1). When
the new signal component x(n) is obtained, we form the vector XM (n)
by dropping the term x(n − M) from XM (n − 1) and adding the term
x(n) as the first element. Then the recursive computation for the filter
coefficients proceeds as follows.

1. Compute the filter output:

d̂(n) = Xt
M (n)hM (n − 1) (15.118)

2. Compute the error:

eM (n) = d(n) − d̂(n) (15.119)

3. Compute the Kalman gain vector:

KM (n) =
PM (n − 1)X∗

M (n)
w + Xt

M (n)PM (n − 1)X∗
M (n)

(15.120)

4. Update the inverse of the correlation matrix

PM (n) =
1
w

[PM (n − 1) − KM (n)Xt
M (n)PM (n − 1)] (15.121)

5. Update the coefficient vector of the filter

hM (n) = hM (n − 1) + KM (n)eM (n) (15.122)

The recursive algorithm specified by (15.118) through (15.122) is
called the direct form recursive least-squares (RLS) algorithm. It is ini-
tialized by setting hM (−1) = 0 and PM (−1) = 1/δIM , where δ is a small
positive number.
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The residual MSE resulting from the preceding optimization is

EM,min(n) =
n∑

�=0

wn−�
∣∣d(�)

∣∣2 − ht
M (n)D∗

M (n) (15.123)

From (15.122), we observe that the filter coefficients vary with time
by an amount equal to the error eM (n) multiplied by the Kalman gain
vector KM (n). Since KM (n) is an M -dimensional vector, each filter co-
efficient is controlled by one of the elements of KM (n). Consequently,
rapid convergence is obtained. In contrast, the time-update equation for
the coefficients of the filter adjusted by use of the LMS algorithm is

hM (n) = hM (n − 1) + ∆X∗(n)eM (n) (15.124)

which has only the single parameter ∆ for controlling the adjustment rate
of the coefficients.

� EXAMPLE 15.15 Comparison of Convergence Characteristics of LMS Algorithm with
RLS Algorithm
A major advantage of the direct form RLS algorithm over the LMS algorithm
is their faster convergence rate. This characteristic behavior is illustrated in
Figure 15.44, which shows the convergence rate of the LMS and direct form
RLS algorithm for an adaptive FIR channel equalizer of length M = 11. The
statistical autocorrelation matrix TM for the received signal has an eigenvalue
ratio λmax/λmin = 11. All the equalizer coefficients were initially set to zero.
The step size for the LMS algorithm was selected as ∆ = 0.02, which represents
a good compromise between convergence rate and excess MSE.

The superiority of the RLS algorithm in achieving faster convergence is
clearly evident. The algorithm converges in less than 70 iterations (70 signal
samples), while the LMS algorithm has not converged in over 600 iterations.
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FIGURE 15.44 Learning curves for RLS and LMS algorithms for adaptive equal-
izer of length M = 11. The eigenvalue spread of the channel is λmax/λmin = 11.
The step size for the LMS algorithm is ∆ = 0.02
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This rapid rate of convergence of the RLS algorithm is extremely important
in applications in which the signal statistics vary rapidly with time. For exam-
ple, the time variations of the characteristics of an ionospheric high frequency
(HF) radio channel are too rapid to be adaptively followed by the LMS algo-
rithm. However, the RLS algorithm adapts sufficiently fast to track such rapid
variations (Hsu [33]). �

The LDU Factorization and Square-Root Algorithms. The RLS
algorithm is very susceptible to round-off noise in an implementation of
the algorithm with finite-precision arithmetic. The major problem with
round-off errors occurs in the updating of PM (n). To remedy this problem,
we may perform a decomposition of either the correlation matrix RM (n)
or its inverse PM (n). There are several possible decompositions that can
be used to reduce the sensitivity to round-off errors. To be specific, let us
consider an LDU decomposition of PM (n). We may write

PM (n) = LM (n)D̄M (n)LH
M (n) (15.125)

where LM (n) is a lower-triangular matrix with elements lik, D̄M (n) is
a diagonal matrix with elements δk, and LH

M (n) is an upper-triangular
matrix. The diagonal elements of LM (n) are set to unity (i.e., lii = 1).
Now, instead of computing PM (n) recursively, we can determine a formula
for updating the factors LM (n) and D̄M (n) directly, thus avoiding the
computation of PM (n).

The desired update formula is obtained by substituting the factored
form of PM (n) into (15.121) and using (15.107). Thus we have

LM (n)D̄M (n)LH
M (n)

=
1
w

LM (n−1)
[
D̄M (n−1)− 1

w+µM (n)
VM (n − 1)V H

M (n − 1)
]
LH

M (n−1)

(15.126)

where, by definition,

VM (n − 1) = D̄M (n − 1)LH
M (n − 1)X∗

M (n) (15.127)

The term inside the brackets in (15.126) is a Hermitian matrix and may
be expressed in an LDU factored form as

L̂M (n − 1)D̂M (n − 1)L̂H
M (n − 1)

= D̄M (n − 1) − 1
w + µM (n)

VM (n − 1)V H
M (n − 1) (15.128)

Then, if we substitute (15.128) into (15.126), we obtain

LM (n)D̄M (n)L̂H
M (n)

=
1
w

[LM (n − 1)L̂M (n − 1)D̂M (n − 1)L̂H
M (n − 1)LH

M (n − 1)]

(15.129)
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Consequently, the desired update relations are

LM (n) = LM (n − 1)L̂M (n − 1)

D̄M (n) =
1
w

D̂M (n − 1)
(15.130)

The resulting algorithm, obtained from the time-update equations
in (15.130), depends directly on the data vector XM (n) and not on the
“square” of the data vector. Thus the squaring operation of the data
vector is avoided, and, consequently, the effect of round-off errors is sig-
nificantly reduced.

The RLS algorithms obtained from an LDU decomposition of either
RM (n) or PM (n) are called square-root RLS algorithms. Bierman [2],
Carlson and Culmone [5], and Hsu [33] treat these types of algorithms. A
square-root RLS algorithm based on the LDU decomposition of PM (n),
as just described, is given in Table 15.1. Its computational complexity is
proportional to M2.

TABLE 15.1 LDU form of square-root RLS algorithm

for j = 1, . . . , 2, . . . , M do
fj = x∗

j (n)
end loop j

for j = 1, 2, . . . , M − 1 do
for i = j + 1, j + 2, . . . , M do

fj = fj + lij(n − 1)fi

end loop j

for j = 1, 2, . . . , M do
d̄j(n) = dj(n − 1)/w
vj = d̄j(n)fi

end loop j

αM = 1 + vMf∗
M

dM (n) = d̄M (n)/αM

k̄M = vM

for j = M − 1, M − 2, . . . , 1 do
k̄j = vj

αj = αj+1 + vjf
∗
j

λj = fj/αj+1

dj(n) = d̄j(n)αj+1/α1

for i = M , M − 1, . . . , j + 1 do
lij(n) = lij(n − 1) + k̄∗

i λj

k̄i = k̄i + vj l
∗
ij(n − 1) down to j = 2)

end loop i
end loop j

K̄M (n) = [k̄1, k̄2, . . . , k̄M ]t

eM (n) = d(n) − d̄(n)

hM (n) = hM (n − 1) + [eM (n)/α1]K̄M (n)
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15.3 SUMMARY AND REFERENCES

We have presented adaptive algorithms for direct form FIR filter struc-
tures. The algorithms for the direct form FIR filter consisted of the simple
LMS algorithm due to Widrow and Hoff [95] and the direct form, time-
recursive least-squares algorithms, including the conventional RLS form
given by (15.118–15.122), and the square-root RLS forms described by
Bierman [2], Carlson and Culmone [5], and Hsu [33].

Of these algorithms, the LMS algorithm is the simplest. It is used in
many applications where its slow convergence is adequate. Of the direct
form RLS algorithms, the square-root algorithms have been used in ap-
plications where fast convergence is required. The algorithms have good
numerical properties.

In the direct form RLS algorithms, we used exponential weighting into
the past in order to reduce the effective memory in the adaptation process.
As an alternative to exponential weighting, we may employ finite-length
uniform weighing into the past. This approach leads to the class of finite-
memory RLS direct form algorithms described in Cioffi and Kalaith [7]
and Manolakis, Ling, and Proakis [62].
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properties of the LMS algorithm, 824–841
recursive least-squares algorithms, 841–848

Adaptive equalizers, 573
Adaptive filters, 573–585, 769–849

applications of, 769–815
arrays, 813–815
channel equalization, 582–585, 776–782
coefficient adjustment, 575–578
echo cancellation, 783–788
least-mean-square (LMS) algorithm, 575, 815
line enhancement, 582, 795–801
MATLAB implementation, 577–578
MATLAB scripts, 774, 781–782, 788, 797, 798,

799, 801, 804, 805, 806, 811–813
narrowband interference, suppression of,

579–582, 788–795
noise canceling, 801–807
sinusoidal interference, suppression of, 581–582
speech signals, linear predictive coding of,

807–813
system identification (modeling), 578–579,

771–776
wideband signals, 579–582, 788–795

Adaptive line enhancer (ALE), 795–801
Adaptive PCM and DPCM (ADPCM), 593–597
Adders, 213

Addition, signal operation, 25
Adjustable coefficients, 573
A/D quantization noise, 518–530. See also

Quantization
statistics of, 525
through digital filters, 527–530

afd butt function, 392
afd chb1 function, 398
afd elip function, 405
Aliasing formula, 81
Allpass filters, 381–382
Allpass function, 506
All-pole systems, estimation of poles in, 811–813
alpha function, 483
Amplitude response, 298
ampl-res function, 303
Analog filter design (AFD) tables, 370
Analog filters

Butterworth lowpass, 371, 385–390
Chebyshev lowpass, 371, 394–403
design equations, 390–391
elliptic lowpass, 403–406
frequency response, 298–301
IIR filter design, 370–457
MATLAB implementation, 387–390, 392–394,

396–403, 427–432
phase responses, 75–77
prototype responses, 385–407

Analog signals, 3–5, 80–97
aliasing formula, 81
band-limited, 82
cubic spine interpolation, 92
digital signal processing (DSP) compared to, 1–2
digital-to-analog (D/A) converters, 80–81
discrete-time Fourier analysis of, 59–102
first-order-hold (FOH) interpolation, 91–92, 94
impulse train conversion, 87
interpolation, 90–94
MATLAB implementation, 84–87, 92–97
reconstruction of, 87–92
sampling, 81–84
signal processing (ASP), 3–5
sinusoidal, 75
zero-order-hold (ZOH) interpolation, 90–91, 94

Analog-to-digital conversion (ADC), 80
analysis of A/D quantization noise, 518–530
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Analog-to-digital transformations, 407–427
bilinear transformations, 418–426
Butterworth lowpass filters, 371, 385–390
Chebyshev lowpass filters, 371, 394–403
design procedure, 390–391
elliptic lowpass filters, 403–406
impulse invariance transformations, 408–418
matched-z transformation, 426–427

Analysis
error, 182–183
of excess noise, 829–832

Analyzers, spectrum, 291
angle function, 63
Anticausal sequence, 106
Antisymmetric impulse response, 230
Applications of adaptive filters, 769–815

arrays, 813–815
channel equalization, 776–782
echo cancellation, 783–788
line enhancement, 795–801
MATLAB scripts, 774, 781–782, 788, 797, 798,

799, 801, 804, 805, 806, 811–813
narrowband interference, suppression of,

788–795
noise canceling, 801–807
speech signals, linear predictive coding of,

807–813
system identification (modeling), 771–776
wideband signals, 788–795

Approximate transition bandwidth, 312
Approximation error, 331
Approximation theory, 349
Arrays, adaptive, 813–815
Attenuation parameter A, 372
Auto-correlation, 647

power spectral density (PSD), 653–654
sequences, relationships, 695–700

Automatic gain control (AGC), 779
Autoregressive (AR) lattice structure, 734–736
Autoregressive moving average (ARMA) filter, 212

lattice-ladder filters, 737–743
Autoregressive moving average (ARMA) process,

692–695
Autoregressive (AR) process, 692
Average linear relationships, 635, 636
Average power, 647
Averages

joint statistical, 634–637
statistical, 618–619

B

Backward prediction-error filter, 732
Band-edge frequencies, 294
Band-limited signals, 82

reconstruction of, 89
sampling, 83

Bandpass filters, 339, 441
Bandpass process, 679–684
Bandstop filters, 441
Bartlett window, 314–315
Bayes rules, 630
beta function, 330
Biased format, 247–248
Bilateral z-transform, 103–107
bilinear function, 419, 420
Bilinear transformations, 408, 418–426
bin2dec function, 242
Binary digital communications, 609–610
Binary digits (bits), 240
Binary numbers, 252–253
Binary point, 248
Binary spread-spectrum communications, 612–613
Biquads, 214
bitcmp function, 243, 245
Bivariate Gaussian distribution, 637–641
Blackman window, 317
Block convolutions, 183–185

high-speed, 199
overlap-add method, 186

Bounded-input bounded-output (BIBO) stability,
40

Butterworth lowpass filters, 371, 385–390
bilinear transformation, 408, 418–426
design equations, 390–391
frequency-based transformation, 432–435
impulse invariance transformation, 408–418
MATLAB implementation, 387–390, 392–394

buttord function, 441

C

Cancellation
echo, 783–788, 836–838
noise, 801–807

cas2dir function, 219, 230
Cascade form, 214, 216–217, 562–564

finite-duration impulse response (FIR) filters,
228, 229–230

infinite-duration impulse response (IIR) filters,
214

casfiltr function, 218, 565
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Causal filters, 373
Causality, 40

linear time-invariant (LTI) system, 40
z-transform, 125–128

CCITT standard, 595
Ceiling function, 197
Central moments, 619
Central processing unit (CPU), 240
Channel equalization, 582–585, 776–782

least-mean-square (LMS) algorithm, 834–836
MATLAB scripts, 781–782, 835, 836

cheby1 function, 442
cheby2 function, 442
Chebyshev error, 344, 347
Chebyshev lowpass filters, 371, 394–403

MATLAB implementation, 396–397, 398–403
circevod function, 169
circonvt function, 177
Circular conjugate symmetry, 168
Circular convolution, 174–179
Circular-even components, 169
Circular folding, 166
Circular-odd components, 169
Circular shift of sequences, 171
cirshftt function, 172, 177
Closed-loop control systems, 825
Code division multiple access (CDMA), 611
Coefficients

adjustable, 573, 575–578
correlation, 637
finite-duration impulse response (FIR) filters,

707–715
lattice reflection, 707–715
optimum reflection, 715–716
prediction, 701
reflection, 702

Column vectors, 63, 119
Comb filters, 379–380
Commands, MATLAB controls and flow of, 11–13
Common form, 346
Communications, 586–613

adaptive delta modulation (ADM), 599–601
adaptive PCM and DPCM (ADPCM), 593–597
binary digital, 609–610
delta modulation, 597–601
differential PCM (DPCM), 590–593
linear predictive coding (LPC) of speech,

601–605
pulse-code modulation (PCM), 586–590
spread-spectrum, 611–613

Compander, 589
Complex conjugation property, 107

Complex exponential sequences, 24, 36,
74–75

Complex power spectral density (PSD), 656
Complex-valued exponential sequence, 24
Complex-valued mappings, 270
Computation

of cross-correlation, 660
of cross-spectral density (CSD), 660
of output mean function, 659–660
of power spectral density (PSD), 661–664

Conditional probability functions, 629–630
Conjugate-summary property, 65
Conjugation property, 68
Constant group delay, 297
Constant phase delay, 296
Continuous linear function, 298
Continuously variable slope delta modulation

(CVSD), 600
Continuous random variables, 616
Continuous-time Fourier transform (CTFT),

81, 86
Convergence of least-mean-square (LMS)

algorithm, 824–828
conv function, 43–44, 108, 435
conv m function, 108
Convolution, 40–47

block, 183–185
discrete Fourier transform (DFT), 174–179,

180–186
discrete-time Fourier transform (DTFT), 68
error analysis, 182–183
fast, 197–199
graphical, 42–43
high-speed, 197
high-speed block, 199
linear sum, 39–40
linear time-invariant (LTI) system, 38–40
MATLAB implementation of, 43–45, 47
overlap-add method, 186
periodic, 69
sequence correlation, 45–47

Correlation
coefficients, 637
concept of, 636
cross-correlation functions, 644
of sequences, 36, 45–47

cos function, 24–25
Covariance, 636

cross-covariance functions, 644
normalized, 637

cplxcomp function, 223
cplxpair function, 218, 223
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Cross-correlation, 36, 45–47. See also Correlation
computation of, 660
functions, 644

Cross-covariance functions, 644. See also
Covariance

Cross-spectral density (CSD), 654, 660
Cubic spine interpolation, 92
Cumulative distribution function (CDF), 616
Curves, learning, 827
Cutoff frequency, 310
cutoff function, 473

D

Dead band, 533
dec2bin function, 242, 243
dec3bin function, 245
Decibels (dB), 292
Decimal numbers, 251–252
decimate function, 467
Decimation

design specifications, 494–496
downsampling, 461–466
by a factor D, 461–470
ideal decimators, 466–470
integers, 490–496
MATLAB implementation, 462–466, 467–470,

491–493
Decimation-in-frequency (DIF-FFT), 188, 195
Decimation-in-time (DIT-FFT), 188, 193
Deconvolution, 109
Delay element, 213
Delta modulation (DM), 597–601, 807
Denominator polynomials, 105
Denormalized number, 254
Dense spectrum of signals, 159
Density, probability, 615
dfs function, 144, 156
dft function, 177
Difference equations, 47–53

digital filters, 52–53
frequency response, 76–80
homogeneous solution, 47
linear time-invariant (LTI) system, 47–53
MATLAB implementation of, 48–51
natural frequencies, 48
representation, 119
zero-state input and responses, 51–52
z-transform, 128–134

Differential PCM (DPCM), 590–593, 807
Differentiators, 341

Digital filters, 52–53, 291, 432
A/D quantization noise, 518–530, 525, 527–530
MATLAB analysis of, 520–525
MATLAB implementation of, 526–527, 528–530
round-off effects, 518–572, 530–557
truncation operation, 525–527

Digital resonators, 374–377
Digital signal processing (DSP), 1–21

analog signal processing (ASP) compared to, 3–4
analysis, 2–4
applications of, 18–20
echo generation, 18
echo removal, 19
MATLAB and, 1–2, 18–20
method of, 2–5
musical sound processing, 18
reverberation, 18, 20
signal filtering, 5

Digital sinusoidal oscillators, 382–384
Digital-to-analog conversion (DAC), 80–81
dir2cas function, 217, 223, 228, 230, 268
dir2par function, 221, 223
Direct form, 214–215

finite-duration impulse response (FIR) filters,
228, 229, 501–504

infinite-duration impulse response (IIR) filters,
214–215

MATLAB, 229
Direct-form realization, 558
Discontinuous function, 298
Discrete Fourier series (DFS), 141, 142–147

MATLAB implementation of, 143–146
matrix, 144
relation to the DTFT, 148
relation to z-transform, 146–147

Discrete Fourier transform (DFT), 64, 154–165
block convolutions, 183–185
circular conjugate symmetry, 168
circular convolution, 174–179
circular-even components, 169
circular folding, 166
circular-odd components, 169
circular shift of sequences, 171
decimation-in-frequency (DIF-FFT), 195
decimation-in-time (DIT-FFT), 193
dense spectrum of signals, 159
divide-and-combine approach, 190–193
DTFT interpolation formula, 152–153
energy spectrum, 180
error analysis, 182–183
fast convolutions, 197–199
fast Fourier transform (FFT), 187–199
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frequency-domain approach, 177
goal of efficient computation, 187–190
high-density spectrum, 162
high-resolution spectrum, 162
high-speed block convolutions, 199
linear convolution using, 180–186
MATLAB implementation of, 143–146, 153,

156–165, 185–186, 195–197
matrix, 156
merging formula, 193
N-point sequence, 154
Nyquist component, 169
overlap-add method, 186
periodic conjugate symmetry, 168
periodic shift of sequences, 172
power spectrum, 180
properties of, 165–180
radix-2 FFT algorithm, 193–196
rectangular window, 150
relation to z-transform, 146–147
sampling, 149–152
time-domain approach, 176
twiddle factor, 191
zero-padding operation, 159
z-transform reconstruction formula, 152

Discrete random variables, 616
Discrete-time filters, 212–290

adder, 213
basic elements of, 213
delay element, 213
error characteristics, 255–262
filter coefficients, 262–277
finite-precision numerical effects, 239–240
FIR systems, 228–239
IIR systems, 214–228
MATLAB implementation of, 216, 217, 221–228,

229, 230–233, 234–239, 242, 245, 247
multipliers (gain), 213
pole-zero locations, 262–269
quantization and, 255–277
representation of numbers, 240–255

Discrete-time Fourier transform (DTFT), 59–67
analog signals, 80–97
arbitrary sequences, 75–76
column vectors, 63
complex exponential sequences, 74–75
conjugate-summary property, 65
conjugation property, 68
convolution, 68
discrete Fourier series (DFS) relation to, 148
energy density spectrum, 69
energy property, 69

finite-duration causal sequence, 121
folding property, 68, 72
frequency response, 74
frequency shifting property, 68, 70
interpolation formula, 152–153
inverse discrete-time Fourier transform

(IDTFT), 60
linearity property, 67
linear time-invariant (LTI) systems, 74–80
MATLAB implementation of, 61–66
matrix-vector multiplication operation, 62
multiplication property, 69
periodicity property, 61
properties, 60–61, 67–73
sequences, 66–67
sinusoidal sequences, 75
symmetries in real sequences, 68
symmetry property, 61, 66
time shifting property, 68

Discrete-time LTI systems, 664–668
Discrete-time Markov process, 674–675
Discrete-time signals, 22–36

complex-valued exponential sequence, 24
correlation of sequences, 36
even and odd synthesis, 34–36
exponential sequences, 24, 51
finite-duration sequence, 43
geometric series, 36, 41
infinite-duration sequence, 23
MATLAB representations, 23
number sequence, 22
operations on sequences, 25–32
periodic sequence, 25
random sequences, 25
real-valued exponential sequence, 24
sequences, 22–36
sinusoidal sequence, 24–25
unit sample sequence, 23
unit sample synthesis, 34–36
unit step sequence, 23–24

Discrete-time systems, 36–40
convolution, 40–47
difference equations, 47–53
digital filters, 52–53
excitation, 36
linear, 37–40
linear time-invariant (LTI) system, 38, 40, 52
MATLAB implementation for, 43–45
response, 51–52
sequence correlation, 45–47
zero-state input and responses, 51–52

Discrete-time white noise process, 672–674
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Distribution
Gaussian. See Gaussian distribution
sinusoidal, 623–625
uniform, 620–621

Divide-and-combine approach, 190–193
Dot-product, 19
downsample function, 462
dtft function, 64
Dual-tone multifrequency (DTMF) signals,

605–609

E

Echo cancellation, 783–788
least-mean-square (LMS) algorithm, 836–838
MATLAB scripts, 788, 836, 837

Echo cancellers, 784, 785, 787
modems, 786
Nyquist rates, 786

Echo generation, 18
Echo suppressors, 784
edges function, 617
ellip function, 442, 677, 680
Elliptic filters, 371
Elliptic lowpass filters, 403–406

MATLAB implementation, 404–406
Empirical design functions, 318
Energy

density spectrum, 69
property, 69
signals, 28
spectrum, 180

Equalization, channel, 582–585, 776–782
Equalizers, adaptive, 573
Equations

difference, 47–53
normal, 705, 717–730
order-recursive, 703
Weiner-Hopf, 745

Equiripple filters, 344–360
constraint of extrema, 348–350
MATLAB implementation, 351–360
minimax problem, 344–348
Parks-McClellan algorithm, 350–351
responses, 394

Ergodicity, 646–648
Errors

analysis, 182–183
discrete-time filters, 255–262
functions, 621
interpolation, 459

Estimation of the mean, 625–627

etime function, 195
Even and odd synthesis, 34–36
evenodd function, 72
Exact transition bandwidth, 313
Excess noise, analysis of, 829–832
Excitation, 36
Exponential sequences, 24, 51

complex, 24, 36
geometric series, 36
real-valued, 24

Extraripple filters, 350
Extrema, 344

constraint of, 348–350

F

Far-end echo, 784
Fast convolutions, 197–199
Fast Fourier transform (FFT), 64, 142, 187–199

ceiling function, 197
decimation-in-frequency (DIF-FFT), 188, 195
decimation-in-time (DIT-FFT), 188, 193
divide-and-combine approach, 190–193
dot-product, 19
fast convolutions, 197–199
goal of efficient computation, 187–190
high-speed block convolutions, 199
high-speed convolution, 197
MATLAB implementation of, 195–197
merging formula, 193
radix-2 FFT algorithm, 193–196
twiddle factor, 191

fftfilt function, 199
Filter coefficients

discrete-time filters, 262–277
finite-duration impulse response (FIR) filters,

274–277
infinite-duration impulse response (IIR) filters,

262–274
MATLAB implementation, 266–269

Filtered noise process, 676–684
bandpass process, 679–684
lowpass process, 676–679
MATLAB implementation of, 682

filter function, 121, 131, 219, 579, 592
Filters

adaptive, 769–849
adaptive direct-form FIR, 815–848
allpass filters, 381–382
analog-to-digital filter transformations, 407–427
autoregressive moving average (ARMA), 212
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bandpass, 339, 441
bandstop, 441
Butterworth lowpass, 371, 385–390
causal, 373
Chebyshev, 371
Chebyshev lowpass, 394–403
comb filters, 379–380
design equations, 390–391
digital, 52–53, 291, 432
digital resonators, 374–377
discrete-time, 212–290
elliptic, 371
elliptic lowpass, 403–406
equiripple, 344–360
extraripple, 350
finite-duration impulse response (FIR), 52, 212,

228–239
first-order, 542–545, 555–557
higher-order, 553–554
highpass, 339, 441
ideal, 309
infinite-duration impulse response (IIR), 53,

212, 214–228
lattice-ladder, 737–743
linear prediction, 686
lowpass, 336
lowpass filter design using MATLAB, 427–432
moving average (MA), 52
noise-whitening, 689
nonrecursive, 52
notch filters, 377–379
optimum linear, 686
phase responses of, 406–407
prediction-error, 701
prototype, 432
prototype analog, 385–407
p-stage lattice, 704
second-order, 547–549, 557
stable, 373
types of, 374–384
Wiener, 743–766

filtfilt function, 765
filtic function, 132, 133
Finite difference approximation, 408
Finite-duration causal sequence, 121
Finite-duration impulse response (FIR) filters,

52, 212
absolute specifications, 292–293
approximations, 292
cascade form, 228, 229–230
coefficients, 575, 707–715
direct form, 228, 229, 501–504

discrete-time filters, 228–239
filter coefficients, 274–277
fixed-point arithmetic, 557–560
floating-point arithmetic, 566–569
frequency-sampling design technique, 330–343
frequency-sampling form, 228, 233–239
implementation, 292
integer decimation, 490–496
integer interpolation, 482–487
linear-phase form, 228, 230–233
MATLAB analysis of, 560–566
MATLAB implementation, 301–303, 319–320,

351–360
multiple stopbands, 499–500
optimal equiripple design technique, 344–360
polyphase filter structures, 504–507
properties of linear-phase, 295–309
rational-factor rate conversion, 497–499
relative specifications, 293–295
round-off effects in, 557–569
sampling rate conversion, 482–510
specifications, 292
time-variant filter structures, 507–510
Wiener filters, 745–752
windowing, 309–330

Finite-duration sequence, 23, 43–44, 107, 142
Finite-precision numerical effects, 239–240
fir2 function, 343
fir2latc function, 711, 713, 736
firpm algorithm, 483, 491
firpm function, 275, 351, 353
firpmord function, 353
First-order filters, 542–545, 555–557
First-order-hold (FOH) interpolation, 91–92, 94
Fixed-point arithmetic, 240, 557–560

one’s-complement format, 257–258
quantization, 256–261
rounding operation, 260–261
sign-magnitude format, 256–257
truncation operation, 256
two’s-complement format, 259–260

Fixed-point signed integer arithmetic, 241–248
one’s-complement format, 242–244
sign-magnitude format, 241–242
ten’s-complement format, 246–248
two’s-complement format, 244–245

Fletcher-Poweel algorithm, 821
fliplr function, 710, 711
Floating-point arithmetic, 240, 251–254,

566–569
binary numbers, 252–253
decimal numbers, 251–252
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Floating-point arithmetic (continued)
IEEE 754 standard, 254–255
quantization, 261–262

Folding property, 68, 72, 107
for...end loop, 143, 177
Forward linear prediction, 701–705
Forward prediction-error filter, 730–732
freqs m function, 392
Frequencies

circular shift in, 174
natural, 48
periodicity in, 33
sampling, 141, 150. See also Sampling
uncountably infinite, 141

Frequency-band
MATLAB implementation of, 441–445
tolerances, 294
transformations, 432–445

Frequency-domain approach, 177
downsampling, 462–466
resampled signals, 480

Frequency response, 74, 76–80
functions, 298–301
infinite-duration impulse response (IIR) filters,

269–274
Frequency-sampling form

design technique, 330–343
finite-duration impulse response (FIR) filters,

228, 233–239
MATLAB scripts, 335
naive design method, 332–333
optimum design method, 333–343

Frequency selective type, 291
Frequency shifting property, 68, 70, 107
freqz function, 64, 121, 122, 123, 303, 320
freqz m function, 320, 392
ftype function, 330
Full-duplex transmission, 783

G

Gain, 75
variance, 528

Gaussian distribution
bivariate, 637–641
random processes, 668–670

General fixed-point arithmetic, 248–251
one’s-complement format, 249
sign-magnitude format, 249
two’s-complement format, 250–251

Geometric series, 36, 41

Gibbs phenomenon, 313
Goertzel algorithm, 607–609
Granular limit cycles, 532–537
Graphical convolution, 42–43

H

Hamming window, 315–316
Hann window, 315
High-density spectrum, 162
Higher-order filters, 553–554
Highpass filters, 339, 441
High-resolution spectrum, 162
High-speed convolution, 197, 199
Histograms

as joint pdf approximations, 630
as pdf approximations, 616–618

Homogeneous solutions, 47
hsolpsav function, 199
h(X) function, 624
Hybrid devices, 783

I

Ideal filters, 309
idfs function, 145, 156
IEEE 754 standard, 254–255, 262
impinvar function, 411
imp invr function, 410, 411, 419
Improper rational function, 109
impulse function, 393
Impulse invariance transformation, 408–418
Impulse response, 37, 295–297
impz function, 48
Indexing operations, 10–11
Infinite-duration impulse response (IIR) filters,

53, 212
allpass filters, 381–382
analog-to-digital filter transformations, 407–427
bilinear transformation, 408, 418–426
Butterworth lowpass filters, 385–390
cascade form, 214, 216–217
Chebyshev lowpass filters, 394–403
comb filters, 379–380
design, 370–457
design equations, 390–391
digital resonators, 374–377
digital sinusoidal oscillators, 382–384
direct form, 214–215
discrete-time filters, 214–228
effect on pole-zero locations, 262–269
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effects on frequency response, 269–274
elliptic lowpass filters, 403–406
filter coefficients, 262–274
finite difference approximation, 408
first-order filters, 555–557
frequency-band transformations, 432–445
granular limit cycles, 532–537
higher-order filters, 553–554
impulse invariance transformation, 408–418
limit cycles, 531–532
linear fractional transformation, 418
lowpass filter design using MATLAB, 427–432
matched-z transformation, 426–427
MATLAB analysis of, 533–537, 546–547
MATLAB implementation, 216, 217, 387–390,

392–394, 396–397, 398–403, 404–406, 441–445
mirror-image symmetry, 373
multiplication quantization error, 539–542
notch filters, 374–379
overflow limit cycles, 537–539
parallel form, 214, 221–228
phase responses of, 406–407
prototype filters, 385–407, 432
relative-linear scale, 371–372
round-off effects, 530–557
second-order filters, 547–549, 557
signal-to-noise ratio (SNR), 545, 550–551
statistical noise, 542–545, 554–557
transposed structure, 216
types of filters, 374–384
Wiener filters, 755–762

Infinite-duration sequence, 23
Infinite sums, 141
Innovations process, 687–700
In-phase components, 681
Input

poles, 130
sequences, 79
zero-state responses and, 51–52

Integers
decimation, 490–496
design specifications, 487, 494–496
interpolation, 482–487
MATLAB implementation, 483–487, 491–493

Interference, 611
narrowband, suppression of, 788–795

Interpolation, 459–461
cubic spine, 92
design specifications, 487
DTFT formula, 152–153
by factor I, 470–475
first-order-hold (FOH), 91–92, 94

integers, 482–487
MATLAB implementation, 483–487
zero-order-hold (ZOH), 90–91, 94

Intervals, sampling, 81
intfilt function, 483
Inverse discrete-time Fourier transform

(IDTFT), 60
Inversion of z-transform, 112–118

J

Jamming, 611
Joint central moments, 636
Joint cumulative distribution function, 628
Joint probability functions, 628–634

conditional probability functions, 629–630
functions, 631–634
histograms as joint pdf approximations, 630
marginal probability functions, 629
scatter-plot as pdf plots, 631
statistical independence, 630
transformations, 631

Joint statistical averages, 634–637
concepts, 636
correlation coefficients, 637
orthogonal random variables, 637
uncorrelated random variables, 636–637

K

kaiserord function, 329
Kaiser window, 317–319
Kalman gain vector, 844

L

ladr2iir function, 740
ladrfilter function, 741
latc2fir function, 710, 714, 736
Lattice-ladder filters, 737–743

MATLAB implementation of, 739–743
Lattice reflection coefficients, 707–715
LDU factorization, 847–848
Learning curves, 827
Least-mean-square (LMS) algorithm, 575–578,

815, 816
adaptive direct-form FIR filters, 820–824
analysis of excess noise, 829–832
channel equalization, 834–836
convergence of, 824–828
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Least-mean-square (LMS) algorithm (continued)
echo cancellation, 836–838
MATLAB implementation of, 823–824
MATLAB scripts, 833, 835, 836, 837, 838
narrowband interference, suppression of,

838–839
properties of, 824–841
recursive least-squares (RLS) algorithms,

846–847
stability of, 824–826
system identification (modeling), 832–834

Least-significant bit (LSB), 250
Least-squares criterion results, 574, 771
Left-sided sequence, 106
length function, 473
Levinson-Durbin algorithm, 718–724, 746
Limit cycles, 531–532

granular, 532–537
overflow, 537–539

Linear convolution
block convolutions, 183–185
discrete Fourier transform (DFT), 180–186
error analysis, 182–183
sum, 39–40

Linear discrete-time systems, 37–40
Linearity property, 67, 107, 165
Linear mean-square estimation, 752–755
Linear operators, 637
Linear-phase FIR filters, 228, 230–233

frequency response functions, 298–301
impulse response, 295–297
MATLAB implementation, 301–303
properties of, 295–309
zero locations, 303–309

Linear prediction
filters, 686
relationships, 716–717

Linear prediction-error filters, properties of,
730–734

Linear predictive coding (LPC) of speech,
601–605, 807–813

MATLAB scripts, 811–813
Linear systems

bounded-input bounded-output (BIBO)
stability, 40

causality, 40
discrete-time, 37–40
impulse response, 37
linear time-invariant (LTI) system, 38–40
superposition summation, 37
time-varying impulse responses, 37

Linear time-invariant (LTI) system, 38, 52, 74–80,
658–668

bounded-input bounded-output (BIBO)
stability, 40

causality, 40
convolution, 40–47
cross-correlation, computation of, 660
cross-spectral density (CSD), computation of,

660
determination of, 39–40
difference equations, 47–53
digital filters, 52–53
discrete-time, 664–668
frequency response, 74, 76–80
linear systems, 38–40
output auto-correlation, computation of,

661–664
output mean function, computation of,

659–660
power spectral density (PSD), computation of,

661–664
sequence correlation, 45–47
zero-state input and responses, 51–52

Line enhancement, 795–801
MATLAB scripts, 797, 798, 799, 801

lms function, 577, 823
Local loops, 783
Loops

for...end, 143, 177
local, 783

Lowpass filters, 336
design using MATLAB, 427–432
process, 676–679

Low-rate signals, 461

M

Magnitude, 75, 77
Magnitude-only

designs, 371
specifications, 292

Mantissa, 251, 262
Marginal probability functions, 629
Markov process, 674
Matched-z transformation, 426–427
MATLAB, 1–2, 5–17

adaptive filtering, 577–578
analog signals, 84–87, 92–97
autoregressive (AR) lattice structure, 736
bivariate Gaussian distribution, 641
Butterworth lowpass filters, 387–390, 392–394
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cascade form, 230
channel equalization, 835, 836
Chebyshev lowpass filters, 396–397, 398–403
control and flow of commands, 11–13
convolution, 43–45, 47
decimation, 467–470
difference equations, 48–51
digital filters, 520–525
digital signal processing (DSP) and, 1–2, 18–20
direct form structure, 216, 229
discrete Fourier series (DFS), 143–146
discrete Fourier transform (DFT), 156–165,

185–186, 195–197
discrete-time Fourier transform (DTFT), 61–66
discrete-time LTI systems, 667
discrete-time signals, 23
discrete-time systems, 43–45
distribution, 621–622
downsampling, 462–466
echo cancellation, 836, 837
elliptic lowpass filters, 404–406
equiripple filters, 351–360
estimation of the mean, 626–627
fast Fourier transform (FFT), 195–197
filter coefficients, 266–269
filtered noise process, 682
finite-duration impulse response (FIR) filters,

319–320
frequency-band transformations, 441–445
frequency-sampling form, 234–239
functions, 14
histograms as joint pdf approximations, 630
indexing operations, 10–11
infinite-duration impulse response (IIR) filters,

217
integer decimation, 491–493
integer interpolation, 483–487
lattice-ladder filters, 739–743
lattice reflection coefficients, 710–711
least-mean-square (LMS) algorithm, 823–824,

833
Levinson-Durbin algorithm, 722–724
linear-phase FIR filters, 301–303
linear-phase form, 230–233
lowpass filter design using, 427–432
matrix operations, 8–13
narrowband interference, suppression of, 838
number representation, 21
one’s-complement format, 243–244
operators, 6, 8
parallel form, 221
plotting, 14–17

power spectral density (PSD), 657–658
random processes, 620–621
random sequences, 649–650
rational factor I/D, 480–482
rational-factor rate conversion, 498–499
round-off effects, 526–527, 528–530, 533–537,

546–547, 560–566
sampling, 153
scripts, 13
sign-magnitude format, 242
sinusoidal distribution, 625
sinusoidal sequence, 34
system identification, 774
ten’s-complement format, 247–248
two’s-complement format, 245
upsampling, 471–475
use of, 5–17
variables, 7–8
Wiener filters, 747, 748, 750, 751, 752, 761,

762, 766
z-transform, 114–118, 120–125, 131–134

Matrix operations
MATLAB, 8–13
matrix-vector multiplication, 92

Matrix-vector multiplication operation, 62
maxlag index, 649
Mean, estimation of the, 625–627
mean function, 526
Mean-squared values, 619
Mean-square-error (MSE), 574, 771

parameter estimation based on, 819–820
mean(X) function, 626
Merging formula, 193
Minimax problem, 336, 344–348
Minimum mean-square-error criterion, 816–820
Minimum MSE (MMSE), 717, 744
Minimum stopband attenuation, 313
Mirror-image symmetry, 373
Mixed-radix FFT algorithm, 193
Mixed random variables, 616
Models

Gaussian distribution, 621–622
random variables, 620–625
system identification, 578–579, 771–776
uniform distribution, 620–621

Modems, echo cancellers, 786
Modified zero-order Bessel functions, 318
Moments, 618, 634–637
Monotone function, 348
Moving average (MA) filters, 52
Moving average (MA) process, 692
Moving target indicator (MTI) radars, 379
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Multiple-access code, 611
Multiple stopbands, 499–500
Multiplication-by-a-ramp property, 108, 111
Multiplication property, 69, 179
Multiplication quantization error, 539–542
Multipliers (gain), 213
Multirate digital signal processing systems, 458
Musical sound processing, 18

N

Narrowband interference, suppression of, 579–582,
788–795

least-mean-square (LMS) algorithm, 838–839
MATLAB scripts, 838

Narrowband process, 679
Narrowband signals in wideband noise,

estimation of, 796–801
Natural frequencies, 48
Near-end echo, 784
Noise

A/D quantization, 525
analysis of excess, 829–832
cancellation, 801–807
MATLAB scripts, 804, 805, 806
pseudo-noise (PN), 612
quantization, 519
round-off, 558, 564
signal-to-noise ratio (SNR), 545, 550–551
statistical, 519–520, 539, 542–545, 554–557

Noise-whitening filter, 689
Noncausal Wiener filters, 762–766
Nonrecursive filters, 52
Normal equations, 705, 717–730

Levinson-Durbin algorithm, 718–724
Schur algorithm, 724–730

Normalized covariance, 637
Normalized form, 251
Normalized histograms, 617
Not-a-number (NaN), 255
Notch filters, 377–379
N-point sequence, 154
Null space, 104
Numbers

representation, 21, 240–255
sequence, 10

Numerator polynomials, 105
Numerically computable transforms, 141
nx function, 617
nxy function, 630
Nyquist component, 169

Nyquist rates, 83, 87
echo cancellers, 786

O

oc2sm function, 251
One’s-complement format, 240, 242–244

fixed-point arithmetic, 257–258
fixed-point signed integer arithmetic, 242–244
general fixed-point arithmetic, 249
MATLAB implementation, 243–244

onesComplement function, 243
One-side z-transform, 128
Operations

rounding, 255, 260–261
on sequences, 25–32
truncation, 255, 256

Operators
linear, 637
MATLAB, 6, 8

Optimum linear filters, 686
Optimum reflection coefficients, 715–716
Order-recursive equations, 703
Orthogonality principle, Wiener filters, 752–755
Orthogonal random variables, 637
Output auto-correlation, computation of, 661–664
Output mean function, computation of, 659–660
Output sequences, 79
Overflow, 531

limit cycles, 537–539
scaling to avoid, 558
scaling to prevent, 564

Overlap-add method, block convolutions, 186
ovrlpsav function, 185, 186, 199

P

Pair of random variables, 628–641
Pairs, z-transform, 110–111
par2dir function, 224
Parallel form, 214, 221–228

infinite-duration impulse response (IIR) filters,
214

Parameters
estimation based on MSE criterion, 819–820
signals, 487

parfiltr function, 223
Parks-McClellan algorithm, 350–351
Parseval’s relation, 179–180
Passband, 292
pdf1 function, 617
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Pdf approximations, histograms as, 616–618
Peak side-lobe magnitude, 312
Peaky main-lobe, 311
Periodic conjugate symmetry, 168
Periodic convolution, 69
Periodicity in frequencies, 33
Periodicity property, 61
Periodic sequence, 25
Periodic shift of sequences, 172
Phase response, 75, 77
Phase responses of prototype filters, 406–407
Piecewise linear response, 298
Plants, 771, 776
Plotting, 14–17
Poles, estimation of in all-pole systems, 811–813
Pole-zero systems, 738

infinite-duration impulse response (IIR) filters,
262–269

Poly function, 116
Polyphase structures, 500, 504–507
Positive-time sequence, 105
Power, signal, 28
Power spectral density (PSD), 650–658

auto-correlation, 653–654
computation of, 661–664
cross-spectral density (CSD), 654
MATLAB implementation of, 657–658
properties of, 653–654
random sequences, 655–658

Power spectrum, 180
Prediction

backward linear, 706–707
forward linear, 701–705
linear prediction relationships, 716–717
signals, 744
Wiener filters, 743–766

Prediction-error filter, 701
Prewindowing, 842
Probability functions, 615–618
Processes, random, 614–685
Processing elements (PEs), 729
prod function, 28
Products

of biquads, 214
sample, 28

Properties
discrete-time Fourier transform (DTFT), 60–61
of discrete-time Fourier transform (DTFT),

67–73
Gaussian distribution, 639
of least-mean-square (LMS) algorithm, 824–841
of linear-phase FIR filters, 295–309

of linear prediction-error filters, 730–734
of power spectral density (PSD), 653–654

Prototype analog filters, 385–407
Butterworth lowpass filters, 385–390
Chebyshev lowpass filters, 394–403
design equations, 390–391
elliptic lowpass filters, 403–406
phase responses of, 406–407

Prototype filters, 432
Pseudo-noise (PN), 612
p-stage lattice filter, 704
Pulse-code modulation (PCM), 586–590, 807

Q

qcoeff function, 266
qfix function, 546
qmode function, 534
Quadrature components, 681
Quantization

A/D quantization noise, 518–530
discrete-time filters, 255–262
fixed-point arithmetic, 256–261
floating-point arithmetic, 261–262
multiplication quantization error, 539–542
noise, 519

R

Radix-2 FFT algorithm, 193–196
Radix-R FFT algorithm, 193
rand function, 25, 578
randn function, 675
Random processes, 642–650

autoregressive moving average (ARMA) process,
692–695

autoregressive (AR) process, 692
backward linear prediction, 706–707
bivariate Gaussian distribution, 637–641
cross-correlation, computation of, 660
cross-spectral density (CSD), computation of,

660
discrete-time LTI systems, 664–668
discrete-time Markov process, 674–675
discrete-time white noise process, 672–674
estimation of the mean, 625–627
filtered noise process, 676–684
FIR filter coefficients, 707–715
forward linear prediction, 701–705
Gaussian distribution, 668–670
innovations representation of, 687–700
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Random processes (continued)
joint probability functions, 628–634
joint statistical averages, 634–637
lattice reflection coefficients, 707–715
Levinson-Durbin algorithm, 718–724
linear and time-invariant systems (LTI),

658–668
linear prediction relationships, 716–717
Markov process, 674
MATLAB implementation of, 620–621
models, 620–625
moving average (MA) process, 692
optimum reflection coefficients, 715–716
output auto-correlation, computation of,

661–664
output mean function, computation, 659–660
pair of random variables, 628–641
power spectral density (PSD), 650–658, 661–664
rational power spectra, 691–695
relationship with autocorrelation sequence,

695–700
Schur algorithm, 724–730
sinusoidal distribution, 623–625
statistical averages, 618–619
transformation, 622–623
variables, 615–627
white noise process, 670–672

Random sequences, 25, 648–650
power spectral density (PSD), 655–658

Random signals. See Random processes
Rational factor I/D, 477–482

MATLAB implementation, 480–482
Rational-factor rate conversion, 497–499
Rational power spectra, 691–695
Real-valued exponential sequences, 24
Reconstruction

of analog signals, 87–92
of band-limited signals, 89
signals, 94, 95

Reconstruction formula (z-transform), 152
Rectangular pulse, 35
Rectangular window, 150, 310, 312–314
Recursive least-squares (RLS) algorithms, 841–848

LDU factorization and, 847–848
least-mean-square (LMS) algorithm, 846–847

Reflection coefficient, 702
Region of convergence (ROC), 104–107
Relationships

autocorrelation sequence, 695–700
average linear, 635, 636
linear prediction, 716–717
between representations, 125

Relative amplitudes, 313
Relative-linear scale, 371–372
Relative specifications, 292

finite-duration impulse response (FIR) filters,
293–295

rem function, 154
Representation

difference equation, 119
relationships between, 125
transfer function, 120
in z-transform, 118–128

Representation of numbers, 240–255
fixed-point signed integer arithmetic, 241–248
floating-point arithmetic, 251–254
general fixed-point arithmetic, 248–251

resample function, 480, 481, 500
residue function, 529
residuez function, 114, 115, 224, 410
Responses

arbitrary absolutely summable sequences, 75–76
discrete-time systems, 51–52
frequency, 74, 76–80
impulse, 37
phase, 75, 77
steady-state, 75, 128
time-varying impulse, 37
transient, 128
unbounded, 130
zero-state input and, 51–52

Reverberation
digital signal processing (DSP), 18, 20

Reverse polynomials, 707
Right-sided sequence, 106
Root-mean-squared (rms), 619
round function, 551
Rounding operation, 255, 520, 525

fixed-point arithmetic, 260–261
Round-off effects, 518–572

A/D quantization noise, 518–530, 525, 527–530
finite-duration impulse response (FIR) filters,

557–569
first-order filters, 542–545, 555–557
fixed-point arithmetic, 557–560
floating-point arithmetic, 566–569
granular limit cycles, 532–537
higher-order filters, 553–554
in IIR digital filters, 530–557
limit cycles, 531–532, 537–539
MATLAB analysis of, 520–525, 533–537,

546–547, 551–553, 560–566
MATLAB implementation of, 526–527, 528–530
multiplication quantization error, 539–542
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overflow, 531
rounding operation, 520
saturation strategies, 531
second-order filters, 547–549, 557
signal-to-noise ratio (SNR), 545, 550–551
statistical noise, 519–520, 539, 542–545, 554–557
truncation operation, 525–527
variance gain, 528

Round-off noise, 558, 564
Row vectors, 119
Rules, Bayes, 630
rxy function, 649

S

Sample products, 28
Sample shifting property, 107
Sampling, 141

analog signals, 81–84
discrete Fourier transform (DFT), 149–152
DTFT interpolation formula, 152–153
frequencies, 150
intervals, 81
MATLAB implementation of, 153
principles, 83
z-transform reconstruction formula, 152

Sampling rate conversion, 458–517
decimation by a factor D, 461–470
direct form filter structures, 501–504
downsampling, 461–466
finite-duration impulse response (FIR) filters,

482–510
ideal decimators, 466–470
integer decimation, 490–496
interpolation by factor I, 470–475
interpolation errors, 459–461
low-rate signals, 461
MATLAB implementation, 462–466, 467–470,

471–475, 480–482
multiple stopbands, 499–500
multirate digital signal processing systems, 458
polyphase structures, 500, 504–507
by rational factor I/D, 477–482
time-variant filter structures, 507–510
upsampling, 470–475

Saturation strategies, 531
satur function, 551
Scaling, 27

to avoid overflow, 558
factor, 249
to prevent overflow, 564

Scatter-plot as pdf plots, 631
Schur algorithm, 724–730
sdir2cas function, 388
Second-order filters, 547–549, 557
Sequences, 22–33, 45–47

absolutely summable, 75
anticausal, 106
arbitrary, 75–76
circular shift of, 171
complex exponential, 74–75
complex-valued exponential, 24
correlation, 36, 45–47
discrete-time Fourier transform (DTFT), 66–67
exponential, 24, 51
finite-duration, 23, 43–44, 107, 142
infinite-duration, 23
input, 79
left-sided, 106
number, 10, 22
operations on, 25–32
output, 79
periodic, 25
positive-time, 105
random, 25, 648–650, 655–658
real-valued exponential, 24
right-sided, 106
sinusoidal, 24–25, 32–33, 75
symmetry property, 168
unit sample, 23
unit step, 23–24
z-transform, 110–111

Series, geometric, 36, 41
sigadd function, 26
sig* functions, 31
Signals, 2–20

addition, 8
analog, 80–97
analog processing (ASP), 3–5
analysis, 2, 4
band-limited, 82
cross-correlation functions, 644
cubic spine interpolation, 92
dense spectrum of, 159
digital processing (DSP), 2–20
discrete-time, 22–36
dual-tone multifrequency (DTMF), 605–609
energy, 28
ergodicity, 646–648
filtering, 5
first-order-hold (FOH) interpolation, 91–92, 94
low-rate, 461
MATLAB implementation, 84–87, 92–97
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Signals (continued)
parameters, 487
power, 28
prediction, 744
random, 642–650. See also Random processes
random sequences, 648–650
reconstruction, 94, 95
reconstruction of, 87–92
sample products, 28
sampling, 81–84
scaling, 27
smoothing, 744
speech, linear predictive coding of, 807–813
spread-spectrum, 788
stationarity, 645–646
wideband, 788–795
zero-order-hold (ZOH) interpolation, 90–91, 94

Signal-to-noise ratio (SNR), 545, 550–551
Significand, 254
Sign-magnitude format, 240, 241–242

fixed-point arithmetic, 256–257
fixed-point signed integer arithmetic, 241–242
general fixed-point arithmetic, 249
MATLAB implementation, 242

sinc(x) function, 92
Sinusoidal distribution, 623–625
Sinusoidal interference, suppression of, 581–582
Sinusoidal sequence, 24–25, 32–33

correlation of sequences, 36
discrete-time, 32–33
discrete-time Fourier transform (DTFT), 75
even and odd synthesis, 34, 35
geometric series, 36
MATLAB implementation of, 34
unit sample synthesis, 34

sm2oc function, 251
sm2tc function, 251
Smoothing signals, 744
Spectrum analyzers, 291
Speech signals, linear predictive coding of,

807–813
spline function, 95, 97
Spread-spectrum

communications, 611–613
signals, 788

sqrtm function, 640
Square root algorithms, 847–848
Stability

bounded-input bounded-output (BIBO), 40
of least-mean-square (LMS) algorithm, 824–828
linear systems, 40
z-transform, 125–128

Stable filters, 373
stairs function, 94
Standard deviations, 619
Stationarity, 645–646

strict-sense, 645
wide-sense, 645–646

Stationary random processes
autoregressive moving average (ARMA) process,

692–695
autoregressive (AR) process, 692
backward linear prediction, 706–707
FIR filter coefficients, 707–715
forward linear prediction, 701–705
innovations representation of, 687–700
lattice reflection coefficients, 707–715
Levinson-Durbin algorithm, 718–724
linear and time-invariant systems (LTI), 658–668
linear prediction relationships, 716–717
moving average (MA) process, 692
optimum reflection coefficients, 715–716
rational power spectra, 691–695
relationship with autocorrelation sequence,

695–700
Schur algorithm, 724–730

Statistical averages, 618–619
Statistical independence, 630
Statistical noise, 519–520, 539, 542–545, 554–557
statModelR function, 526
std function, 526
Steady-state responses, 75, 128
stem function, 48
Stepband, 293
Stochastic-gradient-descent algorithm, 822
Strict-sense stationarity, 645
Superposition summation, 37
Symbol-rate echo cancellers, 785
Symmetric impulse response, 230
Symmetry property, 66, 168

discrete-time Fourier transform (DTFT), 61
Synthesis, discrete-time signals, 34–36
System function, 118

from the difference equation representation, 119
System identification (modeling), 578–579, 771–776

least-mean-square (LMS) algorithm, 832–834
MATLAB scripts, 832–834

System poles, 130

T

Tables, 370
tc2sm function, 251
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Telephone
channels, data transmission over, 783–788

Ten’s-complement format, 246–248
fixed-point signed integer arithmetic, 246–248
MATLAB implementation, 247–248

tensComplement function, 247
tf2sos function, 218
Time

periodicity in, 33
shifting property, 68

Time-domain approach, 176
Time-update equation, 843
Time-variant filter structures, 507–510
Time-varying impulse responses, 37
Transfer function, representation, 120
Transformation

joint probability functions, 631
random processes, 622–623

Transient response, 128
Transition band, 293
Transposed structure, 216
Truly linear response, 299
Truncation operation, 255, 525–527

fixed-point arithmetic, 256
Trunk lines, 783
Twiddle factor, 191
Two’s-complement format, 240, 244–245

fixed-point arithmetic, 259–260
fixed-point signed integer arithmetic, 244–245
general fixed-point arithmetic, 250–251
MATLAB implementation, 245

twosComplement function, 245
Type-1 linear-phase FIR filter, 299
Type-2 linear-phase FIR filter, 300
Type-3 linear-phase FIR filter, 300
Type-4 linear-phase FIR filter, 301
Types of filters, 374–384

allpass filters, 381–382
comb filters, 379–380
digital resonators, 374–377
digital sinusoidal oscillators, 382–384
notch filters, 377–379

U

u buttap function, 392
u chb1ap function, 396, 398
u chb2ap function, 401
u elipap function, 405
Unbounded responses, 130

Uncorrelated random variables, 636–637.
See also Variables

Uncountably infinite frequencies, 141
Uniform distribution, 620–621
Unit circle, 104
Unit sample sequence, 23
Unit sample synthesis, 34–36
Unit step sequence, 23–24
Unquantized coefficients, 271
upfirdn function, 485, 491, 498, 500
upsample function, 471
Upsampling, 470–475

MATLAB implementation, 471–475

V

varGain function, 529
Variables

bivariate Gaussian distribution, 637–641
conditional probability functions, 629–630
correlation coefficients, 637
discrete random variables, 616
estimation of the mean, 625–627
histograms as joint pdf approximations, 630
histograms as pdf approximations,

616–618
joint probability functions, 628–634
joint statistical averages, 634–637
marginal probability functions, 629
MATLAB, 7–8
models, 620–625
orthogonal random, 637
pair of random, 628–641
probability functions, 615–618
random, 615–627
scatter-plot as pdf plots, 631
sinusoidal distribution, 623–625
statistical averages, 618–619
statistical independence, 630
transformation, 622–623
transformations, 631

Variance gain, 528

W

Weiner-Hopf equation, 745
Whitening property, 732–733
White noise process, 670–672
Wideband noise, narrowband signals in, 796–801
Wideband signals, 788–795
Wide-sense stationarity, 645–646
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Wiener filters, 743–766
finite-duration

impulse response (FIR) filters, 745–752
infinite-duration

impulse response (IIR) filters, 755–762
linear mean-square estimation, 752–755
MATLAB

scripts, 747, 748, 750, 751, 752, 761, 762, 766
noncausal, 762–766
orthogonality principle, 752–755

Wiener-Khinchin theorem, 653
Windowing, 309–330

Bartlett window, 314–315
basic designs, 311
Blackman window, 317
cutoff frequency, 310
design examples, 320–330
Hamming window, 315–316
Hann window, 315
Kaiser window, 317–319
MATLAB implementation of, 319–320
peaky main-lobe, 311
rectangular window, 310, 312–314

Word length, 248
World representation, 689

X

xcorr function, 47, 650
xic function, 131
x=rand function, 620
x=randn function, 622

Y

y = Qfix function, 534

Z

z array, 388
Z-domain stability theorem, 125
Zero constellation, 304
Zeroes

interpolation errors, 459
linear-phase FIR filters, 303–309
pole-zero locations, 262–269
pole-zero systems, 738

Zero-order-hold (ZOH) interpolation, 90–91, 94
Zero-padding operation, 159
zerophase function, 301, 303
Zero-state input and responses, 51–52
zmapping function, 435, 437
zplane function, 119, 121, 122
z-transform, 103–140

bilateral, 103–107
causality, 125–128
deconvolution, 109
difference equation representation, 119
discrete Fourier series (DFS) relation to, 146–147
finite-duration causal sequence, 121
inversion of, 112–118
MATLAB

implementation of, 114–118, 120–125, 131–134
one-side z-transform, 128
pairs, 110–111
properties of, 107–111
reconstruction formula, 152
region of convergence (ROC), 104–107
relationships between representations, 125
sequences, 110–111
solutions of difference equations, 128–134
stability, 125–128
systematic representation in, 118–128
system function, 118
transfer function representation, 120
z-domain stability theorem, 125

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.


	Contents
	Preface
	Ch 1: Introduction�������������������������
	1.1: Overview of Digital Signal Processing�������������������������������������������������
	1.2: A Brief Introduction to MATLAB������������������������������������������
	1.3: Applications of Digital Signal Processing�����������������������������������������������������
	1.4: Brief Overview of the Book��������������������������������������

	Ch 2: Discrete-Time Signals and Systems����������������������������������������������
	2.1: Discrete-Time Signals���������������������������������
	2.2: Discrete Systems����������������������������
	2.3: Convolution�����������������������
	2.4: Difference Equations��������������������������������
	2.5: Problems��������������������

	Ch 3: The Discrete-Time Fourier Analysis�����������������������������������������������
	3.1: The Discrete-Time Fourier Transform (DTFT)������������������������������������������������������
	3.2: The Properties of the DTFT��������������������������������������
	3.3: The Frequency Domain Representation of LTI Systems��������������������������������������������������������������
	3.4: Sampling and Reconstruction of Analog Signals���������������������������������������������������������
	3.5: Problems��������������������

	Ch 4: The z-Transform����������������������������
	4.1: The Bilateral z-Transform�������������������������������������
	4.2: Important Properties of the z-Transform���������������������������������������������������
	4.3: Inversion of the z-Transform����������������������������������������
	4.4: System Representation in the z-Domain�������������������������������������������������
	4.5: Solutions of the Difference Equations�������������������������������������������������
	4.6: Problems��������������������

	Ch 5: The Discrete Fourier Transform�������������������������������������������
	5.1: The Discrete Fourier Series���������������������������������������
	5.2: Sampling and Reconstruction in the z-Domain�������������������������������������������������������
	5.3: The Discrete Fourier Transform������������������������������������������
	5.4: Properties of the Discrete Fourier Transform��������������������������������������������������������
	5.5: Linear Convolution Using the DFT��������������������������������������������
	5.6: The Fast Fourier Transform��������������������������������������
	5.7: Problems��������������������

	Ch 6: Implementation of Discrete-Time Filters����������������������������������������������������
	6.1: Basic Elements��������������������������
	6.2: IIR Filter Structures���������������������������������
	6.3: FIR Filter Structures���������������������������������
	6.4: Overview of Finite-Precision Numerical Effects����������������������������������������������������������
	6.5: Representation of Numbers�������������������������������������
	6.6: The Process of Quantization and Error Characterizations�������������������������������������������������������������������
	6.7: Quantization of Filter Coefficients�����������������������������������������������
	6.8: Problems��������������������

	Ch 7: FIR Filter Design������������������������������
	7.1: Preliminaries�������������������������
	7.2: Properties of Linear-Phase FIR Filters��������������������������������������������������
	7.3: Window Design Technique�����������������������������������
	7.4: Frequency-Sampling Design Technique�����������������������������������������������
	7.5: Optimal Equiripple Design Technique�����������������������������������������������
	7.6: Problems��������������������

	Ch 8: IIR Filter Design������������������������������
	8.1: Some Preliminaries������������������������������
	8.2: Some Special Filter Types�������������������������������������
	8.3: Characteristics of Prototype Analog Filters�������������������������������������������������������
	8.4: Analog-to-Digital Filter Transformations����������������������������������������������������
	8.5: Lowpass Filter Design Using MATLAB����������������������������������������������
	8.6: Frequency-Band Transformations������������������������������������������
	8.7: Problems��������������������

	Ch 9: Sampling Rate Conversion�������������������������������������
	9.1: Introduction������������������������
	9.2: Decimation by a Factor D������������������������������������
	9.3: Interpolation by a Factor I���������������������������������������
	9.4: Sampling Rate Conversion by a Rational Factor I/D�������������������������������������������������������������
	9.5: FIR Filter Designs for Sampling Rate Conversion�����������������������������������������������������������
	9.6: FIR Filter Structures for Sampling Rate Conversion��������������������������������������������������������������
	9.7: Problems��������������������

	Ch 10: Round-Off Effects in Digital Filters��������������������������������������������������
	10.1: Analysis of A/D Quantization Noise�����������������������������������������������
	10.2: Round-Off Effects in IIR Digital Filters�����������������������������������������������������
	10.3: Round-Off Effects in FIR Digital Filters�����������������������������������������������������
	10.4: Problems���������������������

	Ch 11: Applications in Adaptive Filtering������������������������������������������������
	11.1: LMS Algorithm for Coefficient Adjustment�����������������������������������������������������
	11.2: System Identification or System Modeling�����������������������������������������������������
	11.3: Suppression of Narrowband Interference in a Wideband Signal������������������������������������������������������������������������
	11.4: Adaptive Line Enhancement��������������������������������������
	11.5: Adaptive Channel Equalization������������������������������������������

	Ch 12: Applications in Communications��������������������������������������������
	12.1: Pulse-Code Modulation����������������������������������
	12.2: Differential PCM (DPCM)������������������������������������
	12.3: Adaptive PCM and DPCM (ADPCM)������������������������������������������
	12.4: Delta Modulation (DM)����������������������������������
	12.5: Linear Predictive Coding (LPC) of Speech�����������������������������������������������������
	12.6: Dual-Tone Multifrequency (DTMF) Signals����������������������������������������������������
	12.7: Binary Digital Communications������������������������������������������
	12.8: Spread-Spectrum Communications�������������������������������������������

	Ch 13: Random Processes������������������������������
	13.1: Random Variable����������������������������
	13.2: A Pair of Random Variables���������������������������������������
	13.3: Random Signals���������������������������
	13.4: Power Spectral Density�����������������������������������
	13.5: Stationary Random Processes through LTI Systems������������������������������������������������������������
	13.6: Useful Random Processes������������������������������������
	13.7: Summary and References�����������������������������������

	Ch 14: Linear Prediction and Optimum Linear Filters����������������������������������������������������������
	14.1: Innovations Representation of a Stationary Random Process����������������������������������������������������������������������
	14.2: Forward and Backward Linear Prediction���������������������������������������������������
	14.3: Solution of the Normal Equations���������������������������������������������
	14.4: Properties of the Linear Prediction-Error Filters��������������������������������������������������������������
	14.5: AR Lattice and ARMA Lattice-Ladder Filters�������������������������������������������������������
	14.6: Wiener Filters for Filtering and Prediction��������������������������������������������������������
	14.7: Summary and References�����������������������������������

	Ch 15: Adaptive Filters������������������������������
	15.1: Applications of Adaptive Filters���������������������������������������������
	15.2: Adaptive Direct-Form FIR Filters���������������������������������������������
	15.3: Summary and References�����������������������������������

	Bibliography
	Index

		2015-12-16T01:19:38+0000
	Preflight Ticket Signature




